Сегодня на уроке мы научимся находить условные или, как их ещё называют, относительные экстремумы функций нескольких переменных, и, прежде всего, речь пойдёт, конечно же, об условных экстремумах функций двух итрёх переменных , которые встречаются в подавляющем большинстве тематических задач.

Что нужно знать и уметь на данный момент? Несмотря на то, что эта статья находится «на окраине» темы, для успешного усвоения материала потребуется не так уж и много. На данный момент вы должны ориентироваться в основных поверхностях пространства , уметь находить частные производные (хотя бы на среднем уровне) и, как подсказывает беспощадная логика, разбираться в безусловных экстремумах . Но даже если у вас низкий уровень подготовки, не спешите уходить – все недостающие знания/навыки реально «подобрать по пути», причём безо всяких многочасовых мучений.

Сначала проанализируем само понятие и заодно осуществим экспресс-повторение наиболее распространённых поверхностей . Итак, что же такое условный экстремум? …Логика здесь не менее беспощадна =) Условный экстремум функции – это экстремум в обычном понимании этого слова, который достигается при выполнении определённого условия (или условий).

Представьте произвольную «косую» плоскость в декартовой системе . Никакого экстремума здесь нет и в помине. Но это до поры до времени. Рассмотрим эллиптический цилиндр , для простоты – бесконечную круглую «трубу», параллельную оси . Очевидно, что эта «труба» «высечет» из нашей плоскости эллипс , в результате чего в верхней его точке будет максимум, а в нижней – минимум. Иными словами, функция, задающая плоскость, достигает экстремумов при условии , что её пересёк данный круговой цилиндр. Именно «при условии»! Другой эллиптический цилиндр, пересекающий эту плоскость, почти наверняка породит иные значения минимума и максимума.

Если не очень понятно, то ситуацию можно смоделировать реально (правда, в обратном порядке) : возьмите топор, выйдите на улицу и срубите… нет, Гринпис потом не простит – лучше порежем «болгаркой» водосточную трубу =). Условный минимум и условный максимум будут зависеть от того, на какой высоте и под каким (негоризонтальным) углом осуществлён разрез.

Настало время облачить выкладки в математическое одеяние. Рассмотрим эллиптический параболоид , который имеет безусловный минимум в точке . Теперь найдём экстремум при условии . Данная плоскость параллельна оси , а значит, «высекает» из параболоида параболу . Вершина этой параболы и будет условным минимумом. Причём плоскость не проходит через начало координат, следовательно, точка останется не при делах. Не представили картинку? Срочно идём по ссылкам! Потребуется ещё много-много раз.

Вопрос: как найти этот условный экстремум? Простейший способ решения состоит в том, чтобы из уравнения (которое так и называют – условием или уравнением связи ) выразить, например: – и подставить его в функцию:

В результате получена функция одной переменной, задающая параболу, вершина которой «вычисляется» с закрытыми глазами. Найдём критические точки :

– критическая точка.

Далее проще всего использовать второе достаточное условие экстремума :

В частности: , значит, функция достигает минимума в точке . Его можно вычислить напрямую: , но мы пойдём более академичным путём. Найдём «игрековую» координату:
,

запишем точку условного минимума , удостоверимся, что она действительно лежит в плоскости (удовлетворяет уравнению связи) :

и вычислим условный минимум функции :
при условии («добавка» обязательна!!!) .

Рассмотренный способ без тени сомнения можно использовать на практике, однако, он обладает рядом недостатков. Во-первых, далеко не всегда понятна геометрия задачи, а во-вторых, зачастую бывает невыгодно выражать «икс» либо «игрек» из уравнения связи (если вообще есть возможность что-то выразить) . И сейчас мы рассмотрим универсальный метод нахождения условных экстремумов, получивший название метод множителей Лагранжа :

Пример 1

Найти условные экстремумы функции при указанном уравнении связи на аргументы .

Узнаёте поверхности? ;-) …Я рад видеть ваши счастливые лица =)

Кстати из формулировки данной задачи становится ясно, почему условие называют уравнением связи – аргументы функции связаны дополнительным условием, то есть найденные точки экстремума должны обязательно принадлежать круговому цилиндру.

Решение : на первом шаге нужно представить уравнение связи в виде и составить функцию Лагранжа :
, где – так называемый множитель Лагранжа.

В нашем случае и:

Алгоритм нахождения условных экстремумов весьма похож на схему отыскания «обычных» экстремумов . Найдём частные производные функции Лагранжа, при этом с «лямбдой» следует обращаться, как с константой:

Составим и решим следующую систему:

Клубок распутывается стандартно:
из первого уравнения выразим ;
из второго уравнения выразим .

