Возражал: «Межзвёздная область небес, как полагают некоторые современные эпикурейцы , должна быть пустой».

После создания современной электромагнитной теории некоторые физики постулировали, что невидимый светоносный эфир является средой для передачи световых волн. Они также полагали, что эфир заполняет межзвёздное пространство. Р. Паттерсон в 1862 году писал : «Это истечение является основой вибраций или колебательных движений в эфире, который заполняет межзвёздное пространство».

Применение глубоких фотографических обзоров ночного неба позволило Э. Барнарду получить первое изображение тёмной туманности , которое силуэтом выделялось на фоне звёзд галактики. Однако первое открытие холодной диффузной материи было сделано Д. Гартманом в 1904 году после обнаружения неподвижного спектра поглощения в спектре излучения двойных звёзд , наблюдавшихся с целью проверки эффекта Доплера .

В своём историческом исследовании спектра Дельты Ориона Гартман изучал движение по орбите компаньонов системы Дельты Ориона и свет, приходящий от звезды, и понял, что некоторая часть света поглощается на пути к Земле. Гартман писал, что «линия поглощения кальция очень слаба», а также, что «некоторым сюрпризом оказалось то, что линии кальция на длине волны 393,4 нанометров не движутся в периодическом расхождении линий спектра, которое присутствует в спектроскопически-двойных звёздах ». Стационарная природа этих линий позволила Гартману предположить, что газ, ответственный за поглощение, не присутствует в атмосфере Дельты Ориона, но, напротив, находится вне звезды и расположен между звездой и наблюдателем. Это исследование и стало началом изучения межзвёздной среды.

После исследований Гартмана, в 1919 году, Эгер во время изучения линий поглощения на волнах 589,0 и 589,6 нанометров в системах Дельты Ориона и Беты Скорпиона обнаружил в межзвёздной среде натрий .

Дальнейшие исследования линий «H» и «K» кальция Билзом (1936) позволили обнаружить двойные и несимметричные профили спектра Эпсилон и Дзета Ориона . Это были первые комплексные исследования межзвёздной среды в созвездии Ориона . Асимметричность профилей линий поглощения была результатом наложения многочисленных линий поглощения, каждая из которых соответствовала атомным переходам (например, линия «K» кальция) и происходила в межзвёздных облаках, каждое из которых имело свою собственную лучевую скорость . Так как каждое облако движется с разной скоростью в межзвёздном пространстве, как по направлению к Земле, так и удаляясь от неё, то в результате эффекта Доплера линии поглощения сдвигались либо в фиолетовую , либо в красную сторону соответственно. Это исследование подтвердило, что материя не распределена равномерно по межзвёздному пространству.

Интенсивные исследования межзвёздной материи позволили У. Пикерингу в 1912 году заявить , что «межзвёздная поглощающая среда, которая как показал Каптейн , поглощает только на некоторых волнах, может свидетельствовать о наличии газа и газообразных молекул, которые исторгаются Солнцем и звёздами ».

Торндайк в 1930 году писал: «Было бы ужасно осознавать, что существует непреодолимая пропасть между звёздами и полной пустотой. Полярные сияния возбуждаются заряженными частицами, которые испускает наше Солнце . Но если миллионы других звёзд также испускают заряженные частицы, а это непреложный факт, то абсолютный вакуум вообще не может существовать в галактике» .

Наблюдательные проявления [ | ]

Перечислим основные наблюдательные проявления:

Структура МЗС крайне нетривиальна и неоднородна: гигантские молекулярные облака, отражательные туманности, протопланетные туманности, планетарные туманности, глобулы и т. д. Это приводит к широкому спектру наблюдательных проявлений и процессов, происходящих в среде. Далее в таблице приведены свойства основных компонентов среды для диска:

Фаза Температура
()
Концентрация
(см −3)
Масса облаков
(M ☉)
Размер
(пк)
Доля занимаемого объёма Способ наблюдения
Корональный газ ~5⋅10 5 ~0,003 - - ~0,5 Рентген, линии поглощения металлов в УФ
Яркие области HII ~10 4 ~30 ~300 ~10 ~10 −4 Яркая линия H α
Зоны HII низкой плотности ~10 4 ~0,3 - - ~0,1 Линия H α
Межоблачная среда ~10 4 ~0,1 - - ~0,4 Линия Ly α
Тёплые области HI ~10 3 ~1 - - ~0,01 Излучение HI на λ =21 см
Мазерные конденсации <100 ~10 10 ~10 5 ~10 −5 Мазерное излучение
Облака HI ≈80 ~10 ~100 ~10 ~0,01 Поглощение HI на λ =21 см
Гигантские молекулярные облака ~20 ~300 ~3⋅10 5 ~40 ~3⋅10 −4
Молекулярные облака ≈10 ~10 3 ~300 ~1 ~10 −5 Линии поглощения и излучения молекулярного водорода в радио- и инфракрасном спектре.
Глобулы ≈10 ~10 4 ~20 ~0,3 ~3⋅10 −9 Поглощение в оптическом диапазоне.

Мазерный эффект [ | ]

В 1965 году в ряде спектров радиоизлучения были обнаружены очень интенсивные и узкие линии с λ =18 см. Дальнейшие исследования показали, что линии принадлежат молекуле гидроксила OH , а их необычные свойства - результат мазерного излучения. В 1969 году были открыты мазерные источники от молекулы воды на λ =1,35 см, позже были обнаружены мазеры, работающие и на других молекулах.

Для мазерного излучения необходима инверсная населённость уровней (количество атомов на верхнем резонансном уровне больше, чем на нижнем). Тогда, проходя сквозь вещество, свет с резонансной частотой волны усиливается, а не ослабевает (это и называется мазерным эффектом). Для поддержания инверсной населённости необходима постоянная накачка энергией, поэтому все космические мазеры делятся на два типа:

  1. Мазеры, ассоциирующиеся с молодыми (возраст 10 5 лет) горячими (а возможно, и с протозвёздами) и находящиеся в областях звездообразования.
  2. Мазеры, связанные с сильно проэволюционировавшими холодными звёздами большой светимости.

Физические особенности [ | ]

Отсутствие локального термодинамического равновесия (ЛТР) [ | ]

В межзвёздной среде концентрация атомов и, следовательно, оптическая толщина малы. Это значит, что эффективная температура излучения - это температура излучения звёзд (~5000 K) , которая никак не соответствует температуре самой среды. При этом электронная и ионная температуры плазмы могут сильно отличаться друг от друга, поскольку обмен энергией при соударении происходит крайне редко. Таким образом, не существует единой температуры даже в локальном смысле.

Распределение числа атомов и ионов по населённостям уровней определяется балансом процессов рекомбинации и ионизации. ЛТР требует, чтобы эти процессы были в равновесии, чтобы выполнялось условие детального баланса, однако в межзвёздной среде прямые и обратные элементарные процессы имеют разную природу, и поэтому детальный баланс установиться не может.

c - скорость света , h - постоянная Планка , ν - частота фотона до рассеяния, θ - угол рассеяния.

Для малых энергий фотонов h ν ≪ m e c 2 {\displaystyle h\nu \ll m_{e}c^{2}} сечение рассеяния равно томсоновскому : σ T ≃ 6 , 65 ⋅ 10 − 25 {\displaystyle \sigma _{T}\simeq 6,65\cdot 10^{-25}} см².

