Часто приходится изображать на координатной плоскости мно-жество решений неравенства с двумя переменными. Решением неравенства с двумя переменными называют пару значений этих переменных, которая обращает данное неравенство в верное числовое неравенство.

+ Зх < 6.

Сначала построим прямую. Для этого запишем неравенство в виде уравнения + Зх = 6 и выразим y. Таким образом, получим: y=(6-3 x)/2.

Эта прямая раз-бивает множество всех точек координатной плоскости на точки, расположенные выше ее, и точки, расположенные ниже ее.

Возь-мем из каждой области по контрольной точке , например А (1;1) и В (1; 3)

Координаты точки А удовлетворяют данному неравенству 2у + Зх < 6, т. е. 2 . 1 + 3 . 1 < 6.

Координаты точки В не удовлетворяют данному неравенству 2∙3 + 3∙1 < 6.

Так как данное неравенство может изменить знак на прямой 2у + Зх = 6, то неравенству удовлетворяет множество точек той об-ласти, где расположена точка А. Заштрихуем эту область.

Таким образом, мы изобразили множество решений неравенства 2у + Зх < 6.

Пример

Изобразим множество решений неравенства х 2 + 2х + у 2 - 4у + 1 > 0 на координатной плоскости.

Построим сначала график уравнения х 2 + 2х + у 2 - 4у + 1 = 0. Вы-делим в этом уравнении уравнение окружности: (х 2 + 2х + 1) + (у 2 - 4у + 4) = 4, или (х + 1) 2 + (у - 2) 2 = 2 2 .

Это уравнение окружности с центром в точке 0 (-1; 2) и радиусом R = 2. Построим эту окружность.

Так как данное неравенство строгое и точки, лежащие на самой окружности, неравенству не удовлетворяют, то строим окружность пунктирной линией.

Легко проверить, что координаты центра О окружности данному неравенству не удовлетворяют. Выражение х 2 + 2х + у 2 - 4у + 1 ме-няет свой знак на построенной окружности. Тогда неравенству удовлетворяют точки, расположенные вне окружности. Эти точки заштрихованы.

Пример

Изобразим на координатной плоскости множество решений нера-венства

(у - х 2)(у - х - 3) < 0.

Сначала построим график уравнения (у - х 2)(у - х - 3) = 0. Им яв-ляется парабола у = х 2 и прямая у = х + 3. Построим эти линии и отметим, что изменение знака выражения (у - х 2)(у - х - 3) проис-ходит только на этих линиях. Для точки А (0; 5) определим знак это-го выражения: (5- 3) > 0 (т. е. данное неравенство не выполняется). Теперь легко отметить множество точек, для кото-рых данное неравенство выполнено (эти области заштрихованы).

Алгоритм решения неравенств с двумя переменными

1. Приведем неравенство к виду f (х; у) < 0 (f (х; у) > 0; f (х; у) ≤ 0; f (х; у) ≥ 0;)

2. Записываем равенство f (х; у) = 0

3. Распознаем графики, записанные в левой части.

4. Строим эти графики. Если неравенство строгое (f (х; у) < 0 или f (х; у) > 0), то - штрихами, если неравенство нестрогое (f (х; у) ≤ 0 или f (х; у) ≥ 0), то - сплошной линией.

5. Определяем, на сколько частей графики разбили координатную плоскость

6. Выбираем в одной из этих частей контрольную точку. Определяем знак выражения f (х; у)

7. Расставляем знаки в других частях плоскости с учетом чередования (как по методу интервалов)

8. Выбираем нужные нам части в соответствии со знаком неравенства, которое мы решаем, и наносим штриховку

График линейного или квадратного неравенства строится так же, как строится график любой функции (уравнения). Разница заключается в том, что неравенство подразумевает наличие множества решений, поэтому график неравенства представляет собой не просто точку на числовой прямой или линию на координатной плоскости. С помощью математических операций и знака неравенства можно определить множество решений неравенства.

Шаги

Графическое изображение линейного неравенства на числовой прямой

  1. Решите неравенство. Для этого изолируйте переменную при помощи тех же алгебраических приемов, которыми пользуетесь при решении любого уравнения. Помните, что при умножении или делении неравенства на отрицательное число (или член), поменяйте знак неравенства на противоположный.

