Определение повторных независимых испытаний. Формулы Бернулли для вычисления вероятности и наивероятнейшего числа. Асимптотические формулы для формулы Бернулли (локальная и интегральная, теоремы Лапласа). Использование интегральной теоремы. Формула Пуассона, для маловероятных случайных событий.

Повторные независимые испытания

На практике приходится сталкиваться с такими задачами, которые можно представить в виде многократно повторяющихся испытаний, в результате каждого из которых может появиться или не появиться событие A . При этом интерес представляет исход не каждого "отдельного испытания, а общее количество появлений события A в результате определенного количества испытаний. В подобных задачах нужно уметь определять вероятность любого числа m появлений события A в результате n испытаний. Рассмотрим случай, когда испытания являются независимыми и вероятность появления события A в каждом испытании постоянна. Такие испытания называются повторными независимыми.

Примером независимых испытаний может служить проверка на годность изделий, взятых по одному из ряда партий. Если в этих партиях процент брака одинаков, то вероятность того, что отобранное изделие будет бракованным, в каждом случае является постоянным числом.

Формула Бернулли

Воспользуемся понятием сложного события , под которым подразумевается совмещение нескольких элементарных событий, состоящих в появлении или непоявлении события A в i –м испытании. Пусть проводится n независимых испытаний, в каждом из которых событие A может либо появиться с вероятностью p , либо не появиться с вероятностью q=1-p . Рассмотрим событие B_m , состоящее в том, что событие A в этих n испытаниях наступит ровно m раз и, следовательно, не наступит ровно (n-m) раз. Обозначим A_i~(i=1,2,\ldots,{n}) появление события A , a \overline{A}_i - непоявление события A в i –м испытании. В силу постоянства условий испытания имеем

Событие A может появиться m раз в разных последовательностях или комбинациях, чередуясь с противоположным событием \overline{A} . Число возможных комбинаций такого рода равно числу сочетаний из n элементов по m , т. е. C_n^m . Следовательно, событие B_m можно представить в виде суммы сложных несовместных между собой событий, причем число слагаемых равно C_n^m :

B_m=A_1A_2\cdots{A_m}\overline{A}_{m+1}\cdots\overline{A}_n+\cdots+\overline{A}_1\overline{A}_2\cdots\overline{A}_{n-m}A_{n-m+1}\cdots{A_n},


где в каждое произведение событие A входит m раз, а \overline{A} - (n-m) раз.

Вероятность каждого сложного события, входящего в формулу (3.1), по теореме умножения вероятностей для независимых событий равна p^{m}q^{n-m} . Так как общее количество таких событий равно C_n^m , то, используя теорему сложения вероятностей для несовместных событий, получаем вероятность события B_m (обозначим ее P_{m,n} )

P_{m,n}=C_n^mp^{m}q^{n-m}\quad \text{or}\quad P_{m,n}=\frac{n!}{m!(n-m)!}p^{m}q^{n-m}.

Формулу (3.2) называют формулой Бернулли , а повторяющиеся испытания, удовлетворяющие условию независимости и постоянства вероятностей появления в каждом из них события A , называют испытаниями Бернулли , или схемой Бернулли .

Пример 1. Вероятность выхода за границы поля допуска при обработке деталей на токарном станке равна 0,07. Определить вероятность того, что из пяти наудачу отобранных в течение смены деталей у одной размеры диаметра не соответствуют заданному допуску.

Решение. Условие задачи удовлетворяет требования схемы Бернулли. Поэтому, полагая n=5,\,m=1,\,p=0,\!07 , по формуле (3.2) получаем

P_{1,5}=C_5^1(0,\!07)^{1}(0,\!93)^{5-1}\approx0,\!262.

Пример 2. Наблюдениями установлено, что в некоторой местности в сентябре бывает 12 дождливых дней. Какова вероятность того, что из случайно взятых в этом месяце 8 дней 3 дня окажутся дождливыми?

Решение.

P_{3;8}=C_8^3{\left(\frac{12}{30}\right)\!}^3{\left(1-\frac{12}{30}\right)\!}^{8-3}=\frac{8!}{3!(8-3)!}{\left(\frac{2}{5}\right)\!}^3{\left(\frac{3}{5}\right)\!}^5=56\cdot\frac{8}{125}\cdot\frac{243}{3125}=\frac{108\,864}{390\,625}\approx0,\!2787.

Наивероятнейшее число появлений события

Наивероятнейшим числом появления события A в n независимых испытаниях называется такое число m_0 , для которого вероятность, соответствующая этому числу, превышает или, по крайней мере, не меньше вероятности каждого из остальных возможных чисел появления события A . Для определения наивероятнейшего числа не обязательно вычислять вероятности возможных чисел появлений события, достаточно знать число испытаний n и вероятность появления события A в отдельном испытании. Обозначим P_{m_0,n} вероятность, соответствующую наивероятнейшему числу m_0 . Используя формулу (3.2), записываем

P_{m_0,n}=C_n^{m_0}p^{m_0}q^{n-m_0}=\frac{n!}{m_0!(n-m_0)!}p^{m_0}q^{n-m_0}.