Механизмы охлаждения [ | ]

Как уже говорилось, межзвёздная среда оптически тонка и имеет невысокую плотность, а раз так, то основной механизм охлаждения - это излучение фотонов. Испускание же квантов связано с бинарными процессами взаимодействия (частица-частица), поэтому суммарную скорость объёмного охлаждения можно представить в виде Λ (n , T) = n 2 λ (T) {\displaystyle \Lambda (n,T)=n^{2}\lambda (T)} , где функция охлаждения λ зависит только от температуры и химического состава среды.

Свободно-свободное (тормозное) излучение

Свободно-свободное (тормозное) излучение в космической плазме вызвано кулоновскими силами притяжения или отталкивания. Электрон ускоряется в поле иона и начинает излучать электромагнитные волны, переходя с одной незамкнутой (в классическом смысле) орбиты на другую, но оставаясь свободным, то есть обладающим достаточной энергией, чтобы уйти на бесконечность. При этом излучается весь спектр от рентгена до радио. Выделяющаяся при этом энергия из единицы объёма внутри телесного угла в единицу времени равна:

j ν (T) = 16 3 (π 6) 1 / 2 n ν Z 2 e 6 m e 2 c 3 (m e k T) 1 / 2 g exp ⁡ − h ν k T n e n i {\displaystyle j_{\nu }(T)={\frac {16}{3}}\left({\frac {\pi }{6}}\right)^{1/2}{\frac {n_{\nu }Z^{2}e^{6}}{m_{e}^{2}c^{3}}}\left({\frac {m_{e}}{kT}}\right)^{1/2}g\exp {\frac {-h\nu }{kT}}n_{e}n_{i}} [эрг/(см³·с·ср·Гц)],

где n ν {\displaystyle n_{\nu }} - показатель преломления,

g - так называемый множитель Гаунта (учитывает квантовые эффекты и частичную экранировку ядра электронами, близок к 1 в оптическом диапазоне), и n i {\displaystyle n_{i}} - концентрация электронов и ионов соответственно, Z - заряд иона в единицах элементарного заряда.

Для чисто водородной плазмы с равной концентрацией протонов и электронов коэффициент объёмного охлаждения равен

Λ f f (H) = ∫ 0 ∞ j ν d ν ≃ 1 , 43 ⋅ 10 − 27 n e 2 T {\displaystyle \Lambda _{\mathrm {ff} }(\mathrm {H})=\int \limits _{0}^{\infty }{j_{\nu }d\nu }\simeq 1,43\cdot 10^{-27}n_{e}^{2}{\sqrt {T}}} [эрг/(см³·с)]

(индекс ff означает свободно-свободные (free-free) переходы). Однако космическая плазма не чисто водородная, в ней есть тяжёлые элементы, благодаря большому заряду которых увеличивается эффективность охлаждения. Для полностью ионизированной среды с нормальным космическим содержанием элементов Λ f f ≈ 1 , 7 Λ f f (H) {\displaystyle \Lambda _{\mathrm {ff} }\approx 1,7\Lambda _{\mathrm {ff} }(\mathrm {H})} . Этот механизм особенно эффективен для плазмы с T > 10 5 K .

Рекомбинационное излучение Двухфотонное излучение

При запрещённых резонансных переходах с уровней 2 s 1 / 2 → 1 s 1 / 2 {\displaystyle 2s_{1/2}\rightarrow 1s_{1/2}} в водороде и с 2 1 S 0 {\displaystyle 2^{1}S_{0}} уровня в гелии и гелиеподобных ионах (однофотонный переход запрещён правилами отбора). Возбуждаются же эти уровни в основном за счёт электронных ударов. Суммарная энергия образующихся фотонов соответствует разности энергии между двумя уровнями, но каждый из фотонов не имеет фиксированной энергии и образуется непрерывное излучение, которое и наблюдается в зонах HII (ионизованного водорода). Эти фотоны имеют длину волны больше, чем у линии Лайман-альфа , и, следовательно, неспособны возбудить нейтральный атом водорода в основном состоянии, поэтому они уходят из среды, являясь основной причиной охлаждения горячей космической плазмы с T = 10 6 -10 8 K .

Обратное комптоновское рассеяние

Если рассеяние фотона с энергией ε происходит на быстром электроне с полной энергией E = γ m e c 2 {\displaystyle E=\gamma m_{e}c^{2}} , то важной становится передача энергии и импульса от электрона фотону. Лоренц-преобразование к системе покоя электрона даёт энергию фотона в ней γε , где γ - лоренц-фактор . Воспользуемся вышеприведённой формулой комптон-эффекта, дающей потерю энергию фотона, рассеянного на покоящемся электроне, и, перейдя обратно в лабораторную систему отсчёта, получим энергию рассеянного фотона ε 1 ∼ γ 2 ε {\displaystyle \varepsilon _{1}\sim \gamma ^{2}\varepsilon } . Видно, что низкочастотные кванты превращаются в кванты жёсткого излучения. Усредняя по углам скорость потерь энергии одного такого электрона в поле изотропного излучения, получим

− (d E d t) c o m p t = 4 3 σ T c γ 2 β 2 ∫ 0 ∞ u ν d ν {\displaystyle -\left({\frac {dE}{dt}}\right)_{\mathrm {compt} }={\frac {4}{3}}\sigma _{T}c\gamma ^{2}\beta ^{2}\int \limits _{0}^{\infty }u_{\nu }d\nu } ,

где β = v /c - безразмерная скорость электрона,

u ν - частотная плотность распределения энергии излучения.

В случае теплового распределения электронов с концентрацией n e {\displaystyle n_{e}} и температурой T имеем ⟨ β 2 ⟩ = ⟨ (v / c) 2 ⟩ = 3 k T / m e c 2 {\displaystyle \langle \beta ^{2}\rangle =\langle (v/c)^{2}\rangle =3kT/m_{e}c^{2}} . Если γ ≈ 1 {\displaystyle \gamma \approx 1} (нерелятивистские, относительно низкоэнергетичные электроны), то объёмное охлаждение такой среды составит:

Λ c = − (d E d t) c o m p t n e = 4 k T m e c 2 σ T c n e ∫ 0 ∞ u ν d ν {\displaystyle \Lambda _{c}=-\left({\frac {dE}{dt}}\right)_{\mathrm {compt} }n_{e}={\frac {4kT}{m_{e}c^{2}}}\sigma _{T}cn_{e}\int \limits _{0}^{\infty }u_{\nu }d\nu } .

Комптоновское охлаждение обычно доминирует в высокоионизированной и сильно нагретой плазме вблизи источников рентгеновского излучения. Благодаря ему среда не может нагреться выше T ∼ ε 4 k {\displaystyle T\sim {\frac {\varepsilon }{4k}}} . Этот механизм был важен в ранней вселенной до эпохи рекомбинации . В обычных условиях МЗС этим эффектом можно пренебречь.

Ионизация электронным ударом

Если все остальные механизмы охлаждения излучательные (энергия уносится фотонами), то этот безызлучательный. Тепловая энергия расходуется на отрыв электрона и запасается в виде внутренней энергии связи ион-электрон. Потом она высвечивается при рекомбинациях.

Излучение в спектральных линиях

Основной механизм охлаждения МЗС при T < 10 5 K . Излучение происходит при переходах с уровней, возбуждённых после электронного удара. Спектральный диапазон, в котором уносится энергия, определяется температурой - чем больше температура, тем более высокие уровни возбуждаются, тем энергичнее излучаемые фотоны и тем быстрее идёт охлаждение. В таблице приведены линии, доминирующие при различных температурах.

