Основные положения теории химического строения А.М. Бутлерова

1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

3. Свойства веществ зависят от их химического строения.

4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

Развитию теории строения способствовали работы Кекуле, Кольбе, Купера и Вант-Гоффа. Однако их теоретические положения не носили общего характера и служили, главным образом, целям объяснения экспериментального материала.

2. Формулы строения

Формула строения (структурная формула) описывает порядок соединения атомов в молекуле, т.е. ее химическое строение. Химические связи в структурной формуле изображают черточками. Связь между водородом и другими атомами обычно не указывается (такие формулы называются сокращенными структурными формулами).

Например, полная (развернутая) и сокращенная структурные формулы н-бутана C4H10имеют вид:

Другой пример - формулы изобутана.

Часто используется еще более краткая запись формулы, когда не изображают не только связи с атомом водорода, но и символы атомов углерода и водорода. Например, строение бензола C6H6 отражают формулы:

Структурные формулы отличаются от молекулярных (брутто) формул, которые показывают только, какие элементы и в каком соотношении входят в состав вещества (т.е. качественный и количественный элементный состав), но не отражают порядка связывания атомов.

Например, н-бутан и изобутан имеют одну молекулярную формулу C4H10, но разную последовательность связей.

Таким образом, различие веществ обусловлено не только разным качественным и количественным элементным составом, но и разным химическим строением, которое можно отразить лишь структурными формулами.

3. Понятие о изомерии

Еще до создания теории строения были известны вещества одинакового элементного состава, но c разными свойствами. Такие вещества были названы изомерами, а само это явление - изомерией.

В основе изомерии, как показал А.М. Бутлеров, лежит различие в строении молекул, состоящих из одинакового набора атомов. Таким образом,

изомерия - это явление существования соединений, имеющих одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства.

Например, при содержании в молекуле 4-х атомов углерода и 10-ти атомов водорода возможно существование 2-х изомерных соединений:

В зависимости от характера отличий в строении изомеров различают структурную и пространственную изомерию.

4. Структурные изомеры

Структурные изомеры - соединения одинакового качественного и количественного состава, отличающиеся порядком связывания атомов, т.е химическим строением.

Например, составу C5H12 соответствует 3 структурных изомера:

Другой пример:

5. Стереоизомеры

Пространственные изомеры (стереоизомеры) при одинаковом составе и одинаковом химическом строении различаются пространственным расположением атомов в молекуле.

Пространственными изомерами являются оптические и цис-транс изомеры (шарики разного цвета обозначают разные атомы или атомные группы):

Молекулы таких изомеров несовместимы в пространстве.

Стереоизомерия играет важную роль в органической химии. Подробнее эти вопросы будут рассматриваться при изучении соединений отдельных классов.

6. Электронные представления в органической химии

Применение электронной теории строения атома и химической связи в органической химии явилось одним из важнейших этапов развития теории строения органических соединений. Понятие о химическом строении как последовательности связей между атомами (А.М. Бутлеров) электронная теория дополнила представлениями обэлектронном и пространственном строении и их влиянии на свойства органических соединений. Именно эти представления дают возможность понять способы передачи взаимного влияния атомов в молекулах (электронные и пространственные эффекты) и поведение молекул в химических реакциях.

Согласно современным представлениям свойства органических соединений определяются:

природой и электронным строением атомов;

типом атомных орбиталей и характером их взаимодействия;

типом химических связей;

химическим, электронным и пространственным строением молекул.

7. Свойства электрона

Электрон имеет двойственную природу. В разных экспериментах он может проявлять свойства как частицы, так и волны. Движение электрона подчиняется законам квантовой механики. Связь между волновыми и корпускулярными свойствами электрона отражает соотношение де Бройля.

Энергию и координаты электрона, как и других элементарных частиц, невозможно одновременно измерить с одинаковой точностью (принцип неопределенностиГейзенберга). Поэтому движение электрона в атоме или в молекуле нельзя описать с помощью траектории. Электрон может находиться в любой точке пространства, но с разной вероятностью.

Часть пространства, в котором велика вероятность нахождения электрона, называют орбиталью или электронным облаком.

Например:

8. Атомные орбитали

Атомная орбиталь (АО) - область наиболее вероятного пребывания электрона (электронное облако) в электрическом поле ядра атома.

Положение элемента в Периодической системе определяет тип орбиталей его атомов (s-, p-, d-, f-АО и т.д.), различающихся энергией, формой, размерами и пространственной направленностью.

Для элементов 1-го периода (Н, He) характерна одна АО - 1s.

В элементах 2-го периода электроны занимают пять АО на двух энергетических уровнях: первый уровень 1s; второй уровень - 2s, 2px, 2py, 2pz. (цифры обозначают номер энергетического уровня, буквы - форму орбитали).

Состояние электрона в атоме полностью описывают квантовые числа.

Лекция 15

Теория строения органических веществ. Основные классы органических соединений.