Согласно определению наивероятнейшего числа, вероятности наступления события A соответственно m_0+1 и m_0-1 раз должны, по крайней мере, не превышать вероятность P_{m_0,n} , т. е.

P_{m_0,n}\geqslant{P_{m_0+1,n}};\quad P_{m_0,n}\geqslant{P_{m_0-1,n}}

Подставляя в неравенства значение P_{m_0,n} и выражения вероятностей P_{m_0+1,n} и P_{m_0-1,n} , получаем

Решая эти неравенства относительно m_0 , получаем

M_0\geqslant{np-q},\quad m_0\leqslant{np+p}

Объединяя последние неравенства, получаем двойное неравенство, которое используют для определения наивероятнейшего числа:

Np-q\leqslant{m_0}\leqslant{np+p}.

Так как длина интервала, определяемого неравенством (3.4), равна единице, т. е.

(np+p)-(np-q)=p+q=1,


и событие может произойти в n испытаниях только целое число раз, то следует иметь в виду, что:

1) если np-q - целое число, то существуют два значения наивероятнейшего числа, а именно: m_0=np-q и m"_0=np-q+1=np+p ;

2) если np-q - дробное число, то существует одно наивероятнейшее число, а именно: единственное целое, заключенное между дробными числами, полученными из неравенства (3.4);

3) если np - целое число, то существует одно наивероятнейшее число, а именно: m_0=np .

При больших значениях n пользоваться формулой (3.3) для расчета вероятности, соответствующей наивероятнейшему числу, неудобно. Если в равенство (3.3) подставить формулу Стирлинга

N!\approx{n^ne^{-n}\sqrt{2\pi{n}}},


справедливую для достаточно больших n , и принять наивероятнейшее число m_0=np , то получим формулу для приближенного вычисления вероятности, соответствующей наивероятнейшему числу:

P_{m_0,n}\approx\frac{n^ne^{-n}\sqrt{2\pi{n}}\,p^{np}q^{nq}}{(np)^{np}e^{-np}\sqrt{2\pi{np}}\,(nq)^{nq}e^{-nq}\sqrt{2\pi{nq}}}=\frac{1}{\sqrt{2\pi{npq}}}=\frac{1}{\sqrt{2\pi}\sqrt{npq}}.

Пример 2. Известно, что \frac{1}{15} часть продукции, поставляемой заводом на торговую базу, не удовлетворяет всем требованиям стандарта. На базу была завезена партия изделий в количестве 250 шт. Найти наивероятнейшее число изделий, удовлетворяющих требованиям стандарта, и вычислить вероятность того, что в этой партии окажется наивероятнейшее число изделий.

Решение. По условию n=250,\,q=\frac{1}{15},\,p=1-\frac{1}{15}=\frac{14}{15} . Согласно неравенству (3.4) имеем

250\cdot\frac{14}{15}-\frac{1}{15}\leqslant{m_0}\leqslant250\cdot\frac{14}{15}+\frac{1}{15}


откуда 233,\!26\leqslant{m_0}\leqslant234,\!26 . Следовательно, наивероятнейшее число изделий, удовлетворяющих требованиям стандарта, в партии из 250 шт. равно 234. Подставляя данные в формулу (3.5), вычисляем вероятность наличия в партии наивероятнейшего числа изделий:

P_{234,250}\approx\frac{1}{\sqrt{2\pi\cdot250\cdot\frac{14}{15}\cdot\frac{1}{15}}}\approx0,\!101

Локальная теорема Лапласа

Пользоваться формулой Бернулли при больших значениях n очень трудно. Например, если n=50,\,m=30,\,p=0,\!1 , то для отыскания вероятности P_{30,50} надо вычислить значение выражения

P_{30,50}=\frac{50!}{30!\cdot20!}\cdot(0,\!1)^{30}\cdot(0,\!9)^{20}

Естественно, возникает вопрос: нельзя ли вычислить интересующую вероятность, не используя формулу Бернулли? Оказывается, можно. Локальная теорема Лапласа дает асимптотическую формулу, которая позволяет приближенно найти вероятность появления событий ровно m раз в n испытаниях, если число испытаний достаточно велико.

Теорема 3.1. Если вероятность p появления события A в каждом испытании постоянна и отлична от нуля и единицы, то вероятность P_{m,n} того, что событие A появится в n испытаниях ровно m раз, приближенно равна (тем точнее, чем больше n ) значению функции

Y=\frac{1}{\sqrt{npq}}\frac{e^{-x^2/2}}{\sqrt{2\pi}}=\frac{\varphi(x)}{\sqrt{npq}} при .

Существуют таблицы, которые содержат значения функции \varphi(x)=\frac{1}{\sqrt{2\pi}}\,e^{-x^2/2}} , соответствующие положительным значениям аргумента x . Для отрицательных значений аргумента используют те же таблицы, так как функция \varphi(x) четна, т. е. \varphi(-x)=\varphi(x) .