Температура, K Охлаждение в линиях
> 10 6 Рентгеновские линии H и He-подобных ионов тяжёлых элементов
2⋅10 4 -10 6 Резонансные УФ-линии He и тяжёлых до Fe
(1-2)⋅10 4 Линии H (в основном Ly α )
(0,5-1)⋅10 4 Запрещённые линии тяжёлых элементов
30-10 4 Далёкие ИК-линии при переходах между уровнями тонкой структуры основных термов
(1-2)⋅10 3 Молекулярные уровни, в основном H 2
<30 Вращательные переходы молекул и воды H 2 O

Тепловая неустойчивость [ | ]

Теперь, зная все элементарные процессы и механизмы охлаждения и нагрева, мы можем записать уравнения теплового баланса в виде n G (T) = n 2 λ (T) {\displaystyle nG(T)=n^{2}\lambda (T)} . Запишем уравнение ионизационного баланса, необходимое, чтобы узнать населённость уровней. Решая, получим равновесную температуру T (n ) . Учитывая, что вещество в межзвёздной среде крайне разрежено, то есть представляет собой идеальный газ, подчиняющийся уравнению Менделеева - Клапейрона , найдём равновесное давление P (n ) и обнаружим, что зависимость больше напоминает уравнение состояния газа Ван-дер-Вальса : существует область давлений, где одному значению P соответствует три равновесных значения n . Решение на участке с отрицательной производной неустойчиво относительно малых возмущений: при давлении больше, чем у окружающей среды, газовое облако будет расширяться до установления равновесия при меньшей плотности, а при меньшем, чем у окружающей среды, давлении - напротив, сжиматься. Это объясняет наблюдаемое динамическое равновесие разреженной межзвёздной среды и более плотных облаков межзвёздного газа.

В реальной же среде ситуация гораздо сложнее. Во-первых, существует магнитное поле , которое препятствует сжатию, если только последнее не происходит вдоль линий поля. Во-вторых, межзвёздная среда находится в непрерывном движении и её локальные свойства непрерывно меняются, в ней появляются новые источники энергии и исчезают старые; в результате условие теплового равновесия может вовсе не выполняться. В-третьих, кроме термодинамической неустойчивости, существуют гравитационная и магнитогидродинамическая. И это без учёта всякого рода катаклизмов в виде вспышек сверхновых, приливных влияний проходящих по соседству галактик или прохождения самого газа через спиральные ветви Галактики.

Запрещённые линии и линия 21 см [ | ]

Отличительной особенностью оптически тонкой среды является излучение в запрещённых линиях. Запрещёнными называют линии, которые запрещены правилами отбора, то есть возникают при переходах с метастабильных уровней. Характерное время жизни таких уровней при спонтанном распаде - от 10 −5 секунды до нескольких суток, однако существуют и значительно более долгоживущие состояния (см. ниже). При высоких концентрациях частиц их столкновение снимает возбуждение, то есть уровни почти никогда не успевают совершить излучательный переход и эмиссионные линии не наблюдаются из-за их крайней слабости. При малых плотностях интенсивность линии не зависит от вероятности перехода, поскольку малая вероятность компенсируется большим числом атомов, находящихся в метастабильном состоянии. Если ЛТР нет, то заселённость энергетических уровней следует рассчитывать из баланса элементарных процессов возбуждения и деактивации.

Важнейшей запрещённой линией МЗС является радиолиния атомарного водорода λ = 21 см . Эта линия возникает при переходе между подуровнями сверхтонкой структуры 1 2 S 1 / 2 {\displaystyle 1^{2}S_{1/2}} уровня атома водорода, связанными с наличием спина у электрона и протона: состояние с сонаправленными спинами обладает несколько большей энергией, чем с противоположно направленными (разность энергий уровней составляет лишь 5,87433 микро-электронвольт). Вероятность спонтанного перехода между этими уровнями A 10 = 2 , 9 ⋅ 10 − 15 {\displaystyle A_{10}=2,9\cdot 10^{-15}} с −1 (то есть время жизни возбуждённого состояния составляет 11 млн лет). Заселение верхнего уровня происходит благодаря столкновению нейтральных атомов водорода, причём населённость уровней n 1 = n H / 4 {\displaystyle n_{1}=n_{\mathrm {H} }/4} , n 0 = 3 n H / 4 {\displaystyle n_{0}=3n_{\mathrm {H} }/4} . При этом объёмный коэффициент излучения

j ν = h ν 10 4 π n 1 A 10 φ (ν) {\displaystyle j_{\nu }={\frac {h\nu _{10}}{4\pi }}n_{1}A_{10}\varphi (\nu)} ,

где φ(ν) - профиль линии, а фактор 4π предполагает изотропное излучение.

Исследования радиолинии 21 см позволили установить, что нейтральный водород в галактике в основном заключён в очень тонком, толщиной 400 пк , слое около плоскости Галактики. В распределении HI отчётливо прослеживаются спиральные ветви Галактики. Зеемановское расщепление абсорбционных компонент линии у сильных радиоисточников используется для оценки магнитного поля внутри облаков.

Вмороженность магнитного поля [ | ]

Вмороженность магнитного поля означает сохранение магнитного потока через любой замкнутый проводящий контур при его деформации. В лабораторных условиях магнитный поток можно считать сохраняющимся в средах с высокой электропроводностью. В пределе бесконечной электропроводности бесконечное малое электрическое поле вызвало бы рост тока до бесконечной величины. Следовательно, идеальный проводник не должен пересекать магнитные силовые линии и, таким образом, возбуждать электрическое поле, а напротив, должен увлекать за собой линии магнитного поля. Магнитное поле оказывается как бы вмороженным в проводник.

Реальная космическая плазма далеко не идеальна, и вмороженность магнитного поля следует понимать в том смысле, что требуется очень большое время для изменения потока через контур. На практике это означает, что мы можем считать поле постоянным, пока облако сжимается, обращается и т. д.

Межзвёздная пыль [ | ]

Эволюция межзвёздной среды [ | ]

Эволюция межзвёздной среды, а если быть точным, межзвёздного газа, тесно связана с химической эволюцией всей Галактики. Казалось бы, всё просто: звёзды поглощают газ, а после выбрасывают его обратно, обогащая его продуктами ядерного горения - тяжёлыми элементами, - таким образом металличность должна постепенно возрастать.

Головная ударная волна [ | ]

По другую сторону гелиопаузы, на расстоянии порядка 230 а. е. от Солнца, вдоль головной ударной волны (bow shock) происходит торможение с космических скоростей налетающего на Солнечную систему межзвёздного вещества.

