Рис. 2.3. Диаграмма состояния многокомпонентного газа.

В отличие от чистого вещества для многокомпонентных систем изменение объема в двухфазной области сопровождается и изменением давления (рис. 2.3, о). Для полного испарения жидкости необходимо непрерывно понижать давление и, наоборот, для полной конденсации газа надо непрерывно повышать давление. Поэтому давление точки начала парообразования для многокомпонентной системы выше давления точки начала конденсации и при перестроении диаграммы фазовых состояний в координатах

давление - температура кривые точек начала испарения и точек росы не совпадают. По сравнению с фазовой диа­граммой чистого вещества диаграмма в этих координатах имеет вид петли (рис. 2.3,6). Кривая точек начала паро­образования, являющаяся границей, разделяющей области жидкого и двухфазного состояний вещества, и кривая точек росы, отделяющая двухфазную область от области парообразования, соединяются в критической точке С. В данном случае критическая точка не является точкой максимального давления и температуры, при которых одно­временно могут существовать две фазы, но, как и в случае чистого вещества в критической точке плотность и со­став фаз одинаковы.

Для многокомпонентной системы точка М с максимальной температурой, при которой возможно двухфаз­ное состояние, называется крикондентермой, а точка N с соответствующим давлением - криконденбарой. Между этими точками и критической точкой существуют две области, в которых поведение смеси отличается от поведе­ния чистого вещества. При изотермическом сжатии, например при температуре Г, по линии ЕА, смесь после пере­сечения в точке Е линии точек росы частично конденсируется и переходит в двухфазное состояние. С дальнейшим повышением давления доля жидкой фазы возрастает, но лишь для определенного давления, соответствующего точке Д. Последующее увеличение давления от точки Д до точки В ведет к уменьшению доли жидкой фазы, а затем смесь снова переходит в парообразное состояние. Давление в точке Д, при котором образуется максимальное ко­личество жидкой фазы, называется давлением максимальной конденсации.



Аналогичные явления наблюдаются и при изобарном нагревании жидкости по линии ЛНГБ. Первоначаль­но смесь находится в однофазном жидком состоянии. После пересечения линии точек начала парообразования в точке Л в смеси появляется паровая фаза, количество которой растет до точки Н. Последующее повышение темпе­ратуры ведет к уменьшению объема паровой фазы вплоть до возвращения вещества в жидкое состояние в точке Г.

Области, в которых конденсация и испарение происходят в направлении, обратном фазовым превращени­ям чистого вещества, получили название ретроградных областей (на рис. 2.3,6 они заштрихованы). Явления, про­исходящие в этих областях, называют ретроградным (обратным) испарением и ретроградной (обратной) конденса­цией. Эти явления широко используются в процессах внутрипромысловой подготовки газа для выбора условий, при которых обеспечивается максимальное отделение газового конденсата.

Петлеобразная форма диаграммы фазовых состояний (рис. 2.3, б) характерна для всех многокомпонентных смесей, но форма петли, положение критической точки и ретроградных областей зависят от состава смеси. Если состав пластовой смеси таков, что крикондентерма располагается левее изотермы, соответствующей пластовой температуре (линии ft]), то по мере снижения давления при разработке месторождения эта смесь будет находить­ся только в однофазном газовом состоянии. Смеси углеводородов такого состава образуют газовые месторожде­ния. Если состав смеси таков, что пластовая температура находится между критической температурой и темпера­турой крикондентермы (линия АТ^), то такие углеводородные смеси образуют газоконденсатные месторождения. В процессе снижения давления при пластовой температуре из них будет выделяться жидкая фаза - конденсат.

Для нефтяных месторождений критическая точка располагается правее изотермы пластовой температуры (линия GTi). Если точка G с координатами, соответствующими начальному пластовому давлению и пластовой температуре, расположена выше линии начала парообразования, то нефть находится в однофазном жидком со­стоянии и недонасыщена газом. Только при снижении давления ниже давления насыщения (точка D) из нефти на­чинает выделяться газовая фаза Нефтяные месторождения, состав углеводородной смеси которых таков, что на­чальное пластовое давление (точка К) ниже давления насыщения, имеют газовую шапку, которая представляет со­бой скопившуюся в верхней части залежи газовую фазу.