Итак, приближенно вероятность того, что событие A появится в n испытаниях ровно m раз,

P_{m,n}\approx\frac{1}{\sqrt{npq}}\,\varphi(x), где x=\frac{m-np}{\sqrt{npq}} .

Пример 3. Найти вероятность того, что событие A наступит ровно 80 раз в 400 испытаниях, если вероятность появления события A в каждом испытании равна 0,2.

Решение. По условию n=400,\,m=80,\,p=0,\!2,\,q=0,\!8 . Воспользуемся асимптотической, формулой Лапласа:

P_{80,400}\approx\frac{1}{\sqrt{400\cdot0,\!2\cdot0,\!8}}\,\varphi(x)=\frac{1}{8}\,\varphi(x).

Вычислим определяемое данными задачи значение x :

X=\frac{m-np}{\sqrt{npq}}=\frac{80-400\cdot0,\!2}{8}=0.

По таблице прил, 1 находим \varphi(0)=0,\!3989 . Искомая вероятность

P_{80,100}=\frac{1}{8}\cdot0,\!3989=0,\!04986.

Формула Бернулли приводит примерно к такому же результату (выкладки ввиду их громоздкости опущены):

P_{80,100}=0,\!0498.

Интегральная теорема Лапласа

Предположим, что проводится n независимых испытаний, в каждом из которых вероятность появления события A постоянна и равна p . Необходимо вычислить вероятность P_{(m_1,m_2),n} того, что событие A появится в n испытаниях не менее m_1 и не более m_2 раз (для краткости будем говорить "от m_1 до m_2 раз"). Это можно сделать с помощью интегральной теоремы Лапласа.

Теорема 3.2. Если вероятность p наступления события A в каждом испытании постоянна и отлична от нуля и единицы, то приближенно вероятность P_{(m_1,m_2),n} того, что событие A появится в испытаниях от m_1 до m_2 раз,

P_{(m_1,m_2),n}\approx\frac{1}{\sqrt{2\pi}}\int\limits_{x"}^{x""}e^{-x^2/2}\,dx, где .

При решении задач, требующих применения интегральной теоремы Лапласа, пользуются специальными таблицами, так как неопределенный интеграл \int{e^{-x^2/2}\,dx} не выражается через элементарные функции. Таблица для интеграла \Phi(x)=\frac{1}{\sqrt{2\pi}}\int\limits_{0}^{x}e^{-z^2/2}\,dz приведена в прил. 2, где даны значения функции \Phi(x) для положительных значений x , для x<0 используют ту же таблицу (функция \Phi(x) нечетна, т. е. \Phi(-x)=-\Phi(x) ). Таблица содержит значения функции \Phi(x) лишь для x\in ; для x>5 можно принять \Phi(x)=0,\!5 .

Итак, приближенно вероятность того, что событие A появится в n независимых испытаниях от m_1 до m_2 раз,

P_{(m_1,m_2),n}\approx\Phi(x"")-\Phi(x"), где x"=\frac{m_1-np}{\sqrt{npq}};~x""=\frac{m_2-np}{\sqrt{npq}} .

Пример 4. Вероятность того, что деталь изготовлена с нарушениями стандартов, p=0,\!2 . Найти вероятность того, что среди 400 случайно отобранных деталей нестандартных окажется от 70 до 100 деталей.

Решение. По условию p=0,\!2,\,q=0,\!8,\,n=400,\,m_1=70,\,m_2=100 . Воспользуемся интегральной теоремой Лапласа:

P_{(70,100),400}\approx\Phi(x"")-\Phi(x").

Вычислим пределы интегрирования:


нижний

X"=\frac{m_1-np}{\sqrt{npq}}=\frac{70-400\cdot0,\!2}{\sqrt{400\cdot0,\!2\cdot0,\!8}}=-1,\!25,


верхний

X""=\frac{m_2-np}{\sqrt{npq}}=\frac{100-400\cdot0,\!2}{\sqrt{400\cdot0,\!2\cdot0,\!8}}=2,\!5,

Таким образом

P_{(70,100),400}\approx\Phi(2,\!5)-\Phi(-1,\!25)=\Phi(2,\!5)+\Phi(1,\!25).

По таблице прил. 2 находим

\Phi(2,\!5)=0,\!4938;~~~~~\Phi(1,\!25)=0,\!3944.

Искомая вероятность

P_{(70,100),400}=0,\!4938+0,\!3944=0,\!8882.

Применение интегральной теоремы Лапласа

Если число m (число появлений события A при n независимых испытаниях) будет изменяться от m_1 до m_2 , то дробь \frac{m-np}{\sqrt{npq}} будет изменяться от \frac{m_1-np}{\sqrt{npq}}=x" до \frac{m_2-np}{\sqrt{npq}}=x"" . Следовательно, интегральную теорему Лапласа можно записать и так:

P\left\{x"\leqslant\frac{m-np}{\sqrt{npq}}\leqslant{x""}\right\}=\frac{1}{\sqrt{2\pi}}\int\limits_{x"}^{x""}e^{-x^2/2}\,dx.