Взаимодействие с нейтральным водородом [ | ]

  • Часть вторая ЖИЗНЬ ВО ВСЕЛЕННОЙ
  • 11. Условия, необходимые для возникновения и развития жизни на планетах
  • Часть третья РАЗУМНАЯ ЖИЗНЬ ВО ВСЕЛЕННОЙ
  • 20. Радиосвязь между цивилизациями, находящимися на различных планетных системах
  • 21. Возможность осуществления межзвездной связи оптическими методами
  • 22. Связь с инопланетными цивилизациями с помощью автоматических зондов
  • 23. Теоретико-вероятностный анализ межзвездной радиосвязи. Характер сигналов
  • 24. О возможности прямых контактов между инопланетными цивилизациями
  • 25. Замечания о темпах и характере технологического развития человечества
  • II. Возможна ли связь с разумными существами других планет?
  • Часть первая АСТРОНОМИЧЕСКИЙ АСПЕКТ ПРОБЛЕМЫ

    3. Межзвездная среда Согласно современным представлениям, звезды образуются путем конденсации весьма разреженной межзвездной газопылевой среды. Поэтому, прежде чем рассказать о путях эволюции звезд, нам придется остановиться на свойствах межзвездной среды. Этот вопрос имеет также самостоятельное значение для интересующей нас проблемы. В частности, решение вопроса об установлении различных типов связи между цивилизациями, находящимися на различных планетных системах, зависит от свойств среды, заполняющей межзвездное пространство, разделяющее эти цивилизации. Межзвездный газ был обнаружен в самом начале текущего столетия благодаря поглощению в линиях ионизованного кальция, которое он производит в спектрах удаленных горячих звезд * . С тех пор методы изучения межзвездного газа непрерывно улучшались и достигли высокой степени совершенства. В итоге большой многолетней работы, проделанной астрономами, сейчас свойства межзвездного газа можно считать достаточно хорошо известными: Плотность межзвездной газовой среды ничтожна. В среднем в областях межзвездного пространства, расположенных недалеко от галактической плоскости, в 1 см 3 находится примерно 1 атом. Напомним, что в таком же объеме воздуха находится 2,7x10 19 молекул. Даже в самых совершенных вакуумных камерах концентрация атомов не меньше чем 10 3 см 3 . И все же межзвездную среду нельзя рассматривать как вакуум! Дело в том, что вакуумом, как известно, называется такая система, в которой длина свободного пробега атомов или молекул превышает характерные размеры этой системы. Однако в межзвездном пространстве средняя длина свободного пробега атомов в сотни раз меньше, чем расстояния между звездами. Поэтому мы вправе рассматривать межзвездный газ как сплошную, сжимаемую среду и применять к этой среде законы газовой динамики. Химический состав межзвездного газа довольно хорошо исследован. Он сходен с химическим составом наружных слоев звезд главной последовательности. Преобладают атомы водорода и гелия, атомов металлов сравнительно немного. В довольно заметных количествах присутствуют простейшие молекулярные соединения (например, СО, CN). Возможно, что значительная часть межзвездного газа находится в форме молекулярного водорода. Развитие внеатмосферной астрономии открыло возможность наблюдения линий молекулярного водорода в далекой ультрафиолетовой части спектра. Физические свойства межзвездного газа существенно зависят от того, находится ли он в сравнительной близости от горячих звезд или, напротив, достаточно удален от них. Дело в том, что ультрафиолетовое излучение горячих звезд, полностью ионизует водород на огромных расстояниях. Так, звезда класса 05 ионизует вокруг себя водород в гигантской области радиусом около 100 пк. Температура межзвездного газа в таких областях (определяемая как характеристика беспорядочных тепловых движений частиц) достигает 10 тыс. К. При этих условиях межзвездная среда излучает отдельные линии в видимой части спектра, в частности красную водородную линию. Эти области межзвездной среды носят название "зоны HII". Однако большая часть межзвёздной среды достаточно удалена от горячих звезд. Водород там не ионизован. Температура газа низкая, около 100 К или ниже. Именно здесь имеется значительное количество молекул водорода. Кроме газа, в состав межзвездной среды входит космическая пыль. Размеры таких пылинок составляют 10 -4 - 10 -5 см. Они являются причиной поглощения света в межзвездном пространстве, из-за которого мы не можем наблюдать объекты, находящиеся в галактической плоскости на расстояниях, больших 2-3 тыс. пк. К счастью, космическая пыль, так же как и связанный с ней межзвездный газ, сильно концентрируется к галактической плоскости. Толщина газопылевого слоя составляет всего лишь около 250 пк. Поэтому излучение от космических объектов, направления на которые составляют значительные углы с галактической плоскостью, поглощается незначительно. Межзвездные газ и пыль перемешаны. Отношение средних плотностей газа и пыли в межзвездном пространстве равно приблизительно 100:1. Наблюдения показывают, что пространственная плотность газопылевой межзвездной среды меняется весьма нерегулярно. Для этой среды характерно резко выраженное "клочковатое" распределение. Она существует в виде облаков (в которых плотность раз в 10 больше средней), разделенных областями, где плотность ничтожно мала. Эти газопылевые облака сосредоточены преимущественно в спиральных ветвях Галактики и участвуют в галактическом вращении. Отдельные облака имеют скорости в 6-8 км/с, о чем уже говорилось. Наиболее плотные из таких облаков наблюдаются как темные или светлые туманности. Значительное количество сведений о природе межзвездного газа было получено за последние три десятилетия благодаря весьма эффективному применению радиоастрономических методов. Особенно плодотворными были исследования межзвездного газа на волне 21 см. Что это за волна? Еще в сороковых годах теоретически было предсказано, что нейтральные атомы водорода в условиях межзвездного пространства должны излучать спектральную линию с длиной волны 21 см. Дело в том, что основное, самое "глубокое" квантовое состояние атома водорода состоит из двух очень близких уровней. Эти уровни различаются ориентациями магнитных моментов ядра атома водорода (протона) и вращающегося вокруг него электрона. Если моменты ориентированы параллельно, получается один уровень, если антипараллельно - другой. Энергия одного из этих уровней несколько больше другого (на величину, равную удвоенному значению энергии взаимодействия магнитных моментов электрона и протона). Согласно законам квантовой физики, время от времени должны самопроизвольно происходить переходы с уровня большей энергии на уровень меньшей энергии. При этом будет излучаться квант с частотой, пропорциональной разности энергий уровней. Так как последняя в нашем случае очень мала, то и частота излучения будет низкой. Соответствующая длина волны будет равна 21 см. Расчеты показывают, что такие переходы между уровнями атома водорода происходят чрезвычайно редко: в среднем для одного атома имеет место один переход в 11 млн лет! Чтобы почувствовать ничтожную величину вероятности таких процессов, достаточно сказать, что при излучении спектральных линий в оптическом диапазоне переходы происходят каждую стомиллионную долю секунды. И все же оказывается, что эта линия, излучаемая межзвездными атомами, имеет вполне наблюдаемую интенсивность. Так как межзвездные атомы имеют различные скорости по лучу зрения, то из-за эффекта Доплера излучение в линии 21 см будет "размазано" в некоторой полосе частот около 1420 МГц (эта частота соответствует длине волны 21 см). По распределению интенсивности в этой полосе (так называемому "профилю линии") можно изучить все движения, в которых участвуют межзвездные атомы водорода. Таким путем удалось исследовать особенности галактического вращения межзвездного газа, беспорядочные движения отдельных его облаков, а также его температуру. Кроме того, из этих наблюдений определяется количество атомов водорода в межзвездном пространстве. Мы видим, таким образом, что радиоастрономические исследования на волне 21 см являются мощнейшим методом изучения межзвездной среды и динамики Галактики. В последние годы этим методом изучаются другие галактики, например туманность Андромеды. По мере