Анализ фазовых диаграмм

Двухфазные линии, как правило, либо соединяют две тройные точки, либо тройную точку с точкой на оси ординат, отвечающую нулевому давлению. Исключение составляет линия жидкость-газ, заканчивающаяся в критической точке . При температурах выше критической различие между жидкостью и паром исчезает.

Сечения и проекции диаграмм бинарных систем

Диаграммы температура-состав

Диаграммы бинарных систем

Неограниченная растворимость в твёрдом состоянии

Эвтектические и эвтектоидные превращения

Сплавы, образующие химические соединения


Wikimedia Foundation . 2010 .

Смотреть что такое "Фазовая диаграмма" в других словарях:

    - (см. ДИАГРАММА СОСТОЯНИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983. ФАЗОВАЯ ДИАГРАММА … Физическая энциклопедия

    То же, что диаграмма состояния … Большой Энциклопедический словарь

    фазовая диаграмма - Термодинамическая диаграмма, в которой по осям координат откладываются давление и температура и наносятся кривые фазового равновесия. [Сборник рекомендуемых терминов. Выпуск 103. Термодинамика. Академия наук СССР. Комитет научно технической… … Справочник технического переводчика

    ФАЗОВАЯ ДИАГРАММА, графическое изображение условий, в которых существуют различные равновесные ФАЗЫ вещества. Например, кривая зависимости ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ от ДАВЛЕНИЯ у чистого твердого вещества делит диаграмму на две части. Точки в одной… … Научно-технический энциклопедический словарь

    фазовая диаграмма - fazių pusiausvyros diagrama statusas T sritis Standartizacija ir metrologija apibrėžtis Termodinaminės sistemos fazių pusiausvyros grafinis vaizdas. atitikmenys: angl. phase equilibrium diagram; thermodynamic phase diagram vok.… …

    фазовая диаграмма - Phase Diagram Фазовая диаграмма (диаграмма состояния) Графическое изображение соотношения между параметрами состояния термодинамически равновесной системы (температурой, давлением, составом и др.). Фазовая диаграмма позволяет определить,… … Толковый англо-русский словарь по нанотехнологии. - М.

    Phase diagram Фазовая диаграмма. Графическое представление критических температур и пределов содержания фаз в сплаве или керамической системе, существующих при нагревании или охлаждении. Фазовая диаграмма может быть диаграммой равновесного… … Словарь металлургических терминов

    То же, что диаграмма состояния. * * * ФАЗОВАЯ ДИАГРАММА ФАЗОВАЯ ДИАГРАММА, то же, что диаграмма состояния (см. ДИАГРАММА СОСТОЯНИЯ) … Энциклопедический словарь

    Термин фазовая диаграмма Термин на английском phase diagram Синонимы диаграмма состояния Аббревиатуры Связанные термины критическая температура мицеллообразования, спинодальный распад Определение графическое изображение состояний… … Энциклопедический словарь нанотехнологий

    фазовая диаграмма - fazių diagrama statusas T sritis Standartizacija ir metrologija apibrėžtis Daugiafazės termodinaminės sistemos būsenų diagrama. atitikmenys: angl. phase diagram vok. Gleichgewichtsdiagramm, n; Phasendiagramm, n; Zustandsdiagramm, n;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Книги

  • Физика и химия карбидов вольфрама , Александр Иванович Гусев. В монографии изложено современное состояние фундаментальных исследований карбидов вольфрама, широко применяемых в технике. Проведен симметрийный анализ превращений беспорядок–порядок и…

) — графическое изображение состояний термодинамической системы в пространстве основных параметров состояния - температуры T , давления p и состава x .

Описание

Фазовые диаграммы позволяют узнать, какие фазы (т. е. однородные подсистемы, отличающиеся строением и/или свойствами от других) могут присутствовать в данной системе при данных условиях и составе. Для сложных систем, состоящих из многих фаз и компонентов, построение диаграмм состояния по экспериментальным данным и данным термодинамического моделирования является важнейшим способом предсказания поведения в ходе различных процессов. Анализ относительного расположения полей, разделяющих их поверхностей и линий, а также точек сочленения последних позволяет однозначно и наглядно определять условия фазовых равновесий, появления в системе новых фаз и химических соединений, образования и распада жидких и твердых растворов и т. п.