Поставим задачу найти вероятность того, что отклонение относительной частоты \frac{m}{n} от постоянной вероятности p по абсолютной величине не превышает заданного числа \varepsilon>0 . Другими словами, найдем вероятность осуществления неравенства \left|\frac{m}{n}-p\right|\leqslant\varepsilon , что то же самое, -\varepsilon\leqslant\frac{m}{n}-p\leqslant\varepsilon . Эту вероятность будем обозначать так: P\left\{\left|\frac{m}{n}-p\right|\leqslant\varepsilon\right\} . С учетом формулы (3.6) для данной вероятности получаем

P\left\{\left|\frac{m}{n}-p\right|\leqslant\varepsilon\right\}\approx2\Phi\left(\varepsilon\,\sqrt{\frac{n}{pq}}\right).

Пример 5. Вероятность того, что деталь нестандартна, p=0,\!1 . Найти вероятность того, что среди случайно отобранных 400 деталей относительная частота появления нестандартных деталей отклонится от вероятности p=0,\!1 по абсолютной величине не более чем на 0,03.

Решение. По условию n=400,\,p=0,\!1,\,q=0,\!9,\,\varepsilon=0,\!03 . Требуется найти вероятность P\left\{\left|\frac{m}{400}-0,\!1\right|\leqslant0,\!03\right\} . Используя формулу (3.7), получаем

P\left\{\left|\frac{m}{400}-0,\!1\right|\leqslant0,\!03\right\}\approx2\Phi\left(0,\!03\sqrt{\frac{400}{0,\!1\cdot0,\!9}}\right)=2\Phi(2)

По таблице прил. 2 находим \Phi(2)=0,\!4772 , следовательно, 2\Phi(2)=0,\!9544 . Итак, искомая вероятность приближенно равна 0,9544. Смысл полученного результата таков: если взять достаточно большое число проб по 400 деталей в каждой, то примерно в 95,44% этих проб отклонение относительной частоты от постоянной вероятности p=0,\!1 по абсолютной величине не превысит 0,03.

Формула Пуассона для маловероятных событий

Если вероятность p наступления события в отдельном испытании близка к нулю, то даже при большом числе испытаний n , но при небольшом значении произведения np получаемые по формуле Лапласа значения вероятностей P_{m,n} оказываются недостаточно точными и возникает потребность в другой приближенной формуле.

Теорема 3.3. Если вероятность p наступления события A в каждом испытании постоянна, но мала, число независимых испытаний n достаточно велико, но значение произведения np=\lambda остается небольшим (не больше десяти), то вероятность того, что в этих испытаниях событие A наступит m раз,

P_{m,n}\approx\frac{\lambda^m}{m!}\,e^{-\lambda}.

Для упрощения расчетов с применением формулы Пуассона составлена таблица значений функции Пуассона \frac{\lambda^m}{m!}\,e^{-\lambda} (см. прил. 3).

Пример 6. Пусть вероятность изготовления нестандартной детали равна 0,004. Найти вероятность того, что среди 1000 деталей окажется 5 нестандартных.

Решение. Здесь n=1000,p=0,004,~\lambda=np=1000\cdot0,\!004=4 . Все три числа удовлетворяют требованиям теоремы 3.3, поэтому для нахождения вероятности искомого события P_{5,1000} применяем формулу Пуассона. По таблице значений функции Пуассона (прил. 3) при \lambda=4;m=5 получаем P_{5,1000}\approx0,\!1563 .

Найдем вероятность того же события по формуле Лапласа. Для этого сначала вычисляем значение x , соответствующее m=5 :

X=\frac{5-1000\cdot0,\!004}{\sqrt{1000\cdot0,\!004\cdot0,\!996}}\approx\frac{1}{1,\!996}\approx0,\!501.

Поэтому согласно формуле Лапласа искомая вероятность

P_{5,1000}\approx\frac{\varphi(0,\!501)}{1,\!996}\approx\frac{0,\!3519}{1,\!996}\approx0,\!1763


а согласно формуле Бернулли точное ее значение

P_{5,1000}=C_{1000}^{5}\cdot0,\!004^5\cdot0,\!996^{995}\approx0,\!1552.

Таким образом, относительная ошибка вычисления вероятностей P_{5,1000} по приближенной формуле Лапласа составляет

\frac{0,\!1763-0,\!1552}{0,\!1552}\approx0,\!196 , или 13,\!6\%


а по формуле Пуассона -

\frac{0,\!1563-0,\!1552}{0,\!1552}\approx0,\!007 , или 0,\!7\%

Т. е. во много раз меньше.
Перейти к следующему разделу
Одномерные случайные величины
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Поэтому ваше ближайшее времяпровождение будет крайне полезным. Кроме того, я расскажу, в чём заблуждается подавляющее большинство участников лотерей и азартных игр. …Нееет, вера или слабая надежда «сорвать куш» тут совершенно не при чём;-) Не успев и глазом моргнуть, погружаемся в тему:

Что такое независимые испытания ? Практически всё понятно уже из самого названия. Пусть производится несколько испытаний. Если вероятность появления некоего события в каждом из них не зависит от исходов остальных испытаний, то… заканчиваем фразу хором =) Молодцы. При этом под словосочетанием «независимые испытания» часто подразумевают повторные независимые испытания – когда они осуществляются друг за другом.