увеличения размеров радиотелескопов будут открываться все новые возможности изучения более удаленных галактик при помощи радиолинии водорода. В конце 1963 г. была обнаружена еще одна межзвездная радиолиния, принадлежащая молекулам гидроксила ОН, с длиной волны 18 см. Существование этой линии было теоретически предсказано автором этой книги еще в 1949 г. В направлении на галактический центр интенсивность этой линии (которая наблюдается в поглощении) оказалась очень высокой ** . Это подтверждает сделанный выше вывод, что в отдельных областях межзвездного пространства газ находится преимущественно в молекулярном состоянии. В 1967 г. была открыта радиолиния воды Н 2 О с длиной волны 1,35 см. Исследования газовых туманностей в линиях ОН и Н 2 О привели к открытию космических мазеров ( см. следующую главу). За последние 20 лет, протекшие после открытия межзвездной радиолинии ОН, было открыто много других радиолиний межзвездного происхождения, принадлежащих различным молекулам. Полное число обнаруженных таким образом молекул уже превышает 50. Среди них особенно большое значение имеет молекула СО, радиолиния которой с длиной волны 2,64 мм наблюдается почти во всех областях межзвездной среды. Есть молекулы, радиолинии от которых наблюдаются исключительно в плотных, холодных облаках межзвездной среды. Довольно неожиданным было обнаружение в таких облаках радиолиний весьма сложных многоатомных молекул, например, СН 3 НСО, CH 3 CN и др. Это открытие, возможно, имеет отношение к волнующей нас проблеме происхождения жизни во Вселенной. Если открытия будут и дальше делаться в таком темпе, кто знает, не будут ли обнаружены нашими приборами межзвездные молекулы ДНК и РНК? ( см. гл. 12). Весьма полезным является то обстоятельство, что соответствующие радиолинии, принадлежащие различным изотопам одной и той же молекулы, имеют довольно заметно различающиеся длины волн. Это позволяет исследовать изотопный состав межзвездной среды, что имеет большое значение для изучения проблемы эволюции вещества во Вселенной. В частности, раздельно наблюдаются такие изотопные комбинации окиси углерода: 12 С 16 О, 13 C 16 O, и 12 С 18 О. Области межзвездной среды, окружающей горячие звезды, где водород полностью ионизован ("зоны HII"), весьма успешно исследуются при помощи так называемых "рекомбинационных" радиолиний, существование которых было теоретически предсказано еще до их открытия советским астрономом Н.С.Кардашевым, много занимавшимся также проблемой связи с внеземными цивилизациями ( см. гл. 26). "Рекомбинационные" линии возникают при переходах между весьма высоко возбужденными атомами (например, между 108 и 107 уровнями атома водорода). Столь "высокие" уровни могут существовать в межзвездной среде только по причине ее чрезвычайно низкой плотности. Заметим, например, что в солнечной атмосфере могут существовать только первые 28 уровней атома водорода; более высокие уровни разрушаются благодаря взаимодействию с частицами окружающей плазмы. Уже сравнительно давно астрономы получили ряд косвенных доказательств наличия межзвездных магнитных полей. Эти магнитные поля связаны с облаками межзвездного газа и движутся вместе с ними. Напряженность таких полей около 10 -5 Э, т. е. в 100 тыс. раз меньше напряженности земного магнитного поля на поверхности нашей планеты. Общее направление магнитных силовых линий совпадает с направлением ветвей спиральной структуры Галактики. Можно сказать, что сами спиральные ветви представляют собой гигантских размеров магнитные силовые трубки. В конце 1962 г. факт существования межзвездных магнитных полей был установлен английскими, радиоастрономами путем прямых наблюдений. С этой целью исследовались весьма тонкие поляризационные эффекты в радиолинии 21 см, наблюдаемой в поглощении в спектре мощного источника радиоизлучения - Крабовидной туманности (об этом источнике см. гл. 5) *** . Если межзвездный газ находится в магнитном поле, можно ожидать расщепления линии 21 см на несколько компонент, отличающихся поляризацией. Так как величина магнитного поля очень мала, это расщепление будет совершенно ничтожным. Кроме того, ширина линии поглощения 21 см довольно значительна. Единственное, что можно ожидать в такой ситуации, - это небольшие систематические различия поляризации в пределах профиля линий поглощения. Поэтому уверенное обнаружение этого тонкого эффекта - замечательное достижение современной науки. Измеренное значение межзвездного магнитного поля оказалось в полном соответствии с теоретически ожидаемым согласно косвенным данным. Для исследований межзвездных магнитных полей применяется и радиоастрономический метод, основанный на изучении вращения плоскости поляризации радиоизлучения внегалактических источников **** при его прохождении через "намагниченную" межзвездную среду ("явление Фарадея"). Этим методом уже сейчас удалось получить ряд важных данных о структуре межзвездных магнитных полей. В последние годы в качестве источников поляризованного излучения для измерения межзвездного магнитного поля таким методом используются пульсары ( см. гл. 5). Межзвездные магнитные поля играют решающую роль при образовании плотных холодных газопылевых облаков межзвездной среды, из которых конденсируются звезды ( см. гл. 4). С межзвездными магнитными полями тесно связаны первичные космические лучи, заполняющие межзвездное пространство. Это частицы (протоны, ядра более тяжелых элементов, а также электроны), энергии которых превышают сотни миллионов электронвольт, доходя до 10 20 -10 21 эВ. Они движутся вдоль силовых линий магнитных полей по винтовым траекториям. Электроны первичных космических лучей, двигаясь в межзвездных магнитных полях, излучают радиоволны. Это излучение наблюдается нами как радиоизлучение Галактики (так называемое "синхротронное излучением). Таким образом, радиоастрономия открыла возможность изучать космические лучи в глубинах Галактики и даже далеко за ее пределами. Она впервые поставила проблему происхождения космических лучей на прочный научный фундамент. Исследователи, работавшие над проблемой происхождения жизни, до недавнего времени оставляли без внимания вопрос о первичных космических лучах. Между тем уровень жесткой радиации, вызывающей мутации, является, на наш взгляд, весьма существенным эволюционным фактором. Имеются все основания полагать, что ход эволюции жизни был бы совсем другим, если бы уровень жесткой радиации (который сейчас в значительной степени обусловлен первичными космическими лучами) был бы в десятки раз выше современного значения. Отсюда возникает важный вопрос: остается ли постоянным уровень космической радиации на какой-нибудь планете, на которой развивается жизнь? Речь идет о сроках, исчисляемых многими сотнями миллионов дет. Мы увидим в следующих главах этой книги, как современная астрофизика и радиоастрономия отвечают на этот вопрос. Масса межзвездного газа в нашей Галактике близка к миллиарду солнечных масс, что составляет немногим больше 1% от полной массы Галактики, обусловленной в основном звездами. В других звездных системах относительное содержание межзвездного газа меняется в довольно широких пределах. У эллиптических галактик оно очень мало, около 10 -4 и даже меньше, в то время как у неправильных звездных систем (типа Магеллановых Облаков) содержание межзвездного газа доходит до 20 и даже 50%. Это обстоятельство тесно связано с вопросом об эволюции звездных систем, о чем речь будет идти в гл. 6 .
    • * Собственные линии поглощения ионизованного кальция у таких звезд отсутствуют, ак как температуры их поверхностных слоев слишком высоки.
    • ** Линия ОН состоит из четырех близких по частотам компонент (1612, 1665, 1667 и 1720 МГц).
    • *** Линия поглощения 21 см, обусловленная межзвездным водородом, образуется в радиоспектре какого-либо источника совершенно таким же образом, как линии межзвездного кальция в спектрах удаленных горячих звезд.
    • **** Радиоизлучение от мегагалактических источников линейно поляризовано, причем степень поляризации рбычно порядка нескольких процентов. Поляризация этого радиоизлучения объясняется его синхротроннои природой (см. ниже).