Подставим в уравнение связи и проведём упрощения:

В результате получаем две стационарные точки. Если , то:

если , то:

Легко видеть, что координаты обеих точек удовлетворяют уравнению . Щепетильные люди могут выполнить и полную проверку: для этого нужно подставить в первое и второе уравнения системы, и затем сделать то же самое с набором . Всё должно «сойтись».

Проверим выполнение достаточного условия экстремума для найденных стационарных точек. Я разберу три подхода к решению данного вопроса:

1) Первый способ – это геометрическое обоснование.

Вычислим значения функции в стационарных точках:

Далее записываем фразу примерно такого содержания: сечение плоскости круговым цилиндром представляет собой эллипс, в верхней вершине которого достигается максимум, а в нижней – минимум. Таким образом, бОльшее значение – есть условный максимум, а меньшее – условный минимум.

По возможности лучше применять именно этот метод – он прост, и такое решение засчитывают преподаватели (большим плюсом идёт то, что вы показали понимание геометрического смысла задачи) . Однако, как уже отмечалось, далеко не всегда понятно, что с чем и где пересекается, и тогда на помощь приходит аналитическая проверка:

2) Второй способ основан на использовании знаков дифференциала второго порядка . Если окажется, что в стационарной точке , то функция достигает там максимума, если же – то минимума.

Найдём частные производные второго порядка :

и составим этот дифференциал:

При , значит, функция достигает максимума в точке ;
при , значит, функция достигает минимума в точке .

Рассмотренный метод очень хорош, но обладает тем недостатком, что в ряде случаев практически невозможно определить знак 2-го дифференциала (обычно так бывает, если и/или – разных знаков) . И тогда на помощь приходит «тяжёлая артиллерия»:

3) Продифференцируем по «икс» и по «игрек» уравнение связи:

и составим следующую симметричную матрицу :

Если в стационарной точке , то функция достигает там (внимание! ) минимума, если – то максимума.

Запишем матрицу для значения и соответствующей точки :

Вычислим её определитель :
, таким образом, функция имеет максимум в точке .

Аналогично для значения и точки :

Таким образом, функция имеет минимум в точке .

Ответ : при условии :

После обстоятельного разбора материала просто не могу не предложить вам пару типовых задач для самопроверки:

Пример 2

Найти условный экстремум функции , если её аргументы связаны уравнением

Пример 3

Найти экстремумы функции при условии

И вновь настоятельно рекомендую разобраться в геометрической сути заданий, особенно, это касается последнего примера, где аналитическая проверка достаточного условия – не подарок. Вспомните, какую линию 2-го порядка задаёт уравнение , и какую поверхность эта линия порождает в пространстве. Проанализируйте, по какой кривой цилиндр пересечёт плоскость и где на этой кривой будет минимум, а где – максимум.

Решения и ответы в конце урока.

Рассматриваемая задача находит широкое применение в различных областях, в частности – далеко ходить не будем, в геометрии. Решим всем понравившуюся задачу о поллитровке (см. Пример 7 статьи Экстремальные задачи ) вторым способом:

Пример 4

Каковы должны быть размеры консервной банки цилиндрической формы, чтобы на изготовления банки пошло наименьшее количество материала, если объем банки равен

Решение : рассмотрим переменный радиус основания , переменную высоту и составим функцию площади полной поверхности банки:
(площадь двух крышек + площадь боковой поверхности)

Метод множителей Лагранжа (в англ. литературе «LaGrange"s method of undetermined multipliers») ˗ это численный метод решения оптимизационных задач, который позволяет определить «условный» экстремум целевой функции (минимальное или максимальное значение)

при наличии заданных ограничений на ее переменные в виде равенств (т.е. определена область допустимых значений)

˗ это значения аргумента функции (управляемые параметры) на вещественной области при котором значение функции стремится к экстремуму. Применение названия «условный» экстремум связано с тем, что на переменные наложено дополнительное условие, которое ограничивает область допустимых значений при поиске экстремума функции.

Метод множителей Лагранжа позволяет задачу поиска условного экстремума целевой функции на множестве допустимых значений преобразовать к задаче безусловной оптимизации функции.

В случае если функции и непрерывны вместе со своими частными производными, то существуют такие переменные λ не равные одновременно нулю, при которых выполняется следующее условие:

Таким образом, в соответствии с методом множителей Лагранжа для поиска экстремума целевой функции на множестве допустимых значений составляю функцию Лагранжа L(х, λ), которую в дальнейшем оптимизируют:

где λ ˗ вектор дополнительных переменных, называемых неопределенными множителями Лагранжа.

Таким образом, задача нахождения условного экстремума функции f(x) свелась к задаче поиска безусловного экстремума функции L(x, λ).

и

Необходимое условие экстремума функции Лагранжа задается системой уравнений (система состоит из «n + m» уравнений):

Решение данной системы уравнений позволяет определить аргументы функции (Х), при которых значение функции L(x, λ), а также значение целевой функции f(x) соответствуют экстремуму.