Простейшие примеры:
– монета подбрасывается 10 раз;
– игральная кость подбрасывается 20 раз.

Совершенно ясно, что вероятность выпадения орла либо решки в любом испытании не зависит от результатов других бросков. Аналогичное утверждение, естественно, справедливо и для кубика.

А вот последовательное извлечение карт из колоды не является серией независимых испытаний – как вы помните, это цепочка зависимых событий . Однако если карту каждый раз возвращать обратно, то ситуация станет «такой, какой надо».

Спешу обрадовать – у нас в гостях очередной Терминатор, который абсолютно равнодушен к своим удачам/неудачам, и поэтому его стрельба представляет собой образец стабильности =):

Задача 1

Стрелок совершает 4 выстрела по мишени. Вероятность попадания при каждом выстреле постоянна и равна . Найти вероятность того, что:

а) стрелок попадёт только один раз;
б) стрелок попадёт 2 раза.

Решение : условие сформулировано в общем виде и вероятность попадания в мишень при каждом выстреле считается известной . Она равна (если совсем тяжко, присвойте параметру какое-нибудь конкретное значение, например, ) .

Коль скоро, мы знаем , то легко найти вероятность промаха в каждом выстреле:
, то есть, «ку» – это тоже известная нам величина .

а) Рассмотрим событие «Стрелок попадёт только один раз» и обозначим его вероятность через (индексы понимаются как «одно попадание из четырёх») . Данное событие состоит в 4 несовместных исходах: стрелок попадёт в 1-й или во 2-й или в 3-й или в 4-й попытке.

Найти вероятность того, что при броске 10 монет орёл выпадет на 3 монетах.

Здесь испытания не повторяются, а скорее, производятся одновременно, но, тем не менее, работает та же самая формула: .

Решение будет отличаться смыслом и некоторыми комментариями, в частности:
способами можно выбрать 3 монеты, на которых выпадет орёл.
– вероятность выпадения орла на каждой из 10 монет
и т.д.

Однако на практике подобные задачи встречаются не столь часто, и, видимо, по этой причине формула Бернулли чуть ли не стереотипно ассоциируется только с повторными испытаниями. Хотя, как только что было показано, повторяемость вовсе не обязательна.

Следующая задача для самостоятельного решения:

Задача 3

Игральную кость бросают 6 раз. Найти вероятность того, что 5 очков:

а) не выпадут (выпадут 0 раз) ;
б) выпадут 2 раза;
в) выпадут 5 раз.

Результаты округлить до 4 знаков после запятой.

Краткое решение и ответ в конце урока.

Очевидно, что в рассматриваемых примерах некоторые события более вероятны, а некоторые – менее вероятны. Так, например, при 6 бросках кубика даже безо всяких расчётов интуитивно понятно, что вероятности событий пунктов «а» и «бэ» значительно больше вероятности того, что «пятёрка» выпадет 5 раз. А теперь поставим задачу найти

НАИВЕРОЯТНЕЙШЕЕ число появлений события в независимых испытаниях

Опять же на уровне интуиции в Задаче №3 можно сделать вывод о том, что наивероятнейшее количество появлений «пятёрки» равно единице – ведь всего граней шесть, и при 6 бросках кубика каждая из них должна выпасть в среднем по одному разу. Желающие могут вычислить вероятность и посмотреть, будет ли она больше «конкурирующих» значений и .

Сформулируем строгий критерий : для отыскания наивероятнейшего числа появлений случайного события в независимых испытаниях (с вероятностью в каждом испытании) руководствуются следующим двойным неравенством:

, причём:

1) если значение – дробное, то существует единственное наивероятнейшее число ;
в частности, если – целое, то оно и есть наивероятнейшее число: ;

2) если же – целое, то существуют два наивероятнейших числа: и .

Наивероятнейшее число появлений «пятёрки» при 6 бросках кубика подпадает под частный случай первого пункта:

В целях закрепления материала решим пару задач:

Задача 4

Вероятность того, что при броске мяча баскетболист попадёт в корзину, равна 0,3. Найти наивероятнейшее число попаданий при 8 бросках и соответствующую вероятность.

А это уже если и не Терминатор, то, как минимум, хладнокровный спортсмен =)

Решение : для оценки наивероятнейшего числа попаданий используем двойное неравенство . В данном случае:

– всего бросков;
– вероятность попадания в корзину при каждом броске;
– вероятность промаха при каждом броске.

Таким образом, наивероятнейшее количество попаданий при 8 бросках находится в следующих пределах:

Поскольку левая граница – дробное число (пункт №1) , то существует единственное наивероятнейшее значение, и, очевидно, что оно равно .

Используя формулу Бернулли , вычислим вероятность того, что при 8 бросках будет ровно 2 попадания:

Ответ : – наивероятнейшее количество попаданий при 8 бросках,
– соответствующая вероятность.