Диаграммы состояния используют в материаловедении, металлургии, нефтепереработке, химической технологии (в частности, при разработке методов разделения веществ), производствах электронной техники и микроэлектроники и др. С их помощью подбирают условия промышленного синтеза веществ, определяют направленность процессов, связанных с фазовыми переходами, осуществляют выбор режимов термообработки, отыскивают оптимальные составы фаз и т. п.

Фазовые диаграммы однокомпонентных систем изображаются на плоскости в координатах p–T . На них присутствуют поля, отвечающие существованию той или иной фазы вещества (газообразной, жидкой, различных твердых модификаций), разделенные линиями фазового равновесия, вдоль которых возможно сосуществование граничащих фаз. Места, где сходятся три различные линии фазовых равновесий, образуют так называемые тройные точки, в которых могут сосуществовать три фазы. Это максимальное число фаз, способных равновесно сосуществовать в однокомпонентных системах.

Число фаз, присутствующих в данной точке фазовой диаграммы, определяется правилом фаз Гиббса и составляет n + 2 – f , где n - число компонентов, т. е. тех веществ, количество которых в системе может изменяться независимо от остальных, число 2 отвечает давлению и температуре (таким образом, n + 2 есть число параметров, задающих состояние системы, а f - число степеней свободы, т. е. число тех обобщенных сил (давление, температура, химические потенциалы компонентов), которые можно независимо варьировать в некоторых пределах, не меняя при этом равновесного фазового состава.

Например, внутри полей однокомпонентной фазовой диаграммы, где присутствует единственная фаза, можно независимо варьировать давление и температуру, а тройная точка является так называемой точкой нонвариантного равновесия.

Кроме того, на фазовой диаграмме однокомпонентной системы могут изображаться метастабильные фазы, т. е. фазы, не являющиеся равновесными, но способные существовать в определенной области параметров в течение длительного времени вследствие кинетической стабильности, а также критическая точка - точка на линии равновесия жидкость–газ, после которой исчезает скачкообразное различие свойств этих фаз, и понятие фазового перехода теряет смысл.

Помимо температуры и давления могут рассматриваться и другие параметры состояния системы, например, напряженность магнитного поля (H ). Тогда фазовая диаграмма становится многомерной и рассматриваются различные ее сечения, например H–T , а в правиле фаз число 2 меняется на соответствующее число обобщенных сил (полей).

Фазовые диаграммы многокомпонентных систем также являются многомерными. Удобно изучать их плоские сечения, такие, как температура-состав и давлениесостав. Для изобарно-изотермических сечений фазовых диаграмм трехкомпонентных систем, описывающих зависимость фазового состава системы только от ее компонентного состава, используют так называемые треугольники Гиббса.

Обсужденные выше общие положения применимы и к многокомпонентным фазовым диаграммам. Пример широко используемых в материаловедении изобарных (T–x ) сечений двухкомпонентной фазовой диаграммы представлен на рис. Поля таких диаграмм могут отвечать одной или двум сосуществующим фазам, включающим расплав компонентов, твердые фазы чистых компонентов или их соединений промежуточного состава, фазы твердых растворов.

Соотношение фаз в поле, отвечающем двум фазам, определяют по правилу рычага - оно обратно пропорционально соотношению расстояний по горизонтали до ограничивающих поле линий фазовых равновесий, а координаты пересечения горизонтали с этими линиями определяют компонентный состав сосуществующих фаз.

Среди важных элементов T–x сечений двухкомпонентных диаграмм следует упомянуть линию ликвидуса, выше которой наличествует только жидкая фаза; линию солидуса, ниже которой присутствует только твердая фаза, эвтектические точки (точки конгруэнтного плавления), общие для солидуса и ликвидуса (на изломе последнего), и перитектические точки (точки инконгруэнтного плавления, т. е. плавления с частичным разложением твердой фазы) на кривой ликвидуса, в которых могут сосуществовать жидкая фаза и две твердых фазы, а также соответствующие горизонтальные линии эвтектических и перитектических превращений.

Для фаз, состоящих из наноразмерных частиц, может существовать зависимость физических свойств от размера, поэтому фазовую диаграмму иногда заполняют шкалой дисперсности.