Органическая химия – наука, занимающаяся изучением органических веществ. Иначе ее можно определить как химию соединений углерода . Последний занимает особое место в периодической системе Д.И.Менделеева по многообразию соединений, которых известно около 15 миллионов, в то время как число неорганических соединений составляет пять сотен тысяч. Органические вещества известны человечеству с давних пор, как сахар, растительные и животные жиры, красящие, душистые и лекарственные вещества. Постепенно люди научились путем переработки этих веществ получать разнообразные ценные органические продукты: вино, уксус, мыло и др. Успехи в органической химии опираются на достижения в области химии белковых веществ, нуклеиновых кислот, витаминов и др. Огромное значение органическая химия имеет для развития медицины, так как подавляющее большинство лекарственных средств является органическими соединениями не только природного происхождения, но и получаемыми главным образом путем синтеза. Исключительное значение пробрели высокомолекулярные органические соединения (синтетические смолы, пластмассы, волокна, синтетические каучуки, красящие вещества, гербециды, инсектициды, фунгициды, дефолианты …). Огромно значение органической химии для производства продовольственных и промышленных товаров.

Современная органическая химия глубоко проникла в химические процессы, протекающие при хранении и переработке продовольственных товаров: процессы высыхания, прогоркания и омыления масел, брожения, хлебопечения, квашения, получения напитков, в производстве молочных продуктов и т.д. Большую роль сыграло также открытие и изучение ферментов, парфюмерно-косметических веществ.

Одной из причин большого разнообразия органических соединений является своеобразие их строения, что проявляется в образовании атомами углерода ковалентных связей и цепей, различных по виду и длине. При этом число связанных атомов углерода в них может достигать десятков тысяч, а конфигурация углеродных цепей может быть линейной или циклической. В цепи кроме атомов углерода могут входить кислород, азот, сера, фосфор, мышьяк, кремний, олово, свинец, титан, железо и др.

Проявление углеродом этих свойств связано с несколькими причинами. Подтверждено, что энергия связей С – С и С – О сопоставимы. Углерод обладает способностью к образованию трех видов гибридизации орбиталей: четыре sp 3 - гибридные орбитали, их ориентация в пространстве тетраэдрическая и соответствует простым ковалентным связям; три гибридные sp 2 - орбитали, расположенные в одной плоскости, в комбинации с негибридной орбиталью формируют двойные кратные связи (─С = С─); также с помощью sp – гибридных орбиталей линейной ориентации и негибридных орбиталей между углеродными атомами возникают тройные кратные связи (─ С ≡ С ─).При этом такие виды связей углеродные атомы образуют не только друг с другом, но и с другими элементами. Таким образом, современная теория строения вещества объясняет не только значительное число органических соединений, но и влияние их химического строения на свойства.



Она также в полной мере подтверждает основы теории химического строения , разработанной великим русским ученым А.М.Бутлеровым. ЕЕ основные положения:

1) в органических молекулах атомы соединяются друг с другом в определенном порядке согласно их валентности, что обусловливает строение молекул;

2) свойства органических соединений зависят от природы и числа входящих в их состав атомов, а также от химического строения молекул;

3) каждой химической формуле отвечает определенное число возможных структур изомеров;

4) каждое органическое соединение имеет одну формулу и обладает определенными свойствами;

5) в молекулах существует взаимное влияние атомов друг на друга.

Классы органических соединений

Согласно теории органические соединения подразделяют на два ряда – ациклические и циклические соединения.

1. Ациклические соединения. (алканы, алкены) содержат открытую, незамкнутую углеродную цепь – прямую или разветвленную:

Н Н Н Н Н Н Н

│ │ │ │ │ │ │

Н─ С─С─С─С─ Н Н─С─С─С─Н

│ │ │ │ │ │ │

Н Н Н Н Н │ Н

Нормальный бутан изобутан (метилпропан)

2. а) Алициклические соединения – соединения, имеющие в молекулах замкнутые (циклические) углеродные цепи:

циклобутан циклогексан

б) Ароматические соединения, в молекулах которых имеется скелет бензола – шестичленного цикла с чередованием простых и двойных связей (арены):

в) Гетероциклические соединения – циклические соединения, содержащие кроме атомов углерода азот, серу, кислород, фосфор и некоторые микроэлементы, которые носят название гетероатомы.

фуран пиррол пиридин

В каждом ряду органические вещества распределены по классам – углеводороды, спирты, альдегиды, кетоны, кислоты, эфиры в соответствии с характером функциональных групп их молекул.

Существует также классификация по степени насыщенности и по функциональным группам. По степени насыщенности различают:

1. Предельные насыщенные – в углеродном скелете есть только одинарные связи.

─С─С─С─

2. Непредельные ненасыщенные – в углеродном скелете есть кратные (=, ≡) связи.

─С=С─ ─С≡С─

3. Ароматические – непредельные циклы с кольцевым сопряжением(4n + 2) π- электронов.

По функциональным группам

1. Спирты R-CH 2 OH

2. Фенолы

3. Альдегиды R─COH Кетоны R─C─R

4. Карбоновые кислоты R─COOH О

5. Сложные эфиры R─COOR 1

ТЕОРИЯ СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Еще со времени открытия огня человек разделил вещества на горючие и негорючие. К первой группе относились в основном продукты растительного и животного происхождения, а ко второй – преимущественно минерального происхождения. Таким образом, между способностью вещества к горению и принадлежностью его к живому и неживому миру существовала определенная связь.

В 1867 г. Й. Берцелиус предложил называть соединения первой группы органическими, а вещества, подобные воде и солям, которые характерны для неживой природы, определил, как неорганические.