Аналогичное задание для самостоятельного решения:

Задача 5

Монета подбрасывается 9 раз. Найти вероятность наивероятнейшего числа появлений орла

Примерный образец решения и ответ в конце урока.

После увлекательного отступления рассмотрим ещё несколько задач, а затем я поделюсь секретом правильной игры в азартные игры и лотереи.

Задача 6

Среди изделий, произведенных на станке-автомате, в среднем бывает 60% изделий первого сорта. Какова вероятность того, что среди 6 наудачу отобранных изделий будет:

а) от 2 до 4 изделий первого сорта;
б) не менее 5 изделий первого сорта;
в) хотя бы одно изделие более низкого сорта.

Вероятность производства первосортного изделия не зависит от качества других выпущенных изделий, поэтому здесь идёт речь о независимых испытаниях. Старайтесь не пренебрегать анализом условия, а то может статься – события-то зависимые или задача вообще о другом.

Решение : вероятность зашифрована под проценты, которые, напоминаю, нужно разделить на сто: – вероятность того, что выбранное изделие будет 1-го сорта.
Тогда: – вероятность того, что оно не будет первосортным.

а) Событие «Среди 6 наудачу отобранных изделий будет от 2 до 4 изделий первого сорта» состоит в трёх несовместных исходах:

среди изделий будет 2 первосортных или 3 первосортных или 4 первосортных.

С исходами удобнее разделаться по отдельности. Трижды используем формулу Бернулли :

– вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из шести.

Данное значение нас тоже не устроит, так как оно меньше требуемой надёжности работы вычислительного центра:

Таким образом, шести компьютеров тоже не достаточно. Добавляем ещё один:

3) Пусть в вычислительном центре компьютеров. Тогда безотказно должны работать 5, 6 или 7 компьютеров. Используя формулу Бернулли и теорему сложения вероятностей несовместных событий , найдём вероятность того, что в течение дня безотказно будут работать, как минимум, 5 компьютеров из семи.

Производится n опытов по схеме Бернулли с вероятностью успеха p . Пусть X - число успехов. Случайная величина X имеет область значений {0,1,2,...,n}. Вероятности этих значений можно найти по формуле: , где C m n - число сочетаний из n по m .
Ряд распределения имеет вид:

x 0 1 ... m n
p (1-p) n np(1-p) n-1 ... C m n p m (1-p) n-m p n
Этот закон распределения называется биноминальным .

Назначение сервиса . Онлайн-калькулятор используется для построения биноминальным ряда распределения и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word (пример).

Число испытаний: n = , Вероятность p =
При малой вероятности p и большом количестве n (np формула Пуассона.

Видеоинструкция

Схема испытаний Бернулли

Числовые характеристики случайной величины, распределенной по биноминальному закону

Математическое ожидание случайной величины Х, распределенной по биноминальному закону.
M[X]=np

Дисперсия случайной величины Х, распределенной по биноминальному закону.
D[X]=npq

Пример №1 . Изделие может оказаться дефектным с вероятностью р = 0.3 каждое. Из партии выбирают три изделия. Х – число дефектных деталей среди отобранных. Найти (все ответы вводить в виде десятичных дробей): а) ряд распределения Х; б) функцию распределения F(x) .
Решение . Случайная величина X имеет область значений {0,1,2,3}.
Найдем ряд распределения X.
P 3 (0) = (1-p) n = (1-0.3) 3 = 0.34
P 3 (1) = np(1-p) n-1 = 3(1-0.3) 3-1 = 0.44

P 3 (3) = p n = 0.3 3 = 0.027

x i 0 1 2 3
p i 0.34 0.44 0.19 0.027

Математическое ожидание находим по формуле M[X]= np = 3*0.3 = 0.9
Проверка: m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 0*0.34 + 1*0.44 + 2*0.19 + 3*0.027 = 0.9
Дисперсию находим по формуле D[X]=npq = 3*0.3*(1-0.3) = 0.63
Проверка: d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 0 2 *0.34 + 1 2 *0.44 + 2 2 *0.19 + 3 2 *0.027 - 0.9 2 = 0.63
Среднее квадратическое отклонение σ(x) .

Функция распределения F(X) .
F(xF(0F(1F(2F(x>3) = 1
  1. Вероятность появления события в одном испытании равна 0.6 . Производится 5 испытаний. Составить закон распределения случайной величины Х – числа появлений события.
  2. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8 .
  3. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Примечание: здесь вероятность появление герба равна p = 1/2 (т.к. у монеты две стороны).

Пример №2 . Вероятность появления события в отдельном испытании равна 0.6 . Применяя теорему Бернулли, определите число независимых испытаний, начиная с которого вероятность отклонения частоты события от его вероятности по абсолютной величине меньше 0.1 , больше 0.97 . (Ответ: 801)

Пример №3 . Студенты выполняют контрольную работу в классе информатики. Работа состоит из трех задач. Для получения хорошей оценки нужно найти правильные ответы не меньше чем на две задачи. К каждой задаче дается 5 ответов из которых только одна правильная. Студент выбирает ответ наугад. Какая вероятность того, что он получит хорошую оценку?
Решение . Вероятность правильно ответить на вопрос: p=1/5=0.2; n=3.
Эти данные необходимо ввести в калькулятор. В ответ см. для P(2)+P(3).