Иллюстрации


Авторы

  • Гольдт Илья Валерьевич
  • Иоффе Илья Нафтольевич

Источники

  1. Аносов В. Я., Погодин С. А. Основные начала физико-химического анализа. - М.–Л.: Изд-во АН СССР, 1947. - 876 с.
  2. Химическая энциклопедия. - М.: Советская энциклопедия, 1988.

На рис 3.3 представлена фазовая диаграмма в P–Vкоординатах, а на рис.3.4 - вT–Sкоординатах.

Рис.3.3. Фазовая Р-Vдиаграмма Рис.3.4. Фазовая Т-S диаграмма

Обозначения :

т + ж – область равновесного сосуществования твердой и жидкой

т + п – область равновесного сосуществования твердой и паро-

ж + п – область равновесного сосуществования жидкой и паровой

Если на Р – Т диаграмме области двухфазных состояний изображались кривыми, то P–VиT–Sдиаграммах – это некоторые площади.

Линия AKFназывается пограничной кривой. Она в свою очередь разделяется на нижнюю пограничную кривую (участок АК) и верхнюю пограничную кривую (участокKF).

На рис.3.3 и 3.4 линия BF, где смыкаются области трех двухфазных состояний, - это растянутая тройная точка Т с рис3.1 и 3.2.

При плавлении вещества, которое, как и парообразование, протекает при постоянной температуре, образуется равновесная двухфазная смесь твердой и жидкой фаз. Значения удельного объема жидкой фазы в составе двухфазной смеси снимаются на рис3.3 с кривой АN, а значения удельного объема твердой фазы – с кривой ВЕ.

Внутри области, ограниченной контуром AKF, вещество представляет собой смесь двух фаз: кипящей жидкости (Ж) и сухого насыщенного пара (П).

Вследствие аддитивности объема удельный объем такой двухфазной смеси определяется по формуле

удельная энтропия:

    1. Особые точки фазовых диаграмм

      1. Тройная точка

Тройная точка – это точка, в которой сходятся кривые равновесия трех фаз. На рис.3.1 и 3.2 – это точка Т.

Некоторые чистые вещества, например, сера, углерод и др., в твердом агрегатном состоянии имеют несколько фаз (модификаций).

В жидком и газообразном состояниях модификации отсутствуют.

В соответствии с уравнением (1.3) в однокомпонентной термодеформационной системе одновременно находиться в равновесии могут не более трех фаз.

Если у вещества в твердом состоянии существуют несколько модификаций, то общее количество фаз вещества в сумме превышает три и такое вещество должно иметь несколько тройных точек. В качестве примера на рис.3.5 приведена фазовая Р –Т диаграмма вещества, имеющего две модификации в твердом агрегатном состоянии.

Рис.3.5. Фазовая Р-Т диаграмма

вещества с двумя кристалличес-

кими фазами

Обозначения :

I– жидкая фаза;

II– газообразная фаза;

III 1 иIII 2 – модификации в твердом агрегатном состоянии

(кристаллические фазы)

В тройной точке Т 1 в равновесии находятся: газообразная, жидкая и кристаллическая фазаIII 2. Эта точка являетсяосновной тройной точкой.

В тройной точке Т 2 в равновесии находятся: жидкая и две кристаллические фазы.

В тройной точке Т 3 в равновесии находятся газообразная и две кристаллические фазы.

У воды известно пять кристаллических модификаций (фаз): III 1, III 2 ,III 3 ,III 5 ,III 6 .

Обычный лед – это кристаллическая фаза III 1 , а остальные модификации образуются при очень больших давлениях, составляющих тысячи МПа.

Обычный лед существует до давления 204,7 МПа и температуры – 22 0 С.

Остальные модификации (фазы) – это лед плотнее воды. Один из этих льдов – « горячий лед » наблюдался при давлении 2000 МПа вплоть до температуры + 80 0 С.

Термодинамические параметры основной тройной точки воды следующие:

Т тр = 273,16 К = 0,01 0 С;

Р тр = 610,8 Па;

V тр = 0,001 м 3 /кг.

Аномалия кривой плавления (
) существует только для обычного льда.

7.2.1 Фазовая p–t диаграмма . При рассмотрении отдельных фаз чистого вещества обычно имеют в виду его агрегатные состояния: твердое, жидкое и газообразное . Однако, в общем случае понятие «фаза» несколько шире понятия «агрегатное состояние», так как некоторые вещества в твердом состоянии, например, лед, углерод могут иметь несколько фаз.