    • Например, дано неравенство 3 y + 9 > 12 {\displaystyle 3y+9>12} . Чтобы изолировать переменную, из обеих сторон неравенства вычтите 9, а затем обе стороны разделите на 3:
      3 y + 9 > 12 {\displaystyle 3y+9>12}
      3 y + 9 − 9 > 12 − 9 {\displaystyle 3y+9-9>12-9}
      3 y > 3 {\displaystyle 3y>3}
      3 y 3 > 3 3 {\displaystyle {\frac {3y}{3}}>{\frac {3}{3}}}
      y > 1 {\displaystyle y>1}
    • Неравенство должно иметь только одну переменную. Если неравенство имеет две переменные, график лучше строить на координатной плоскости.
  2. Нарисуйте числовую прямую. На числовой прямой отметьте найденное значение (переменная может быть меньше, больше или равна этому значению). Числовую прямую рисуйте соответствующей длины (длинную или короткую).

    • Например, если вы вычислили, что y > 1 {\displaystyle y>1} , на числовой прямой отметьте значение 1.
  3. Нарисуйте кружок, обозначающий найденное значение. Если переменная меньше ( < {\displaystyle <} ) или больше ( > {\displaystyle >} ) этого значения, кружок не закрашивается, потому что множество решений не включает это значение. Если переменная меньше или равна ( ≤ {\displaystyle \leq } ) или больше или равна ( ≥ {\displaystyle \geq } ) этому значению, кружок закрашивается, потому что множество решений включает это значение.

    • y > 1 {\displaystyle y>1} , на числовой прямой нарисуйте незакрашенный кружок в точке 1, потому что 1 не входит в множество решений.
  4. На числовой прямой заштрихуйте область, определяющую множество решений. Если переменная больше найденного значения, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если переменная меньше найденного значения, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного.

    • Например, если дано неравенство y > 1 {\displaystyle y>1} , на числовой прямой заштрихуйте область справа от 1, потому что множество решений включает все значения больше 1.

    Графическое изображение линейного неравенства на координатной плоскости

    1. Решите неравенство (найдите значение y {\displaystyle y} ). Чтобы получить линейное уравнение, изолируйте переменную на левой стороне при помощи известных алгебраических методов. В правой части должна остаться переменная x {\displaystyle x} и, возможно, некоторая постоянная.

      • Например, дано неравенство 3 y + 9 > 9 x {\displaystyle 3y+9>9x} . Чтобы изолировать переменную y {\displaystyle y} , из обеих сторон неравенства вычтите 9, а затем обе стороны разделите на 3:
        3 y + 9 > 9 x {\displaystyle 3y+9>9x}
        3 y + 9 − 9 > 9 x − 9 {\displaystyle 3y+9-9>9x-9}
        3 y > 9 x − 9 {\displaystyle 3y>9x-9}
        3 y 3 > 9 x − 9 3 {\displaystyle {\frac {3y}{3}}>{\frac {9x-9}{3}}}
        y > 3 x − 3 {\displaystyle y>3x-3}
    2. На координатной плоскости постройте график линейного уравнения. постройте график , как строите график любого линейного уравнения. Нанесите точку пересечения с осью Y, а затем при помощи углового коэффициента нанесите другие точки.

      • y > 3 x − 3 {\displaystyle y>3x-3} постройте график уравнения y = 3 x − 3 {\displaystyle y=3x-3} . Точка пересечения с осью Y имеет координаты , а угловой коэффициент равен 3 (или 3 1 {\displaystyle {\frac {3}{1}}} ). Таким образом, сначала нанесите точку с координатами (0 , − 3) {\displaystyle (0,-3)} ; точка над точкой пересечения с осью Y имеет координаты (1 , 0) {\displaystyle (1,0)} ; точка под точкой пересечения с осью Y имеет координаты (− 1 , − 6) {\displaystyle (-1,-6)}
    3. Проведите прямую. Если неравенство строгое (включает знак < {\displaystyle <} или > {\displaystyle >} ), проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой. Если неравенство нестрогое (включает знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } ), проведите сплошную прямую, потому что множество решений включает значения, лежащие на прямой.