Некоторые органические вещества в более или менее чистом виде известны человеку с незапамятных времен (уксус, многие органические красители). Ряд органических соединений, как, например, мочевина, этиловый спирт, «серный эфир» были получены еще алхимиками. Очень многие вещества, особенно органические кислоты (щавелевая, лимонная, молочная и др.) и органические основания (алкалоиды), были выделены из растений и животных во второй половине XVIII века и первых годах XIX века. Это время и следует считать началом научной органической химии.

v Теория витализма . В XVIII веке и первой четверти XIX века господствовало убеждение, что химия живой природы принципиально отлична от химии мертвой природы (минеральной химии), и что организмы строят свои вещества с участием особой жизненной силы, без которой искусственно, в колбе, их создать нельзя. То время было временем господства витализма – учения, рассматривающего жизнь как особое явление, подчиняющееся не законам мироздания, а влиянию особых жизненных сил.

Защитником витализма веком раньше был Г. Шталь, основатель теории флогистона. По его мнению, химики, имевшие дело с самыми обычными веществами, осуществить их превращения, требовавшие участия жизненных сил, естественно, не могли.

Первые сомнения в состоятельности виталистической теории заронил ученик Й. Берцелиуса немецкий химик Ф. Велер, который синтезировал из цианата аммония, безоговорочно причисленного к неорганическим веществам, мочевину:

Не надо переоценивать значения этой работы, т.к. мочевина фактически является перестроенной молекулой цианата аммония, но, тем не менее, нельзя и отрицать значение открытия Ф. Велера, т.к. оно способствовало низвержению витализма и вдохновило химиков на синтез органических веществ.

В 1845 г. А. Кольбе, ученик Ф. Велера, осуществил синтез из элементов, т.е. полный синтез, уксусной кислоты. Французский химик П. Бертло получил метиловый и этиловый спирты, метан. Тем не менее, существовало мнение, что синтез столь сложного вещества, как сахар, никогда не будет осуществлен. Однако уже в 1861 г. А. Бутлеров синтезировал сахароподобное вещество – метиленитан.

Одновременно с этими этапными для органической химии синтезами быстро росло общее число синтезированных углеродосодержащих соединений, не встречающихся в природе. Так, в 1825 г. М. Фарадей получил бензол, еще ранее стали известны этилен, бромистый этилен и ряд производных бензола. В 1842 г. Н. Зинин из нитробензола получил анилин, а в 50-х годах того же столетия из анилина были синтезированы первые «анилиновые красители» – мовеин У. Перкина и фуксин. К середине 50-х годов ХIХ в. виталистическая теория потерпела крах окончательно.

v Дуалистическая теория Й. Берцелиуса . Основы структурной химии органических веществ заложил Й. Берцелиус, который вслед за А. Лавуазье распространил на органические объекты количественный анализ и создал для объяснения их природы дуалистическую (электрохимическую ) теорию – первую научную теорию в химии. По Й. Берцелиусу, атом элемента соединяется с кислородом вследствие того, что он электроположителен, а кислород электроотрицателен; при соединении заряды нейтрализуются. Й. Берцелиус считал, что его теория применима и к органической химии, с той разницей, что в органических соединениях радикалы в оксидах более сложные, например, углеводородные. Иначе эту теорию еще называют «теорией сложных радикалов ».

По А. Лавуазье радикалы органических соединений состоят из углерода, водорода и кислорода, к которым в случае веществ животного происхождения добавляется еще азот и фосфор.

v Теория радикалов . Развитием теории Берцелиуса стала теория радикалов. В 1810 г. Ж. Гей-Люссак заметил, что группа СN (цианидная группа) может переходить из соединения в соединение, не разделяясь на отдельные атомы углерода и азота. Такие группы стали называть радикалами .

Постепенно радикалы стали рассматривать, как неизменные составные части органических веществ (подобные элементам в неорганических соединениях), которые переходят в реакциях из одного соединения в другое. Некоторые исследователи, особенно немецкой школы (Ф. Велер, Ю. Либих), вдохновленные открытием серии новых элементов, руководствовались идеей поиска новых радикалов. В частности, они нашли радикалы бензоил С 6 Н 5 СО и ацетил СН 3 СО. К этому времени стало известно также, что вещества, называющиеся сейчас этиловым спиртом, диэтиловым эфиром, хлористым этилом и этилнитритом, содержат радикал этил –С 2 Н 5 . Подобным же способом были идентифицированы и другие радикалы , т.е. группы атомов, остающиеся неизменными при различных химических превращениях.

Множественные попытки выделить радикалы в свободном состоянии оказались неудачными или проводили к ошибочным результатам. Так, до установления закона Авогадро этан, выделенный по реакции Вюрца:

считался сначала радикалом метилом –СН 3 , и лишь последующее определение молекулярной массы показало ее удвоенную величину.