Величина множителей Лагранжа (λ) имеет практический интерес в случае, если ограничения представлены в форме со свободным членом уравнения (константой). В этом случае можно рассматривать дальнейшее (увеличение/уменьшение) значения целевой функции за счет изменения значения константы в системе уравнения . Таким образом, множитель Лагранжа характеризует скорость изменения максимума целевой функции при изменении ограничивающей константы.

Существует несколько способов определения характера экстремума полученной функции:

Первый способ: Пусть – координаты точки экстремума, а - соответствующее значение целевой функции. Берется точка , близкая к точке , и вычисляется значение целевой функции :

Если , то в точке имеет место максимум.

Если , то в точке имеет место минимум.

Второй способ: Достаточным условием, из которого можно выяснить характер экстремума, является знак второго дифференциала функции Лагранжа. Второй дифференциал функции Лагранжа определяется следующим образом:

Если в заданной точке минимум , если же , то целевая функция f(x) имеет в данной точке условный максимум.

Третий способ: Также характер экстремума функции можно выяснить рассмотрев гессиан функции Лагранжа. Матрица Гессе представляет собой симметричную квадратную матрицу вторых частных производных функции в точке , в которой элементы матрицы симметричны относительно главной диагонали.

Для определения типа экстремума (максимум или минимум функции) можно воспользоваться правилом Сильвестра:

1. Для того, чтобы второй дифференциал функции Лагранжа был знакоположителен необходимо, чтобы угловые миноры функции были положительными . При таких условиях функция в этой точке имеет минимум.

2. Для того, чтобы второй дифференциал функции Лагранжа был знакоотрицателен , необходимо, чтобы угловые миноры функции чередовались, причем первый элемент матрицы должен быть отрицательнsv . При таких условиях функция в этой точке имеет максимум.

Под угловым минором понимаем минор, расположенный в первых k строках и k столбцах исходной матрицы.

Основное практическое значение метода Лагранжа заключается в том, что он позволяет перейти от условной оптимизации к безусловной и, соответственно, расширить арсенал доступных методов решения задачи. Однако задача решения системы уравнений, к которой сводится данный метод, в общем случае не проще исходной задачи поиска экстремума. Такие методы называются непрямыми. Их применение объясняется необходимостью получить решение экстремальной задачи в аналитической форме (допустим, для тех или иных теоретических выкладок). При решении конкретных практических задач обычно используются прямые методы, основанные на итеративных процессах вычисления и сравнения значений оптимизируемых функций.

Методика расчета

1 шаг : Определяем функцию Лагранжа из заданной целевой функции и системы ограничений:

Вперёд

Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.

Способ определения условного экстремума начинается с построения вспомогательной функции Лагранжа, которая в области допустимых решений достигает максимума для тех же значений переменных x 1 , x 2 , ..., x n , что и целевая функция z . Пусть решается задача определения условного экстремума функции z = f (X) при ограничениях φ i ( x 1 , x 2 , ..., x n ) = 0, i = 1, 2, ..., m , m < n

Составим функцию

которая называется функцией Лагранжа . X , - постоянные множители (множители Лагранжа ). Отметим, что множителям Лагранжа можно придать экономический смысл. Если f (x 1 , x 2 , ..., x n ) - доход, соответствующий плану X = (x 1 , x 2 , ..., x n ) , а функция φ i (x 1 , x 2 , ..., x n ) - издержки i-го ресурса, соответствующие этому плану, то X , - цена (оценка) i-го ресурса, характеризующая изменение экстремального значения целевой функции в зависимости от изменения размера i-го ресурса (маргинальная оценка). L(Х) - функция n + m переменных (x 1 , x 2 , ..., x n , λ 1 , λ 2 , ..., λ n ) . Определение стационарных точек этой функции приводит к решению системы уравнений

Легко заметить, что . Таким образом, задача нахождения условного экстремума функции z = f (X) сводится к нахождению локального экстремума функции L(X) . Если стационарная точка найдена, то вопрос о существовании экстремума в простейших случаях решается на основании достаточных условий экстремума - исследования знака второго дифференциала d 2 L(X) в стационарной точке при условии, что переменные приращения Δx i - связаны соотношениями

полученными путем дифференцирования уравнений связи.

Решение системы нелинейных уравнений с двумя неизвестными с помощью средства Поиск решения

Настройка Поиск решения позволяет находить решение систе­мы нелинейных уравнений с двумя неизвестными:

где
- нелинейная функция от переменныхx и y ,
- произвольная постоянная.

Известно, что пара (x , y ) является решением системы уравнений (10) тогда и только тогда, когда она является решением следующего уравнение с двумя неизвестными:

С другой стороны, решение системы (10) - это точки пересечения двух кривых: f ] (x , y ) = C и f 2 (х, у) = С 2 на плоскости ХО Y .