      • Например, в случае неравенства y > 3 x − 3 {\displaystyle y>3x-3} проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой.
    4. Заштрихуйте соответствующую область. Если неравенство имеет вид y > m x + b {\displaystyle y>mx+b} , заштрихуйте область над прямой. Если неравенство имеет вид y < m x + b {\displaystyle y, заштрихуйте область под прямой.

      • Например, в случае неравенства y > 3 x − 3 {\displaystyle y>3x-3} заштрихуйте область над прямой.

    Графическое изображение квадратного неравенства на координатной плоскости

    1. Определите, что данное неравенство является квадратным. Квадратное неравенство имеет вид a x 2 + b x + c {\displaystyle ax^{2}+bx+c} . Иногда неравенство не содержит переменную первого порядка ( x {\displaystyle x} ) и/или свободный член (постоянную), но обязательно включает переменную второго порядка ( x 2 {\displaystyle x^{2}} ). Переменные x {\displaystyle x} и y {\displaystyle y} должны быть изолированы на разных сторонах неравенства.

      • Например, нужно построить график неравенства y < x 2 − 10 x + 16 {\displaystyle y.
    2. На координатной плоскости постройте график. Для этого преобразуйте неравенство в уравнение и постройте график , как строите график любого квадратного уравнения. Помните, что график квадратного уравнения является параболой.

      • Например, в случае неравенства y < x 2 − 10 x + 16 {\displaystyle y постройте график квадратного уравнения y = x 2 − 10 x + 16 {\displaystyle y=x^{2}-10x+16} . Вершина параболы находится в точке (5 , − 9) {\displaystyle (5,-9)} , и парабола пересекает ось Х в точках (2 , 0) {\displaystyle (2,0)} и (8 , 0) {\displaystyle (8,0)} .

Решение неравенства с двумя переменными , а тем более системы неравенств с двумя переменными , представляется достаточно сложной задачей. Однако есть простой алгоритм, который помогает легко и без особых усилий решать на первый взгляд очень сложные задачи такого рода. Попробуем в нем разобраться.

Пусть мы имеем неравенство с двумя переменными одного из следующих видов:

y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).

Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:

1. Строим график функции y = f(x), который разбивает плоскость на две области.

2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.

3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией.
А теперь рассмотрим несколько задач на эту тему.

Задача 1.

Какое множество точек задается неравенством x · y ≤ 4?

Решение.

1) Строим график уравнения x · y = 4. Для этого сначала преобразуем его. Очевидно, что x в данном случае не обращается в 0, так как иначе мы бы имели 0 · y = 4, что неверно. Значит, можем разделить наше уравнение на x. Получим: y = 4/x. Графиком данной функции является гипербола. Она разбивает всю плоскость на две области: ту, что между двумя ветвями гиперболы и ту, что снаружи их.

2) Выберем из первой области произвольную точку, пусть это будет точка (4; 2).
Проверяем неравенство: 4 · 2 ≤ 4 – неверно.

Значит, точки данной области не удовлетворяют исходному неравенству. Тогда можем сделать вывод о том, что множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.

3) Так как неравенство нестрогое, то граничные точки, то есть точки графика функции y = 4/x, рисуем сплошной линией.

Закрасим множество точек, которое задает исходное неравенство, желтым цветом (рис. 1).

Задача 2.

Изобразить область, заданную на координатной плоскости системой
{ y > x 2 + 2;
{y + x > 1;
{ x 2 + y 2 ≤ 9.

Решение.

Строим для начала графики следующих функций (рис. 2) :

y = x 2 + 2 – парабола,

y + x = 1 – прямая

x 2 + y 2 = 9 – окружность.

1) y > x 2 + 2.

Берем точку (0; 5), которая лежит выше графика функции.
Проверяем неравенство: 5 > 0 2 + 2 – верно.

Следовательно, все точки, лежащие выше данной параболы y = x 2 + 2, удовлетворяют первому неравенству системы. Закрасим их желтым цветом.

2) y + x > 1.