Общее признание принципа неизменности радикалов, было поколеблено, когда французский химик Ж. Дюма и его ученик О. Лоран открыли реакцию металепсии . При действии хлора на органические соединения хлор вступает в вещество так, что на каждый вступивший эквивалент хлора из вещества удаляется один эквивалент водорода в виде хлороводорода. При этом химический характер соединения не меняется. Противоречие с теорией Й. Берцелиуса было разительным: хлор, «отрицательно заряженный элемент», входил на место «положительного заряженного водорода», и молекула не только сохранялась, но и не изменялся ее химический характер. Оказалось возможным заменять водород на другие электроотрицательные элементы – галогены, кислород, серу и т. д., и электрохимическая дуалистическая теория Й. Берцелиуса рухнула. Все очевиднее становилось, что неизменных радикалов не существует, и что в одних реакциях радикалы переходят во вновь образующиеся молекулы целиком, а в других подвергаются изменениям.

v Теория типов . Попытки найти что-то общее в природе органических молекул заставили отказаться от безуспешных поисков неизменяемой части молекулы и перейти к наблюдениям за ее наиболее изменяемой частью, которую мы теперь называем функциональной группой . Эти наблюдения привели к теории типов Ш. Жерара.

В спиртах и кислотах Ш. Жерар увидел аналоги воды, в хлорпроизводных углеводородов – аналоги хлористого водорода, в алканах – водорода, во вновь открытых аминах – аммиака.

Большинство сторонников теории типов (Ш. Жерар, А. Кольбе, А. Кекуле) исходили из того, что невозможно определить строение веществ экспериментальным путем. Их можно только классифицировать. В зависимости от того, в какие реакции вещество вступает, одно и то же органическое соединение можно относить к разным типам. Теория с большой натяжкой классифицировала огромный опытный материал, а о возможности целенаправленного синтеза не могло быть и речи. Органическая химия в те годы представлялась, по словам Ф. Велера, «…дремучим лесом, полным чудесных вещей, огромной чащей без выхода, без конца, куда не осмеливаешься проникнуть». Дальнейшее развитие химии требовало создания новой, более прогрессивной теории.

Одним из недостатков теории типов является стремление уложить все органические соединения в более или менее формальные схемы. Заслуга этой теории состоит в уточнении понятий о гомологических рядах и химических функциях, окончательно освоенных органической химией. Ее роль в развитии науки несомненна, т.к. она привела к понятию валентности и открыла путь к теории строения органических соединений.

v Теория строения органических соединений . Ряд исследований предшествовал появлению основополагающей теории строения органических соединений. Так, А. Вильямсон в 1851 г. ввел понятие о так называемых многоатомных радикалах, т. е. о радикалах, способных заместить два и более атомов водорода. Тем самым стало возможным относить вещества сразу к двум и более типам, например, аминоуксусная кислота может быть отнесена к типам воды и аммиака:

Такие вещества мы сейчас называем гетерофункциональными соединениями.

Чтобы соблюсти постоянство валентности углерода и кислорода, оказалось необходимым также принять существование двойной связи в этилене (С=С), в альдегидах и кетонах (С=О).

Шотландский химик Л. Купер предложил современное изображение формул, в которых знак элемента снабжался числом черточек, равным его валентности:

Однако и А. Кекуле и Л. Куперу еще чужда была идея неразрывной связи химических и физических свойств молекул с ее строением, выраженным формулой, идея единственности этого строения. А. Кекуле допускал описание одного и того же соединения посредством нескольких разных формул, в зависимости от того, какую совокупность реакций данного вещества хотели выразить формулой. По существу, это были так называемые реакционные формулы.

Основные положения теории строения органических соединений были обнародованы А. Бутлеровым в 1861 г. Ему же принадлежит и сам термин строение или структура . Теория Бутлерова базировалась на материалистических представлениях, основанных на атомистическом учении М. Ломоносова и Д. Дальтона. Сущность этой теории сводится к следующим основным положениям:

1. Химическая природа каждой сложной молекулы определяется природой составляющих ее атомов, их количеством и химическим строением.

2. Химическое строение – это определенный порядок чередования атомов в молекуле, взаимное влияние атомов друг на друга.

3. Химическое строение веществ определяет их физические и химические свойства.

4. Изучение свойств веществ позволяет определить их химическое строение.

Химическим строением А. Бутлеров назвал последовательность атомов в молекуле. Он указал, каким путем на основании изучения химических реакций данного вещества можно установить его структуру, которая для каждого химического индивидуума является адекватной. В соответствии с этой формулой можно и синтезировать данные соединения. Свойства определенного атома в соединении, прежде всего, зависят от того, с каким атомом связан интересующий нас атом. Пример – поведение различных атомов водорода в спиртах.

Теория строения включила и растворила в себе теорию радикалов, поскольку любая часть молекулы, переходящая в реакции из одной молекулы в другую является радикалом, но уже не обладает прерогативой неизменности. Она вобрала в себя и теорию типов, ибо присутствующие в молекуле неорганические или содержащие углерод группы, ведущие свое начало от воды (гидроксил –ОН), аммиака (аминогруппа –NH 2), угольной кислоты (карбоксил –COOH), в первую очередь определяли химическое поведение (функцию) молекулы и делали его сходным с поведением прототипа.

Структурная теория строения органических соединений позволила классифицировать огромный экспериментальный материал и указала пути целенаправленного синтеза органических веществ.