Из этого следует метод нахождения корней системы. нелинейных уравнений:

    Определить (хотя бы приближенно) интервал существования решения системы уравнений (10) или уравнения (11). Здесь не­обходимо учитывать вид уравнений, входящих в систему, область определения каждого их уравнений и т. п. Иногда применяется подбор начального приближения решения;

    Протабулировать решение уравнения (11) по переменным x и y на выбранном интервале, либо построить графики функций f 1 (x , y ) = С, и f 2 (х,у) = С 2 (система(10)).

    Локализовать предполагаемые корни системы уравнений - найти несколько минимальных значений из таблицы табулирование­ корней уравнения (11), либо определить точки пересечения кривых, входящих в систему (10).

4. Найти корни для системы уравнений (10) с помощью надстройки Поиск решения.

Задание . Имеется два способа производства некоторого продукта. Издержки производства при каждом способе зависят от произведенных x 1 и у 2 следующим образом: g(x 1)= 9x 1 + x 1 2 , g(x 2)=6x 2 + x 2 2 . За месяц необходимо произвести 3×50 единиц продукции, распределив ее между двумя способами так, чтобы минимизировать общие издержки (при решении используйте сервис метод множителей Лагранжа).

Решение . Найдем экстремум функции F(X) = 9 x 1 +x 1 2 +6 x 2 +x 2 2 , используя функцию Лагранжа:

где
- целевая функция вектора .
- ограничения в неявном виде (i=1..n)
В качестве целевой функции, подлежащей оптимизации, в этой задаче выступает функция:
F(X) = 9 x 1 +x 1 2 +6 x 2 +x 2 2
Перепишем ограничение задачи в неявном виде:

Составим вспомогательную функцию Лагранжа:
= 9 x 1 +x 1 2 +6 x 2 +x 2 2 + λ(x 1 +x 2 -150)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным х i и неопределенному множителю λ.
Составим систему:
∂L/∂x 1 = 2 x 1 +λ+9 = 0
∂L/∂x 2 = λ+2 x 2 +6 = 0
∂F/∂λ = x 1 +x 2 -150= 0
Систему решаем с помощью метода Гаусса или используя формулы Крамера .

Запишем систему в виде:

Для удобства вычислений поменяем строки местами:

Добавим 2-ую строку к 1-ой:

Умножим 2-ую строку на (2). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:

Из 1-ой строки выражаем x 3

Из 2-ой строки выражаем x 2

Из 3-ой строки выражаем x 1

Таким образом, чтобы общие издержки производства были минимальны, необходимо производить x 1 = 74.25; x 2 = 75.75.

Задание . По плану производства продукции предприятию необходимо изготовить 50 изделий. Эти изделия могут быть изготовлены 2-мя технологическими способами. При производстве x 1 - изделий 1-ым способом затраты равны 3x 1 +x 1 2 (т. руб.), а при изготовлении x 2 - изделий 2-ым способом они составят 5x 2 +x 2 2 (т. руб.). Определить сколько изделий каждым из способов необходимо изготовить, чтобы общие затраты на производство были минимальные.

Решение: составляем целевую функцию и ограничения:
F(X) = 3x 1 +x 1 2 + 5x 2 +x 2 2 → min
x 1 +x 2 = 50

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:

  • метод вариации постоянной (Лагранжа).

Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

Метод вариации постоянной (Лагранжа)

В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

Рассмотрим уравнение:
(1)

Шаг 1 Решение однородного уравнения

Ищем решение однородного уравнения:

Это уравнение с разделяющимися переменными

Разделяем переменные - умножаем на dx , делим на y :

Интегрируем:

Интеграл по y - табличный :

Тогда

Потенцируем:

Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

Шаг 2 Заменим постоянную C на функцию

Теперь заменим постоянную C на функцию от x :
C → u(x)
То есть, будем искать решение исходного уравнения (1) в виде:
(2)
Находим производную.

По правилу дифференцирования сложной функции:
.
По правилу дифференцирования произведения:

.
Подставляем в исходное уравнение (1) :
(1) ;

.
Два члена сокращаются:
;
.
Интегрируем:
.
Подставляем в (2) :
.
В результате получаем общее решение линейного дифференциального уравнения первого порядка:
.

Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

Решить уравнение

Решение

Решаем однородное уравнение:

Разделяем переменные:

Умножим на :

Интегрируем:

Интегралы табличные :

Потенцируем:

Заменим постоянную e C на C и убираем знаки модуля:

Отсюда:

Заменим постоянную C на функцию от x :
C → u(x)

Находим производную:
.
Подставляем в исходное уравнение:
;
;
Или:
;
.
Интегрируем:
;
Решение уравнения:
.