Берем точку (0; 3), которая лежит выше графика функции.
Проверяем неравенство: 3 + 0 > 1 – верно.

Следовательно, все точки, лежащие выше прямой y + x = 1, удовлетворяют второму неравенству системы. Закрасим их зеленой штриховкой.

3) x 2 + y 2 ≤ 9.

Берем точку (0; -4), которая лежит вне окружности x 2 + y 2 = 9.
Проверяем неравенство: 0 2 + (-4) 2 ≤ 9 – неверно.

Следовательно, все точки, лежащие вне окружности x 2 + y 2 = 9, не удовлетворяют третьему неравенству системы. Тогда можем сделать вывод о том, что все точки, лежащие внутри окружности x 2 + y 2 = 9, удовлетворяют третьему неравенству системы. Закрасим их фиолетовой штриховкой.

Не забываем о том, что если неравенство строгое, то соответствующую граничную линию следует рисовать пунктиром. Получаем следующую картинку (рис. 3) .

(рис. 4) .

Задача 3.

Изобразить область, заданную на координатной плоскости системой:
{x 2 + y 2 ≤ 16;
{x ≥ -y;
{x 2 + y 2 ≥ 4.

Решение.

Строим для начала графики следующих функций:

x 2 + y 2 = 16 – окружность,

x = -y – прямая

x 2 + y 2 = 4 – окружность (рис. 5) .

Теперь разбираемся с каждым неравенством в отдельности.

1) x 2 + y 2 ≤ 16.

Берем точку (0; 0), которая лежит внутри окружности x 2 + y 2 = 16.
Проверяем неравенство: 0 2 + (0) 2 ≤ 16 – верно.

Следовательно, все точки, лежащие внутри окружности x 2 + y 2 = 16, удовлетворяют первому неравенству системы.
Закрасим их красной штриховкой.

Берем точку (1; 1), которая лежит выше графика функции.
Проверяем неравенство: 1 ≥ -1 – верно.

Следовательно, все точки, лежащие выше прямой x = -y, удовлетворяют второму неравенству системы. Закрасим их синей штриховкой.

3) x 2 + y 2 ≥ 4.

Берем точку (0; 5), которая лежит вне окружности x 2 + y 2 = 4.
Проверяем неравенство: 0 2 + 5 2 ≥ 4 – верно.

Следовательно, все точки, лежащие вне окружности x 2 + y 2 = 4, удовлетворяют третьему неравенству системы. Закрасим их голубым цветом.

В данной задаче все неравенства нестрогие, значит, все границы рисуем сплошной линией. Получаем следующую картинку (рис. 6) .

Искомая область – это область, где все три раскрашенных области пересекаются друг с другом (рис 7) .

Остались вопросы? Не знаете, как решить систему неравенств с двумя переменными?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пусть задано уравнение с двумя переменными F(x; y) . Вы уже познакомились со способами решения таких уравнений аналитически. Множество решений таких уравнений можно представить и в виде графика.

Графиком уравнения F(x; y) называют множество точек координатной плоскости xOy, координаты которых удовлетворяют уравнению.

Для построения графика уравнения с двумя переменными сначала выражают в уравнении переменную y через переменную x.

Наверняка вы уже умеете строить разнообразные графики уравнений с двумя переменными: ax + b = c – прямая, yx = k – гипербола, (x – a) 2 + (y – b) 2 = R 2 – окружность, радиус которой равен R, а центр находится в точке O(a; b).

Пример 1.

Построить график уравнения x 2 – 9y 2 = 0.

Решение.

Разложим на множители левую часть уравнения.

(x – 3y)(x+ 3y) = 0, то есть y = x/3 или y = -x/3.

Ответ: рисунок 1.

Особое место занимает задание фигур на плоскости уравнениями, содержащими знак абсолютной величины, на которых мы подробно остановимся. Рассмотрим этапы построения графиков уравнений вида |y| = f(x) и |y| = |f(x)|.

Первое уравнение равносильно системе

{f(x) ≥ 0,
{y = f(x) или y = -f(x).

То есть его график состоит из графиков двух функций: y = f(x) и y = -f(x), где f(x) ≥ 0.