    Газовые туманности. Самая известная газовая туманность - в созвездии Ориона (229), протяженностью свыше 6 пс, заметная в безлунную ночь даже невооруженным глазом. Не менее красивы туманности Омега, Лагуна и Трехраздельная в созвездии Стрельца, Северная Америка и Пеликан в Лебеде, туманности в Плеядах, вблизи звезды h Киля, Розетка в созвездии Единорога и многие другие. Всего насчитывают около 400 таких объектов. Естественно, что полное их число в Галактике значительно больше, но мы их не видим из-за сильного межзвездного поглощения света. В спектрах газовых туманностей имеются яркие эмиссионные линии, что доказывает газовую природу их свечения. У наиболее ярких туманностей прослеживается и слабый непрерывный спектр. Как правило, сильнее всех выделяются водородные линии Нa и Нb и знаменитые небулярные линии с длинами волн 5007 и 4950 Å, возникающие при запрещенных переходах дважды ионизованного кислорода О III. До того, как эти линии удалось отождествить, предполагалось, что их излучает гипотетический элемент небулий. Интенсивны также две близкие запрещенные линии однократно ионизованного кислорода О II с длинами волн около 3727 Å, линии азота и ряда других элементов. Внутри газовой туманности или непосредственно вблизи от нее почти всегда можно найти горячую звезду спектрального класса О или В0, являющуюся причиной свечения всей туманности. Эти горячие звезды обладают очень мощным ультрафиолетовым излучением, ионизующим и заставляющим светиться окружающий газ точно так же, как это имеет место в планетарных туманностях (см. § 152). Поглощенная атомом туманности энергия ультрафиолетового кванта звезды большей частью идет на ионизацию атома. Остаток энергии расходуется на придание скорости свободному электрону, т. е. в конечном счете превращается в тепло. В ионизованном газе должны также происходить и обратные процессы рекомбинации с возвращением электрона в связанное состояние. Однако чаще всего это реализуется через промежуточные энергетические уровни, так что в итоге вместо первоначально поглощенного жесткого ультрафиолетового кванта атомы туманности излучают несколько менее энергичных квантов видимых лучей (этот процесс называется флуоресценцией). Таким образом, в туманности происходит как бы «дробление» ультрафиолетовых квантов звезды и переработка их в излучение, соответствующее спектральным линиям видимого спектра. Излучение в линиях водорода, ионизованного кислорода и азота, приводящее к охлаждению газа, уравновешивает поступление тепла через ионизацию. В итоге температура туманности устанавливается на некотором определенном уровне порядка, что можно проверить по тепловому радиоизлучению газа. Количество квантов, излучаемых в какой-либо спектральной линии, в конечном счете пропорционально числу рекомбинаций, т. е. количеству столкновений электронов с ионами. В сильно ионизованном газе концентрация и тех и других одинакова, т. е. Поскольку согласно (7.18) частота столкновений одной частицы пропорциональна п, общее число столкновений всех ионов с электронами в единице объема пропорционально произведению nine, т. е. Следовательно, общее число квантов, излучаемых туманностью, или ее яркость на небе - пропорциональна, просуммированному вдоль луча зрения. Для однородной туманности протяженностью L, это дает. Произведение называется мерой эмиссии и является важнейшей характеристикой газовой туманности: ее значение легко получить из непосредственных наблюдений яркости туманности. Вместе с тем мера эмиссии связана с основным физическим параметром туманности - плотностью газа. Таким образом, измеряя меру эмиссии газовых туманностей, можно оценить концентрацию частиц пе, которая оказывается порядка 10 2−10 3 см −3 и даже больше для самых ярких из них. Как видно, концентрация частиц в газовых туманностях в миллионы раз меньше, чем в солнечной короне, и в миллиарды раз меньше, чем могут обеспечить лучшие современные вакуумные насосы. Необычайно сильная разреженность газа объясняет появление в его спектре запрещенных линий, сравнимых по своей интенсивности с разрешенными. В обычном газе возбужденные атомы не успевают излучить запрещенную линию потому, что гораздо раньше, чем это произойдет, они столкнутся с другими частицами (в первую очередь электронами) и отдадут им свою энергию возбуждения без излучения кванта. В газовых туманностях при температуре 104 ёK средняя тепловая скорость электронов достигает 500 км/сек и время между столкновениями, вычисленное по формуле (7.17) при концентрации ne = 102 см −3, оказывается 2×106 сек, т. е. немногим меньше месяца, что в миллионы раз превышает «время жизни» атома в возбужденном состоянии для большинства запрещенных переходов. Зоны H I и Н II. Как мы только что видели, горячие звезды на больших расстояниях вокруг себя ионизуют газ. Поскольку в основном это водород, ионизуют его главным образом лаймановские кванты с длиной волны короче 912 Å. Но в большом количестве их могут дать только звезды спектральных классов О и В0, у которых эффективные температуры Tэфф ³ 3×104 ёK и максимум излучения расположен в ультрафиолетовой части спектра. Расчеты показывают, что эти звезды способны ионизовать газ с концентрацией 1 атом в 1 см3 до расстояний нескольких десятков парсеков. Ионизованный газ прозрачен к ультрафиолетовому излучению, нейтральный, наоборот, жадно его поглощает. В результате окружающая горячую звезду область ионизации (в однородной среде это шар!) имеет очень резкую границу, дальше которой газ остается нейтральным. Таким образом, газ в межзвездной среде может быть либо полностью ионизован, либо нейтрален. Первые области называются зоны Н II, вторые - зоны H I. Горячих звезд сравнительно мало, а потому газовые туманности составляют ничтожную долю (около 5%) всей межзвездной среды. Нагрев областей Н I происходит за счет ионизующего действия космических лучей, рентгеновских квантов и суммарного фотонного излучения звезд. При этом в первую очередь ионизуются атомы углерода. Излучение ионизованного углерода является основным механизмом охлаждения газа в зонах Н I. В результате должно установиться равновесие между потерей энергии и ее поступлением, которое имеет место при двух температурных режимах, осуществляющихся в зависимости от значения плотности. Первый из них, когда температура устанавливается в несколько сотен градусов, реализуется в разово-пылевых облаках, где плотность относительно велика, второй - в пространстве между ними, в котором разреженный газ нагревается до нескольких тысяч градусов. Области с промежуточными значениями плотности оказываются неустойчивыми и первоначально однородный газ неизбежно должен разделиться на две фазы - сравнительно плотные облака и окружающую их весьма разреженную среду. Таким образом, тепловая неустойчивость является важнейшей причиной «клочковатой» и облачной структуры межзвездной среды. Межзвездные линии поглощения. Существование холодного газа в пространстве между звездами было доказано в самом начале XX в. немецким астрономом Гартманом, изучившим спектры двойных звезд, в которых спектральные линии, как отмечалось в § 157, должны испытывать периодические смещения. Гартман обнаружил в спектрах некоторых звезд (особенно удаленных и горячих) стационарные (т. е. не изменявшие своей длины волны) линии H и К ионизованного кальция. Помимо того, что их длины волн не менялись, как у всех остальных линий, они отличались еще своей меньшей шириной. Вместе с тем, у достаточно горячих звезд линии Н и К вообще отсутствуют. Все это говорит о том, что стационарные линии возникают не в атмосфере звезды, а обусловлены поглощением газа в пространстве между звездами. Впоследствии обнаружились межзвездные линии поглощения и других атомов: нейтрального кальция, натрия, калия, железа, титана, а также некоторых молекулярных соединений. Однако наиболее полным спектроскопическое исследование холодного межзвездного газа стало возможным благодаря внеатмосферным наблюдениям межзвездных линий поглощения в далекой ультрафиолетовой части спектра, где сосредоточены резонансные линии важнейших химических элементов, в которых, очевидно, сильнее всего должен поглощать «холодный» газ. В частности, наблюдались резонансные линии водорода (La), углерода, азота, кислорода, магния, кремния и других атомов. По интенсивностям резонансных линий можно получить наиболее надежные данные о химическом составе. Оказалось, что состав межзвездного газа в общем близок к стандартному химическому составу звезд, хотя некоторые тяжелые элементы содержатся в нем в меньшем количестве. Исследование межзвездных линий поглощения с большой дисперсией позволяет заметить, что чаще всего они распадаются на несколько отдельных узких компонентов с различными доплеровскими смещениями, соответствующими в среднем лучевым скоростям ±10 км/сек. Это означает, что в зонах Н I газ сконцентрирован в отдельных облаках, размеры и расположение которых в точности соответствуют пылевым