Фазовый переход, т.е. переход вещества из одной фазы в другую , сопровождается изменением свойств вещества, выделением или поглощением теплоты (теплота фазового перехода). Равновесное сосуществование нескольких фаз возможно лишь при определенных сочетаниях параметров состояния (например, температуры и давления). Знание условий равновесного сосуществования различных фаз является важным для решения многих технических задач, например. для определения условий закипания жидкостей в гидравлических системах, оценки условий возникновения кавитации в насосах и др.

Анализ условий термодинамического равновесия фаз базируется на правиле фаз Гиббса. Оно устанавливает связь между числом независимых параметров состояния (степеней свободы системы) ψ, числом фаз k и числом компонентов системы n . Математически правило фаз Гиббса формулируется следующим образом:

ψ = n – k + 2 .

Для чистого вещества (однокомпонентная система n = 1)правило фаз Гиббса имеет вид:

ψ = 3 – k .

В этом случае однофазная система (твердое тело, жидкость или газ) имеет две степени свободы, т.е. два независимых параметра состояния. Это означает, что если произвольно задать два параметра состояния (например, p и t ), то все другие будут определены однозначно. Одновременно это означает, что в однофазном состоянии вещество может существовать при произвольных сочетаниях p и t .

Двухфазная система (k = 2) обладает только одной степенью свободы (ψ = 1); здесь произвольно может быть задан лишь один параметр состояния. Следовательно, равновесное сосуществование двух фаз (твердой и жидкой, жидкой и газообразной, твердой и газообразной) возможно лишь при определенном сочетании значений p и t; т.е. каждому значению p соответствует вполне определенная температура, при которой возможно сосуществование фаз.


На рис. 7.2 изображена типичная фазовая p t диаграмма с линиями фазового равновесия. Здесь АК – линия фазового равновесия жидкости и газа (пара), АС – твердого тела и жидкости; АВ – линия твердого состояния и газа. Иными словами: АК – линия парообразования (конденсации), АС – линия плавления (затвердевания), АВ – линия сублимации (десублимации). Линию АК называют также линией насыщения, которая заканчивается критической точкой К . Три линии пересекаются в одной точке А, которая называется тройной точкой . В этой точке одновременно существуют три фазы, т.к. согласно правилу фаз Гиббса при k = 3 число степеней свободы однокомпонентной системы равно нулю (ψ = 0). Например, для воды в тройной точке p А = 616 Па, t А = 0,01°С, а для двуокиси углерода p А = 0,518 МПа, t А = – 56,7°С.



Пользуясь фазовой диаграммой, можно установить, в каком состоянии (твердом, жидком, газообразном, двух- или трехфазном) будет находиться конкретное вещество при заданных значениях p и t . Кроме того, с помощью фазовой диаграммы можно определить температуру фазового перехода при заданном давлении и наоборот.

Фазовая диаграмма устанавливает также характер перехода вещества из одного состояния в другое. Например, при p 1 > p А переход из твердого состояния в газообразное происходит через жидкое. При давлении p 2 < p А существование вещества в жидком состоянии невозможно; здесь твердая фаза переходит в газообразную, минуя жидкую стадию. Вместе с тем при давлениях, превышающих давление в критической точке, невозможно сосуществование газообразной и жидкой фаз, а при температурах, превосходящих температуру в критической точке (см. далее), вещество существует лишь в газообразной (парообразной) фазе.

7.2.2 Фазовая p – v диаграмма . Процессы изменения параметров реального газа при фазовом переходе жидкость-пар наиболее наглядно можно представить с помощью p v диаграммы (рис. 7.3 ).

На данной диаграмме область равновесия двух фаз («жидкость – пар») изображается не линией, а занимает некоторую площадь. Здесь можно выделить три области: I – жидкое состояние, II – двухфазное состояние (фазовое равновесие «жидкость-пар») и III – газообразное (парообразное) состояние. Кривая МК – является геометрическим местом точек, определяющих состояние жидкости, нагретой до температуры кипения (насыщения) при соответствующем давлении. Она отделяет область жидкости от области насыщенных паров и называется пограничной кривой жидкости (здесь х = 0).