Для построения графика второго уравнения строят графики двух функций: y = f(x) и y = -f(x).

Пример 2.

Построить график уравнения |y| = 2 + x.

Решение.

Заданное уравнение равносильно системе

{x + 2 ≥ 0,
{y = x + 2 или y = -x – 2.

Строим множество точек.

Ответ: рисунок 2.

Пример 3.

Построить график уравнения |y – x| = 1.

Решение.

Если y ≥ x, то y = x + 1, если y ≤ x, то y = x – 1.

Ответ: рисунок 3.

При построении графиков уравнений, содержащих переменную под знаком модуля, удобно и рационально использовать метод областей , основанный на разбиении координатной плоскости на части, в которых каждое подмодульное выражение сохраняет свой знак.

Пример 4.

Построить график уравнения x + |x| + y + |y| = 2.

Решение.

В данном примере знак каждого подмодульного выражения зависит от координатной четверти.

1) В первой координатной четверти x ≥ 0 и y ≥ 0. После раскрытия модуля заданное уравнение будет иметь вид:

2x + 2y = 2, а после упрощения x + y = 1.

2) Во второй четверти, где x < 0, а y ≥ 0, уравнение будет иметь вид: 0 + 2y = 2 или y = 1.

3) В третьей четверти x < 0, y < 0 будем иметь: x – x + y – y = 2. Перепишем этот результат в виде уравнения 0 · x + 0 · y = 2.

4) В четвертой четверти, при x ≥ 0, а y < 0 получим, что x = 1.

График данного уравнения будем строить по четвертям.

Ответ: рисунок 4.

Пример 5.

Изобразить множество точек, у которых координаты удовлетворяют равенству |x – 1| + |y – 1| = 1.

Решение.

Нули подмодульных выражений x = 1 и y = 1 разбивают координатную плоскость на четыре области. Раскроем модули по областям. Оформим это в виде таблицы.

Область
Знак подмодульного выражения
Полученное уравнение после раскрытия модуля
I x ≥ 1 и y ≥ 1 x + y = 3
II x < 1 и y ≥ 1 -x + y = 1
III x < 1 и y < 1 x + y = 1
IV x ≥ 1 и y < 1 x – y = 1

Ответ: рисунок 5.

На координатной плоскости фигуры могут задаваться и неравенствами .

Графиком неравенства с двумя переменными называется множество всех точек координатной плоскости, координаты которых являются решениями этого неравенства.

Рассмотрим алгоритм построения модели решений неравенства с двумя переменными :

  1. Записать уравнение, соответствующее неравенству.
  2. Построить график уравнения из пункта 1.
  3. Выбрать произвольную точку в одной из полуплоскостей. Проверить, удовлетворяют ли координаты выбранной точки данному неравенству.
  4. Изобразить графически множество всех решений неравенства.

Рассмотрим, прежде всего, неравенство ax + bx + c > 0. Уравнение ax + bx + c = 0 задает прямую, разбивающую плоскость на две полуплоскости. В каждой из них функция f(x) = ax + bx + c сохраняет знак. Для определения этого знака достаточно взять любую точку, принадлежащую полуплоскости, и вычислить значение функции в этой точке. Если знак функции совпадает со знаком неравенства, то эта полуплоскость и будет решением неравенства.

Рассмотрим примеры графического решения наиболее часто встречающихся неравенств с двумя переменными.

1) ax + bx + c ≥ 0. Рисунок 6 .

2) |x| ≤ a, a > 0. Рисунок 7 .

3) x 2 + y 2 ≤ a, a > 0. Рисунок 8 .

4) y ≥ x 2 . Рисунок 9.

5) xy ≤ 1. Рисунок 10.

Если у вас появились вопросы или вы хотите попрактиковаться изображать на плоскости модели множества всех решений неравенств с двумя переменными с помощью математического моделирования, вы можете провести бесплатное 25-минутное занятие с онлайн репетитором после того, как зарегистрируетесь . Для дальнейшей работы с преподавателем у вас будет возможность выбрать подходящий для вас тарифный план.

Остались вопросы? Не знаете, как изобразить фигуру на координатной плоскости?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.