облакам, рассмотренным в конце предыдущего параграфа. Отличие лишь в том, что газа по массе в среднем раз в 100 больше. Следовательно, газ и пыль в межзвездной среде концентрируются в одних и тех же местах, хотя относительная их плотность может сильно меняться при переходе от одной области к другой. Наряду с отдельными облаками, состоящими из ионизованного или нейтрального газа, в Галактике наблюдаются значительно большие по своим размерам, массе и плотности области холодного межзвездного вещества, называемые газово-пылевыми комплексами. Самым близким к нам из них является известный комплекс в Орионе, включающий в себя наряду с многими замечательными объектами знаменитую туманность Ориона. В таких областях, отличающихся сложной и весьма неоднородной структурой, происходит исключительно важный для космогонии процесс звездообразования. Монохроматическое излучение нейтрального водорода. Межзвездные линии поглощения в какой-то степени дают лишь косвенный способ выяснить свойства областей Н I. Во всяком случае, это может быть сделано только в направлении на горячие звезды. Наиболее полную картину распределения нейтрального водорода в Галактике возможно составить только на основании собственного излучения водорода. К счастью, такая возможность имеется в радиоастрономии благодаря существованию спектральной линии излучения нейтрального водорода на волне 21 см. Общее количество атомов водорода, излучающих линию 21 см, настолько велико, что лежащий в плоскости Галактики слой оказывается существенно непрозрачным к радиоизлучению 21 см на протяжении всего лишь 1 кпс. Поэтому если бы весь нейтральный водород, находящийся в Галактике, был неподвижен, мы не могли бы наблюдать его дальше расстояния, составляющего около 3% размеров Галактики. В действительности это имеет место, к счастью, только в направлениях на центр и антицентр Галактики, в которых, как мы видели в § 167, нет относительных движений вдоль луча зрения. Однако во всех остальных направлениях из-за галактического вращения имеется возрастающая с расстоянием разность лучевых скоростей различных объектов. Поэтому можно считать, что каждая область Галактики, характеризующаяся определенным значением лучевой скорости, вследствие доплеровского смещения излучает как бы «свою» линию с длиной волны не 21 см, а чуть больше или меньше, в зависимости от направления лучевой скорости. У объемов газа, расположенных ближе, это смешение иное, и потому они не препятствуют наблюдениям более далеких областей. Профиль каждой такой линии дает представление о плотности газа на расстоянии, соответствующем данной величине эффекта дифференциального вращения Галактики. На 230 изображено полученное таким путем распределение нейтрального водорода в Галактике. Из рисунка видно, что нейтральный водород распределен в Галактике неравномерно. Намечаются увеличения плотности на определенных расстояниях от центра, которые, по-видимому, являются элементами спиральной структуры Галактики, подтверждаемой распределением горячих звезд и диффузных туманностей. На основании поляризации света, обнаруженной у далеких звезд, есть основания полагать, что вдоль спиральных рукавов направлены силовые линии основной части магнитного поля. Галактики, о котором речь еще будет идти в связи с космическими лучами. Влиянием этого поля можно объяснить тот факт, что большинство как светлых, так и темных туманностей вытянуто вдоль спиральных ветвей, само возникновение которых должно быть как-то связано с магнитным полем. Межзвездные молекулы. Некоторые межзвездные линии поглощения были отождествлены со спектрами молекул. Однако в оптическом диапазоне они представлены только соединениями СН, СН+ и CN. Существенно новый этап в изучении межзвездной среды начался в 1963 г., когда в диапазоне длин волн 18 см удалось зарегистрировать радиолинии поглощения гидроксила, предсказанные еще в 1953 г. В начале 70-х годов в спектре радиоизлучения межзвездной среды были обнаружены. линии еще нескольких десятков молекул, а в 1973 г. на специальном ИСЗ «Коперник» была сфотографирована резонансная линия межзвездной молекулы Н2 с длиной волны 1092 Å. Оказалось, что молекулярный водород составляет весьма заметную долю межзвездной среды. На основании молекулярных, спектров проведен детальный анализ условий в «холодных» облаках Н I, уточнены процессы, определяющие их тепловое равновесие, и получены данные о двух тепловых режимах, приведенные выше. Детальное исследование спектров межзвездных молекулярных соединений СН, СН+, CN, Н2, СО, ОН, CS, SiO, SO и других позволило выявить существование нового элемента структуры межзвездной среды - молекулярных, облаков, в которых. сосредоточена значительная часть межзвездного вещества. Температура газа в таких облаках может составлять от 5 до 50 ёК, а концентрация молекул достигать нескольких тысяч молекул в 1 см −3, а иногда и существенно больше. Космические мазеры. В радиоспектре некоторых газово-пылевых облаков вместо линий поглощения гидроксила совершенно неожиданно обнаружились… линии излучения. Это излучение отличается рядом важных особенностей. Прежде всего, относительная интенсивность всех четырех радиолиний излучения гидроксила оказалась аномальной, т. е. не соответствующей температуре газа, а излучение в них очень сильно поляризованным (иногда до 100%). Сами линии чрезвычайно узки. Это означает, что они не могут излучаться обычными атомами, совершающими тепловое движение. С другой стороны, оказалось, что источники гидроксильной эмиссии обладают настолько малыми размерами (десятки астрономических единиц!), что для получения наблюдаемого от них потока излучения необходимо приписать им чудовищную яркость - такую, как у тела, нагретого до температуры 1014−1015 ёK! Ясно, что ни о каком тепловом механизме возникновения таких мощностей не может быть и речи. Вскоре после обнаружения эмиссии ОН был открыт новый тип исключительно ярких «сверхкомпактных» источников, излучающих радиолинию водяных паров с длиной волны 1,35 см. Вывод о необычайной компактности источников эмиссии ОН получается непосредственно из наблюдений их угловых размеров. Современные методы радиоастрономии позволяют определять угловые размеры точечных источников с разрешающей силой в тысячи раз лучшей, чем у оптических телескопов. Для этого используются синхронно работающие антенны (интерферометр), расположенные в различных частях земного шара (межконтинентальные интерферометры). С их помощью найдено, что угловые размеры многих компактных источников менее 3×10−4 секунды дуги! Важной особенностью излучения компактных источников является его переменность, особенно сильная в случае эмиссии Н2О. За несколько недель и даже дней профиль линий совсем меняется. Порой существенные вариации происходят за 5 минут, что возможно только в том случае, если размеры источников не превышают расстояния, которое свет проходит за это время (иначе флуктуации статистически будут компенсированы). Таким образом, размеры областей, излучающих линии Н2О, могут быть порядка 1 а.e.! Как показывают наблюдения, в одной и той же области с размерами в несколько десятых долей парсека может находиться множество источников, часть из которых излучает только линии ОН, а часть - только линии H2O. Единственным известным пока в физике механизмом излучения, способным дать огромную мощность в пределах исключительно узкого интервала спектра, является когерентное (т. е. одинаковое по фазе и направлению) излучение квантовых генераторов, которые в оптическом диапазоне принято называть лазерами, а в радиодиапазоне - мазерами. Компактные источники эмиссии ОН и Н2О, скорее всего, гигантские естественные космические мазеры. Имеются все основания полагать, что космические мазеры связаны с областями, где буквально на наших глазах происходит процесс звездообразования. Они чаще всего встречаются в зонах Н II, где уже возникли молодые массивные и очень горячие звезды спектральных классов О и В. Во многих случаях они совпадают с весьма компактными, богатыми пылью, а потому весьма непрозрачными особыми зонами Н II, которые обнаруживаются только благодаря их тепловому радиоизлучению. Размеры этих зон порядка 0,1 пс, а плотность вещества в сотни раз больше, чем в обычных межзвездных облаках. Причиной их ионизации, очевидно, является ненаблюдаемая горячая звезда, окруженная плотным непрозрачным облаком. Иногда эти объекты наблюдаются в виде точечных источников инфракрасного излучения. Они заведомо должны быть исключительно молодыми образованиями с возрастом порядка десятков тысяч лет. За большее время окружающая только что возникшую горячую звезду плотная газово-пылевая среда должна расширяться под действием светового давления горячей звезды, которая тем самым окажется видимой. Такие звезды, окруженные расширяющейся плотной оболочкой, получили образное название «звёзды-коконы». В этих весьма специфичных, но тем не менее естественных условиях, по-видимому, и реализуется мазерный эффект.