Точки кривой NК определяют состояние сухого насыщенного пара. Эта кривая отделяет область насыщенных паров от области перегретых паров и называется пограничной кривой пара ; здесь х = 1,0. На p- vдиаграмме в области двухфазного состояния нанесены линии постоянной сухости пара (х 1 ; х 2 и т.д.). С ростом давления и, соответственно температуры, при которых происходит фазовый переход, удельный объем кипящей жидкости увеличивается, а удельный объем насыщенного пара уменьшается. При некотором, вполне определенном для каждого вещества давлении, пограничные кривые сходятся к точке К , которая называется критической точкой.

На рис. 7.3 нанесены несколько изотерм (Т = const) . Видно, что в области перегретого состояния изотерма имеет вид, близкий к изотерме идеального газа. В области двухфазного состояния вещества («жидкость–пар») изотерма является одновременно и изобарой. Это непосредственно вытекает из правила фаз Гиббса, согласно которому двухфазная однокомпонентная система обладает только одной степенью свободы. В области жидкого состояния рост давления приводит к незначительному изменению объема жидкости из-за малой сжимаемости. При критической температуре горизонтальный участок превращается в точку (критическая точка), которая является точкой перегиба на этой изотерме. Состояние вещества в этой точке характеризуется критическими параметрами: давлением р к, температурой Т к и удельным объемом v к. Критические параметры некоторых веществ приведены в табл.7.1.

Таблица 7.1 Критические параметры некоторых веществ

Критическая точка K принадлежит одновременно обеим пограничным кривым и соответствует состоянию вещества, при котором отсутствует разница между жидкостью и паром. Это иллюстрируется зависимостью теплоты парообразования от температуры для воды (рис. 7.4 ), из которой видно, что в критической точке теплота парообразования становится равной нулю (r = 0). При температуре выше критического значения изотермы не имеют горизонтальных участков. При этих температурах для любого давления вещество находится в парообразном (газообразном) состоянии, а вид изотерм по мере увеличения температуры приближается к изотермам идеального газа.

Из p v диаграммы следует важный вывод о различном характере перехода жидкости в пар при различных давлениях. При докритических давлениях при подводе к жидкости теплоты последовательно происходят нагрев жидкости до температуры кипения, парообразование, во время которого вещество находится в двухфазном состоянии, и перегрев пара. При сверхкритических давлениях (линия x – y ) переходиз жидкого состояния в газообразное происходитнепрерывно, минуя двухфазное состояние. Граница между жидкой и газообразной фазами в этом случае условна.

При переходе жидкости в пар при докритических давлениях осуществляется скачкообразное изменение свойств вещества. Как следует из рис. 7.5 , где показана зависимость плотности водорода от температуры при двух давлениях, при сверхкритическом давлении этот процесс идет с непрерывным накапливанием различий между жидкостью и паром. Это следует иметь в виду при проектировании и анализе работы технических устройств, в которых возможны фазовые переходы (теплообменники, системы охлаждения, холодильные установки, парогенераторы силовых и энергетических установок).

Используя критические параметры вещества можно определить постоянные а и b в уравнении Ван-дер-Вальса: а = 27 R 2 T 2 k /64 P k , b = R T k /8 P k , R = 8 P k v k /3 T k . Параметры вещества, отнесенные к соответствующим параметрам в критическом состоянии, называются приведенными параметрами:

Здесь р к, Т к – критические значения давления и температуры данного вещества. Используя приведенные параметры, уравнение Ван-дер-Вальса можно записать в следующем виде , которое называется приведенным уравнением состояния Ван дер Вальса. Для всех веществ в критической точке приведенные параметры имеют одно и то же значение, равное единице.

Для практических расчетов с погрешностью 15% можно использовать уравнение состояния реального газа в следующем виде:

p·υ = z∙R∙T , (7.2)

которое получено на основе закона соответственных состояний . Здесь z – коэффициент сжимаемости, зависящий от давления p и температуры T и определяемый экспериментально. На основе анализа опытных данных установлено, что с определенной точностью функция z = z (π, τ) является универсальной, т.е. достаточно общей для различных веществ. Для конкретного вещества она может быть определена из zдиаграммы, приведенной на рис. 7.6.

Отношение z k = R·T k / p k · v k в критической точке называется критическим коэффициентом и с учетом вышеприведенных соотношений для критических параметров (a, b, R ) является постоянным и равным 8/3 =2,67.