Следует отметить, что установление структуры вещества химическим путем осуществляют каждый раз индивидуально. Нужна уверенность в индивидуальности веществ и знание количественного элементного состава и молекулярной массы. Если известны состав соединения и его молекулярная масса, можно вывести молекулярную формулу. Приведем пример выведения структурных формул для веществ с составом С 2 Н 6 О.

Первое вещество реагирует с натрием по типу воды, выделяя один атом водорода на один атом натрия, причем натрий входит в состав молекулы продукта реакции вместо ушедшего водорода.

2C 2 H 6 O + 2Na → H 2 + 2C 2 H 5 ONa

В полученное соединение уже не удается ввести второй атом натрия. То есть, можно предположить, что вещество содержало гидроксильную группу и, выделяя ее в формуле соединения, последнее можно записать так: С 2 Н 5 ОН. Подтверждением этого вывода служит то, что при действии на исходное вещество бромида фосфора(III) гидроксильная группа уходит из молекулы как целое, переходя к атому фосфора и заменяясь на атом брома.

2C 2 H 5 OH + PBr 3 → 3C 2 H 5 Br + H 3 PO 3

Изомерное ему вещество, т.е. имеющее такую же брутто-формулу, не реагирует с металлическим натрием, а при взаимодействии с иодоводородом разлагается по уравнению:

C 2 H 6 O + HI → CH 3 I + CH 4 O .

Из этого можно сделать вывод, что в исходном веществе два атома углерода не связаны друг с другом, т. к. иодоводород не способен разрывать С–С-связь. В нем нет и особого водорода, способного замещаться на натрий. После разрыва молекулы этого вещества при действии иодоводорода образуются СН 4 О и СН 3 I. Последнему нельзя приписать иную структуру, чем указанную ниже, поскольку и водород, и иод одновалентны.

Второе из образовавшихся веществ, СН 4 О, ведет себя в реакции не только с натрием, но и с бромидом фосфора(III), подобно этиловому спирту.

2CH 4 O + 2Na → 2CH 3 ONa + H 2

3CH 4 O + PBr 3 → CH 3 Br + P(OH) 3

Естественно предположить, что иодоводород разорвал связь двух метильных групп, осуществляющуюся атомом кислорода.

Действительно, при действии одного из продуктов этой реакции на натриевое производное другого удается осуществить синтез исходного вещества, изомерного этиловому спирту, и подтвердить принятую для него структуру диметилового эфира.

Первым пробным камнем проверки теории строения органических соединений явился синтез предсказанных, но неизвестных в то время трет -бутилового спирта и изобутилена, осуществленный автором созданной теории и его учеником А. Зайцевым. Другой ученик А. Бутлерова – В. Марковников синтезировал теоретически предсказанную изомасляную кислоту и на ее основе изучил взаимное влияние атомов в молекуле.

Следующий этап в развитии теоретических вопросов связывают с возникновением стереохимических представлений, развитых в работах Я. Вант-Гоффа и Ж. Ле Беля.

В начале ХХ в. закладываются представления об электронном строении атомов и молекул. На электронном уровне трактуется природа химической связи и реакционной способности органических молекул.

Создание теории органических веществ послужило основой синтетических методов не только в лаборатории, но и в промышленности. Возникают производства синтетических красителей, взрывчатых веществ и медикаментов. В органический синтез широко внедряются катализаторы и высокие давления.

В области органического синтеза осуществлено получение многих природных веществ (хлорофилл, витамины, антибиотики, гормоны). Выявлена роль нуклеиновых кислот в хранении и передаче наследственности.

Решение многих вопросов в строении сложных органических молекул стало эффективным благодаря привлечению современных спектральных методов.


Шталь Г. (1659-1734) – немецкий химик и врач. Создатель теории флогистона – первой химической теории, позволившей покончить с теоретическими возрениями алхимии.

Кольбе А. (1818 – 1884) – немецкий химик-органик, создатель теории радикалов. Синтезировал ряд органических кислот. Разработал электрохимический метод получения алканов – метод Кольбе.

Бертло П. (1827-1907) – французский химик. Один из основоположников органической химии. Фундаментальные работы в области термохимии.

Фарадей М. (1791-1867) – английский физик и химик. Один из основателей учения об электромагнетизме. Открыл количественные законы электролиза. Исследования в области сжиженных газов, стекла, органической химии.

Перкин У. ст. (1838-1907) –английский химик. Разработал промышленное производство красителей мовеина, ализарина. Открыл реакцию конденсации ароматических альдегидов с ангидридами карбоновых кислот (реакция Перкина ).

Вюрц Ш. (1817-1884) – французский химик Учился у Ю. Либиха, ассистент Ж. Дюма. Синтезировал амины, фенолы, этиленгликоль, молочную кислоту, провел альдольную и кротоновую конденсацию.

Дюма Ж. (1800-1884) – французский химик. Создал теорию радикалов. Открыл реакцию хлорирования, установил существование гомологического ряда – ряда муравьиной кислоты. Предложил способ количественного определения азота.

Лоран О. (1807-1853) – французский химик. Изучал продукты каменноугольной смолы. Открыл фталевую кислоту, индиго и нафталин.

Кекуле Ф. (1829 - 1896) – немецкий химик. Основные труды в области теоретической органической химии. Синтезировал антрахинон, трифенилметан.

Купер Л. (1834 - 1891) – шотландский химик, основные работы посвящены теоретическим проблемам химии.