    Невооружённому глазу пространство между звёздами представляется пустым, но это впечатление ошибочно. Ещё в XIX в. российский астроном В. Я. Струве предположил, что оно заполнено поглощающим веществом, которое мешает наблюдать далёкие звёзды. В начале XX в. это предположение подтвердил американский астроном Роберт Трюмплер, доказавший, что свет звёзд действительно ослабевает по пути к земному наблюдателю.

    Вещество, поглощающее свет, распределено в пространстве неравномерно. Оно имеет клочковатую структуру и концентрируется к Млечному Пути. Области повышенной плотности поглощающего межзвездного вещества наблюдаются как тёмные туманности, например Угольный Мешок в созвездии Южный Крест или Конская Голова в созвездии Орион.

    Туманность Конская Голова

    Теперь мы знаем, что свет звёзд поглощают мельчайшие пылинки, но они представляют собой лишь «верхушку айсберга». Удалось выяснить, что помимо пыли между звёздами имеется большое количество невидимого газа, масса которого почти в сто раз превосходит массу пыли. Он состоит из атомов и молекул, перемешан с пылью и пронизывается космическими лучами и электромагнитным излучением, которые также можно считать составляющими межзвёздной среды. Кроме того, межзвёздная среда оказалась слегка намагниченной. Её магнитное поле примерно в 100 тыс. раз слабее магнитного поля Земли и вытянуто вдоль спиральных рукавов.

    Как же астрономы наблюдают межзвёздный газ? Молодые горячие звёзды помогают нам увидеть нагретый газ, т.к. их ультрафиолетовое излучение нагревает окружающий газ до температуры примерно 10 000 К. Нагретый газ начинает сам излучать свет, и мы наблюдаем его как светлую газовую туманность.

    Более холодный газ наблюдают радиоастрономическими методами. Атомы водорода в разреженной среде излучают радиоволны на длине волны около 21 см, кроме того, многие другие молекулы также излучают в радиодиапазоне на определенных частотах. Поэтому от областей холодного межзвёздного газа непрерывно распространяются потоки радиоволн.

    Химический состав межзвёздного газа, независимо от его температуры, оказался близок к составу Солнца. Около 70% по массе приходится на самый лёгкий элемент в природе - водород, около 28% - на гелий, а остальные 2% - на более тяжёлые элементы. При этом для межзвёздного газа характерен очень большой разброс физических параметров и он крайне неоднороден по плотности и температуре.

    Полная масса межзвёздного газа в Галактике очень велика, она превышает 10 млрд. масс Солнца. Средняя концентрация атомов межзвёздного газа составляет менее 1 атома в см 3 . Основная его масса заключена вблизи плоскости Галактики в слое толщиной несколько сотен парсек.

    * * *

    Газовые туманности

    Туманностью называют участок межзвёздной среды, который выделяется на небе своим излучением или поглощением излучения. Они состоят из пыли, газа и плазмы. До 20-х гг. прошлого столетия туманностями называли любые неподвижные протяжённые светящиеся астрономические объекты. Такие объекты называются диффузными. Со временем выяснилось, что среди туманностей встречаются галактики и звёздные скопления, которые раньше не удавалось разрешить на звёзды.

    В 1787 г. Шарль Мессье, французский астроном, член Парижской академии наук, занимавшийся поиском комет, составил каталог неподвижных диффузных объектов, похожих на кометы. Из-за несовершенства существовавших тогда астрономических приборов в каталог Мессье попали не только туманности, но и галактики (например, галактика M131, которую часто называют туманностью Андромеды), а также шаровые звёздные скопления, такие как M113 - скопление Геркулеса.

    Для наблюдений межзвёздной среды чаще всего приходится использовать либо радиотелескопы, если речь идёт о холодном газе, либо ультрафиолетовые и рентгеновские телескопы, если речь идёт о корональном газе. Однако в некоторых случаях межзвёздное вещество можно прекрасно наблюдать и в обычные телескопы. Это происходит тогда, когда вещество светится под воздействием близкой звезды либо просто отражает свет этой звезды.

    В результате на небе появляются слабосветящиеся пятна - светлые эмиссионные туманности. Самая яркая газовая туманность такого типа - Большая туманность Ориона. Она видна в бинокль, а при хорошем зрении её можно заметить и невооружённым глазом - чуть ниже трёх звёзд, расположенных в одну линию, образующую Пояс Ориона. Расстояние до этой туманности около 1000 световых лет.

    Области ионизованного газа вокруг горячих звёзд можно представить в виде «машины», которая перерабатывает невидимое ультрафиолетовое излучение звезды в видимое излучение, спектр которого содержит линии различных химических элементов.

    Газовые туманности могут иметь различные оттенки - зеленоватые, розоватые и другие - в зависимости от температуры, плотности и химического состава газа. Например, зелёным цветом в газовых туманностях светится кислород.

    Структура газовых туманностей крайне разнообразна. Одни имеют форму кольца, в центре которого иногда видна тусклая звёздочка, - это планетарные туманности. Другие имеют неправильную форму. Некоторые из них при наблюдении через светофильтр, пропускающий свет той или иной спектральной линии, распадаются на отдельные волокна. Такова Крабовидная туманность - известный пример остатка взорвавшейся звезды.


    Крабовидная туманность - расширяющееся газовое облако, образованное вспышкой сверхновой в 1054 г.

    В зависимости от температуры и плотности межзвёздный газ пребывает в молекулярном, атомарном или ионизованном состояниях. Астрономы наблюдают межзвёздный газ в виде холодных и плотных молекулярных облаков, разреженного межоблачного газа, облаков ионизованного водорода с температурой около 10 тыс. К и обширных областей разреженного и очень горячего газа с температурой около миллиона К. Этот сильно разреженный и горячий газ, занимающий почти половину объёма галактического диска, называется корональным - по аналогии с разогретым газом солнечной короны. Его плотность составляет примерно 1 атом на 1 дм 3 . Предполагается, что такой горячий разреженный газ образуется в результате мощных взрывов - вспышек сверхновых звёзд.

    <<< Назад
    Вперед >>>