Пример №4 . Вероятность попадания стрелка в мишень при одном выстреле равна (m+n)/(m+n+2) . Производится n+4 выстрела. Найти вероятность того, что он промахнется не более двух раз.

Примечание . Вероятность того, что он промахнется не более двух раз включает в себя следующие события: ни разу не промахнется P(4), промахнется один раз P(3), промахнется два раза P(2).

Пример №5 . Определите распределение вероятностей числа отказавших самолётов, если влетает 4 машины. Вероятность безотказной работы самолета Р=0.99 . Число отказавших в каждом вылете самолётов распределено по биноминальному закону.

Не будем долго размышлять о высоком — начнем сразу с определения.

Схема Бернулли — это когда производится n однотипных независимых опытов, в каждом из которых может появиться интересующее нас событие A , причем известна вероятность этого события P (A ) = p. Требуется определить вероятность того, что при проведении n испытаний событие A появится ровно k раз.

Задачи, которые решаются по схеме Бернулли, чрезвычайно разнообразны: от простеньких (типа «найдите вероятность, что стрелок попадет 1 раз из 10») до весьма суровых (например, задачи на проценты или игральные карты). В реальности эта схема часто применяется для решения задач, связанных с контролем качества продукции и надежности различных механизмов, все характеристики которых должны быть известны до начала работы.

Вернемся к определению. Поскольку речь идет о независимых испытаниях, и в каждом опыте вероятность события A одинакова, возможны лишь два исхода:

  1. A — появление события A с вероятностью p;
  2. «не А» — событие А не появилось, что происходит с вероятностью q = 1 − p.

Важнейшее условие, без которого схема Бернулли теряет смысл — это постоянство. Сколько бы опытов мы ни проводили, нас интересует одно и то же событие A , которое возникает с одной и той же вероятностью p.

Между прочим, далеко не все задачи в теории вероятностей сводятся к постоянным условиям. Об этом вам расскажет любой грамотный репетитор по высшей математике. Даже такое нехитрое дело, как вынимание разноцветных шаров из ящика, не является опытом с постоянными условиями. Вынули очередной шар — соотношение цветов в ящике изменилось. Следовательно, изменились и вероятности.

Если же условия постоянны, можно точно определить вероятность того, что событие A произойдет ровно k раз из n возможных. Сформулируем этот факт в виде теоремы:

Теорема Бернулли. Пусть вероятность появления события A в каждом опыте постоянна и равна р. Тогда вероятность того, что в n независимых испытаниях событие A появится ровно k раз, рассчитывается по формуле:

где C n k — число сочетаний, q = 1 − p.

Эта формула так и называется: формула Бернулли. Интересно заметить, что задачи, приведенные ниже, вполне решаются без использования этой формулы. Например, можно применить формулы сложения вероятностей. Однако объем вычислений будет просто нереальным.

Задача. Вероятность выпуска бракованного изделия на станке равна 0,2. Определить вероятность того, что в партии из десяти выпущенных на данном станке деталей ровно k будут без брака. Решить задачу для k = 0, 1, 10.

По условию, нас интересует событие A выпуска изделий без брака, которое случается каждый раз с вероятностью p = 1 − 0,2 = 0,8. Нужно определить вероятность того, что это событие произойдет k раз. Событию A противопоставляется событие «не A », т.е. выпуск бракованного изделия.

Таким образом, имеем: n = 10; p = 0,8; q = 0,2.

Итак, находим вероятность того, что в партии все детали бракованные (k = 0), что только одна деталь без брака (k = 1), и что бракованных деталей нет вообще (k = 10):

Задача. Монету бросают 6 раз. Выпадение герба и решки равновероятно. Найти вероятность того, что:

  1. герб выпадет три раза;
  2. герб выпадет один раз;
  3. герб выпадет не менее двух раз.

Итак, нас интересует событие A , когда выпадает герб. Вероятность этого события равна p = 0,5. Событию A противопоставляется событие «не A », когда выпадает решка, что случается с вероятностью q = 1 − 0,5 = 0,5. Нужно определить вероятность того, что герб выпадет k раз.

Таким образом, имеем: n = 6; p = 0,5; q = 0,5.

Определим вероятность того, что герб выпал три раза, т.е. k = 3:

Теперь определим вероятность того, что герб выпал только один раз, т.е. k = 1:

Осталось определить, с какой вероятностью герб выпадет не менее двух раз. Основная загвоздка — во фразе «не менее». Получается, что нас устроит любое k , кроме 0 и 1, т.е. надо найти значение суммы X = P 6 (2) + P 6 (3) + ... + P 6 (6).