Подобно тому как в неорганической химии основополагающей теоретической базой являются Периодический закон и Периодическая система химических элементов Д. И. Менделеева, так в органической химии ведущей научной основой служит теория строения органических соединений Бутлерова-Кекуле-Купера.

Как и любая другая научная теория, теория строения органических соединений явилась результатом обобщения богатейшего фактологического материала, который накопила органическая химия, оформившаяся как наука в начале XIX в. Открывались все новые и новые соединения углерода, количество которых лавинообразно возрастало (табл. 1).

Таблица 1
Число органических соединений, известных в разные годы

Объяснить это многообразие органических соединений ученые начала XIX в. не могли. Еще больше вопросов вызывало явление изомерии.

Например, этиловый спирт и диметиловый эфир - изомеры: эти вещества имеют одинаковый состав С 2 Н 6 О, но разное строение, т. е. различный порядок соединения атомов в молекулах, а потому и разные свойства.

Уже известный вам Ф. Вёлер в одном из писем к Й. Я. Берцелиусу так описывал органическую химию: «Органическая химия может сейчас кого угодно свести с ума. Она кажется мне дремучим лесом, полным удивительных вещей, безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть...»

Большое влияние на развитие химии оказали работы английского ученого Э. Франкланда, который, опираясь на идеи атомистики, ввел понятие валентность (1853).

В молекуле водорода Н 2 образуется одна ковалентная химическая связь Н-Н, т. е. водород одновалентен. Валентность химического элемента можно выразить числом атомов водорода, которые присоединяет к себе или замещает один атом химического элемента. Например, сера в сероводороде и кислород в воде двухвалентны: H 2 S, или Н-S-Н, Н 2 O, или Н-О-Н, а азот в аммиаке трехвалентен:

В органической химии понятие «валентность» является аналогом понятия «степень окисления», с которым вы привыкли работать в курсе неорганической химии в основной школе. Однако это не одно и то же. Например, в молекуле азота N 2 степень окисления азота равна нулю, а валентность - трем:

В пероксиде водорода Н 2 O 2 степень окисления кислорода равна -1, а валентность - двум:

В ионе аммония NH + 4 степень окисления азота равна -3, а валентность - четырем:

Обычно по отношению к ионным соединениям (хлорид натрия NaCl и многие другие неорганические вещества с ионной связью) не используют термин «валентность» атомов, а рассматривают их степень окисления. Поэтому в неорганической химии, где большинство веществ имеют немолекулярное строение, предпочтительнее применять понятие «степень окисления», а в органической химии, где большинство соединений имеют молекулярное строение, как правило, используют понятие «валентность».

Теория химического строения - результат обобщения идей выдающихся ученых-органиков из трех европейских стран: немца Ф. Кекуле, англичанина А. Купера и русского А. Бутлерова.

В 1857 г. Ф. Кекуле отнес углерод к четырехвалентным элементам, а в 1858 г. он одновременно с А. Купером отметил, что атомы углерода способны соединяться друг с другом в различные цепи: линейные, разветвленные и замкнутые (циклические).

Работы Ф. Кекуле и А. Купера послужили основой для разработки научной теории, объясняющей явление изомерии, взаимосвязь состава, строения и свойств молекул органических соединений. Такую теорию создал русский ученый А. М. Бутлеров. Именно его пытливый ум «осмелился проникнуть» в «дремучий лес» органической химии и начать преобразование этой «безграничной чащи» в залитый солнечным светом регулярный парк с системой дорожек и аллей. Основные идеи этой теории впервые были высказаны А. М. Бутлеровым в 1861 г. на съезде немецких естествоиспытателей и врачей в г. Шпейере.

Кратко сформулировать основные положения и следствия теории строения органических соединений Бутлерова-Кекуле-Купера можно следующим образом.

1. Атомы в молекулах веществ соединены в определенной последовательности согласно их валентности. Углерод в органических соединениях всегда четырехвалентен, а его атомы способны соединяться друг с другом, образуя различные цепи (линейные, разветвленные и циклические).

Органические соединения можно расположить в ряды сходных по составу, строению и свойствам веществ - гомологические ряды.

    Бутлеров Александр Михайлович (1828-1886) , Русский химик, профессор Казанского университета (1857-1868), с 1869 по 1885 г. - профессор Петербургского университета. Академик Петербургской академии наук (с 1874 г.). Создатель теории химического строения органических соединений (1861). Предсказал и изучил изомерию многих органических соединений. Синтезировал многие вещества.

Например, метан СН 4 - родоначальник гомологического ряда предельных углеводородов (алканов). Его ближайший гомолог - этан С 2 Н 6 , или СН 3 -СН 3 . Следующие два члена гомологического ряда метана - пропан С 3 Н 8 , или СН 3 -СН 2 -СН 3 , и бутан С 4 Н 10 , или СН 3 -СН 2 -СН 2 -СН 3 , и т. д.

Нетрудно заметить, что для гомологических рядов можно вывести общую формулу ряда. Так, для алканов эта общая формула С n Н 2n + 2 .

2. Свойства веществ зависят не только от их качественного и количественного состава, но и от строения их молекул.