Заметим, что эта сумма также равна (1 − P 6 (0) − P 6 (1)), т.е. достаточно из всех возможных вариантов «вырезать» те, когда герб выпал 1 раз (k = 1) или не выпал вообще (k = 0). Поскольку P 6 (1) нам уже известно, осталось найти P 6 (0):

Задача. Вероятность того, что телевизор имеет скрытые дефекты, равна 0,2. На склад поступило 20 телевизоров. Какое событие вероятнее: что в этой партии имеется два телевизора со скрытыми дефектами или три?

Интересующее событие A — наличие скрытого дефекта. Всего телевизоров n = 20, вероятность скрытого дефекта p = 0,2. Соответственно, вероятность получить телевизор без скрытого дефекта равна q = 1 − 0,2 = 0,8.

Получаем стартовые условия для схемы Бернулли: n = 20; p = 0,2; q = 0,8.

Найдем вероятность получить два «дефектных» телевизора (k = 2) и три (k = 3):

\[\begin{array}{l}{P_{20}}\left(2 \right) = C_{20}^2{p^2}{q^{18}} = \frac{{20!}}{{2!18!}} \cdot {0,2^2} \cdot {0,8^{18}} \approx 0,137\\{P_{20}}\left(3 \right) = C_{20}^3{p^3}{q^{17}} = \frac{{20!}}{{3!17!}} \cdot {0,2^3} \cdot {0,8^{17}} \approx 0,41\end{array}\]

Очевидно, P 20 (3) > P 20 (2), т.е. вероятность получить три телевизора со скрытыми дефектами больше вероятности получить только два таких телевизора. Причем, разница неслабая.

Небольшое замечание по поводу факториалов. Многие испытывают смутное ощущение дискомфорта, когда видят запись «0!» (читается «ноль факториал»). Так вот, 0! = 1 по определению.

P . S . А самая большая вероятность в последней задаче — это получить четыре телевизора со скрытыми дефектами. Подсчитайте сами — и убедитесь.

Практические задачи, связанные с оценкой вероятности наступления события в результате нескольких равноценных попыток могут анализироваться с применением формулы Бернулли или (при большом количестве таких попыток) с применением приближенной формулы Пуассона. Для работы с этим материалом Вам снова потребуется знание ..

Схема Бернулли состоит в следующем: производится последовательность испытаний, в каждом из которых вероятность наступления определенного события А одна и та же и равна р. Испытания предполагаются независимыми (т.е. считается, что вероятность появления события А в каждом из испытаний не зависит от того, появилось или не появилось это событие в других испытаниях). Наступление события А обычно называют успехом, а ненаступление - неудачей. Обозначим вероятность неудачи q=1-P(A)=(1-p). Вероятность того, что в n независимых испытаниях успех наступит ровно m раз, выражается формулой Бернулли :

Вероятность Р n (m) при данном n сначала увеличивается при увеличении m от 0 до некоторого значения m 0 , а затем уменьшается при изменении m от m 0 до n.

Поэтому m 0 , называют наивероятнейшим числом наступлений успеха в опытах. Это число m 0 , заключено между числами np-q и np+p (или, что то же самое, между числами n(p+1)-1 и n(p+1) ) .Если число np-q - целое число, то наивероятнейших чисел два: np-q и np+p.

Важное замечание. Если np-q< 0, то наивероятнейшее число выигрышей равно нулю.

Пример. Игральная кость бросается 4 раза. При каждом броске нас интересует событие А ={выпала шестерка}.

Решение: Здесь четыре испытания, и т.к. кубик симметричен, то

p=P(A)=1/6, q=1-p=5/6.

Вероятность того, что в 4 независимых испытаниях успех наступит ровно m раз (m < 4), выражается формулой Бернулли:


Посчитаем эти значения и запишем их в таблицу.

Самое вероятное число успехов в нашем случае m 0 =0.

Пример. Вероятность появления успеха равна 3/5. Найти наивероятнейшее число наступлений успеха, если число испытаний равно 19, 20.

Решение: при n =19 находим


Таким образом, максимальная вероятность достигается для двух значений m 0 , равных 11 и 12. Эта вероятность равна P 19 (11)=P 19 (12)=0,1797. При n=20 максимальная вероятность достигается только для одного значения m 0 , т.к.

Не является целым числом. Наивероятнейшее число наступлений успеха m 0 равно 12. Вероятность его появления равна P 20 (12)=0,1797. Совпадение чисел P 20 (12) и P 19 (12) вызвано лишь сочетанием значений n и p и не имеет общего характера.

На практике в случае, когда n велико, а p мало (обычно p < 0,1; npq < 10) вместо формулы Бернулли применяют приближенную формулу Пуассона


Пример 4. Радиоаппаратура состоит из 1000 элементов. Вероятность отказа одного элемента в течение года равна 0,002. Какова вероятность отказа двух элементов за год? Какова вероятность отказа не менее двух элементов за год?

Решение: будем рассматривать работу каждого элемента как отдельное испытание. Обозначим А ={отказ элемента за год}.

P(A)=p=0,002, l=np=1000*0,002=2


П о формуле Пуассона


Обозначим через P 1000 (> 2) вероятность отказа не менее двух элементов за год.
Переходя к противоположному событию, вычислим P 1000 (> 2) как.