Это положение теории строения органических соединений объясняет явление изомерии. Очевидно, что для бутана С 4 Н 10 , помимо молекулы линейного строения СН 3 -СН 2 -СН 2 -СН 3 , возможно также и разветвленное строение:

Это уже совершенно новое вещество со своими индивидуальными свойствами, отличными от свойств бутана линейного строения.

Бутан, в молекуле которого атомы расположены в виде линейной цепочки, называют нормальным бутаном (н-бутаном), а бутан, цепь атомов углерода которого разветвлена, называют изобутаном.

Существует два основных типа изомерии - структурная и пространственная.

В соответствии с принятой классификацией различают три вида структурной изомерии.

Изомерия углеродного скелета. Соединения отличаются порядком расположения углерод-углеродных связей, например рассмотренные н-бутан и изобутан. Именно этот вид изомерии характерен для алканов.

Изомерия положения кратной связи (С=С, С=С) или функциональной группы (т. е. группы атомов, определяющих принадлежность соединения к тому или иному классу органических соединений), например:

Межклассовая изомерия . Изомеры этого вида изомерии относятся к разным классам органических соединений, например рассмотренные выше этиловый спирт (класс предельных одноатомных спиртов) и диметиловый эфир (класс простых эфиров).

Различают два вида пространственной изомерии: геометрическую и оптическую.

Геометрическая изомерия характерна, прежде всего, для соединений с двойной углерод-углеродной связью, так как по месту такой связи молекула имеет плоскостное строение (рис. 6).

Рис. 6.
Модель молекулы этилена

Например, для бутена-2, если одинаковые группы атомов у атомов углерода при двойной связи находятся по одну сторону от плоскости С=С-связи, то молекула является цисизомером, если по разные стороны - трансизомером.

Оптической изомерией обладают, например, вещества, молекулы которых имеют асимметрический, или хиральный, атом углерода, связанный с четырьмя различными заместителями. Оптические изомеры являются зеркальным изображением друг друга, подобно двум ладоням, и не совместимы. (Теперь вам, очевидно, стало понятным второе название этого вида изомерии: греч. хирос - рука - образец несимметричной фигуры.) Например, в виде двух оптических изомеров существует 2-оксипропановая (молочная) кислота, содержащая один асимметрический атом углерода.

У хиральных молекул возникают изомерные пары, в которых молекулы изомеров относятся по своей пространственной организации одна к другой так же, как соотносятся между собой предмет и его зеркальное отображение. Пара таких изомеров всегда обладает одинаковыми химическими и физическими свойствами, за исключением оптической активности: если один изомер вращает плоскость поляризованного света по часовой стрелке, то другой - обязательно против. Первый изомер называют правовращающим, а второй - левовращающим.

Значение оптической изомерии в организации жизни на нашей планете очень велико, так как оптические изомеры могут существенно отличаться как по своей биологической активности, так и по совместимости с другими природными соединениями.

3. Атомы в молекулах веществ влияют друг на друга. Взаимное влияние атомов в молекулах органических соединений вы рассмотрите при дальнейшем изучении курса.

Современная теория строения органических соединений основывается не только на химическом, но и на электронном и на пространственном строении веществ, которое подробно рассматривается на профильном уровне изучения химии.

В органической химии широко используют несколько видов химических формул.

Молекулярная формула отражает качественный состав соединения, т. е. показывает число атомов каждого из химических элементов, образующих молекулу вещества. Например, молекулярная формула пропана: С 3 Н 8 .

Структурная формула отражает порядок соединения атомов в молекуле согласно валентности. Структурная формула пропана такова:

Часто нет необходимости детально изображать химические связи между атомами углерода и водорода, поэтому в большинстве случаев используют сокращенные структурные формулы. Для пропана такую формулу записывают так: СН 3 -СН 2 -СН 3 .

Строение молекул органических соединений отражают с помощью различных моделей. Наиболее известны объемные (масштабные) и шаростержневые модели (рис. 7).

Рис. 7.
Модели молекулы этана:
1 - шаростержневая; 2 - масштабная

Новые слова и понятия

  1. Изомерия, изомеры.
  2. Валентность.
  3. Химическое строение.
  4. Теория строения органических соединений.
  5. Гомологический ряд и гомологическая разность.
  6. Формулы молекулярные и структурные.
  7. Модели молекул: объемные (масштабные) и шаростержневые.

Вопросы и задания

  1. Что такое валентность? Чем она отличается от степени окисления? Приведите примеры веществ, в которых значения степени окисления и валентности атомов численно одинаковы и различны,
  2. Определите валентность и степень окисления атомов в веществах, формулы которых Сl 2 , СО 2 , С 2 Н 6 , С 2 Н 4 .
  3. Что такое изомерия; изомеры?
  4. Что такое гомология; гомологи?
  5. Как, используя знания об изомерии и гомологии, объяснить многообразие соединений углерода?
  6. Что понимают под химическим строением молекул органических соединений? Сформулируйте положение теории строения, которое объясняет различие в свойствах изомеров, Сформулируйте положения теории строения, которые объясняют многообразие органических соединений.
  7. Какой вклад внес каждый из ученых - основоположников теории химического строения - в эту теорию? Почему ведущую роль в становление этой теории сыграл вклад русского химика?
  8. Возможно существование трех изомеров состава С 5 Н 12 , Запишите их полные и сокращенные структурные формулы,
  9. По представленной в конце параграфа модели молекулы вещества (см, рис. 7) составьте его молекулярную и сокращенную структурную формулы.
  10. Рассчитайте массовую долю углерода в молекулах первых четырех членов гомологического ряда алканов.

К первой половине XIX века в органической химии был накоплен громадный фактический материал, дальнейшее изучение которого тормозилось отсутствием какой-либо систематизирующей основы. Начиная с 20-х годов XIX века стали появляться сменяющие друг друга теории, претендующие на обобщенное описание строения органических соединений. Одной из них была теория типов, разработанная в х годах французским ученым Ш. Жераром. Согласно этой теории, все органические соединения рассматривались как производные простейших неорганических веществ, принятых за типы.Ш. Жераром


Незадолго до появления теории строения А. М. Бутлерова немецким химиком Ф.А. Кекуле (1857) была разработана применительно к органическим соединениям теория валентности, установившая такие факты, как четырехвалентность атома углерода и его способность образовывать углеродные цепи за счет соединения с атомами углерода.А. М. БутлероваФ.А. Кекуле


Теоретические разработки добутлеровского периода внесли определенный вклад в познание строения органических соединений. Но ни одна из ранних теорий не была всеобщей. И лишь А.М. Бутлерову удалось создать такую логически завершенную теорию строения, которая и по сей день служит научной основой органической химии. Теория строения А.М. Бутлерова базируется на материалистическом подходе к реальной молекуле и исходит из возможности познания ее строения экспериментальным путем. А.М. Бутлеров при установлении строения веществ придавал основополагающее значение химическим реакциям. Теория строения А.М. Бутлерова не только объясняла уже известные факты, ее научное значение заключалось в прогнозировании существования новых органических соединений.А.М. Бутлерову А.М. Бутлерова А.М. БутлеровА.М. Бутлерова




Изомеры - это вещества, которые имеют одинаковую молекулярную формулу, но различное химическое строение, а поэтому обладают разными свойствами. Подлинное объяснение изомерия получила лишь во второй половине 19 в на основе теории химического строения А.М. Бутлерова (структурная изомерия) и стереохимического учения Я. Г. Вант-Гоффа (пространственная изомерия).Я. Г. Вант-Гоффа


ФормулаНазвание Число изомеров CH 4 метан1 C4H6C4H6 этан1 C3H8C3H8 пропан1 C 4 H 10 бутан2 C 5 H 12 пентан3 C 6 H 14 гексан5 C 7 H 16 гептан9 C 8 H 18 октан18 C 9 H 20 нонан35 C 10 H 22 декан75 C 11 H 24 ундекан159 C 12 H 26 додекан355 C 13 H 28 тридекан802 C 14 H 30 тетрадекан1 858 C 15 H 32 пентадекан4 347 C 20 H 42 эйкозан C 25 H 52 пентакозан C 30 H 62 триаконтан C 40 H 82 тетраконтан


Структурными называют изомеры, отвечающие различным структурным формулам органических соединений (с разным порядком соединения атомов). Пространственные изомеры имеют одинаковые заместители у каждого атома углерода и отличаются лишь их взаимным расположением в пространстве.


Пространственные изомеры (стереоизомеры). Стереоизомеры можно разделить на два типа: геометрические изомеры и оптические изомеры. Геометрическая изомерия характерна для соединений, содержащих двойную связь или цикл. В таких молекулах часто возможно провести условную плоскость таким образом, что заместители у различных атомов углерода могут оказаться по одну сторону (цис-) или по разные стороны (транс-) от этой плоскости. Если изменение ориентации этих заместителей относительно плоскости возможно только за счет разрыва одной из химических связей, то говорят о наличии геометрических изомеров. Геометрические изомеры отличаются своими физическими и химическими свойствами.







Открыт новый способ получения оптических изомеров органических молекул Когда Алиса оказалась в собственной, но «зазеркальной» комнате, то удивилась: комната вроде похожа, но всё же совсем другая. Точно так же различаются и зеркальные изомеры химических молекул: внешне похожи, но ведут себя по-разному. Важнейшей областью органической химии является разделение и синтез этих зеркальных вариантов. (Иллюстрация Джона Тенниела к книге Льюиса Кэрролла «Алиса в Зазеркалье»)



Американские ученые научились получать оптические изомеры соединений на основе альдегидов, осуществив наконец важную реакцию, над которой химики работали многие годы. В эксперименте они объединили два катализатора, работающие по разным принципам. В результате совместного действия этих катализаторов образуются две активных органических молекулы, которые объединяются в требуемое вещество. На примере этой реакции показана возможность синтеза целого класса биологически важных органических соединений.


Сейчас известно уже не менее 130 реакций органического синтеза, в которых получаются более или менее чистые хиральные изомеры. Если сам катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получится оптически активный продукт. Это правило было выведено еще в начале XX века и остается базовым и на сегодняшний день. Принцип выборочного действия катализатора по отношению к оптическим изомерам похож на рукопожатие: катализатору «удобно» связываться только с одним из хиральных изомеров, поэтому и катализируется предпочтительно только одна из реакций. Кстати, термин «хиральный» произошел от греческого chéir рука.