Екатеринбург 2016

Понятие об Спиртах

Многоатомные спирты

Этиленгликоль

Глицерин

Химические свойства

Применение спиртов в промышленности

Список литературы

Введение

СПИРТЫ (алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами)

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН3ОН, этанол С2Н5ОН, пропанол С3Н7ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO–СH2–CH2–OH, глицерин HO–СH2–СН(ОН)–CH2–OH, пентаэритрит С(СН2ОН)4.

Многоатомные спирты

Многоатомными являются спирты, содержащие две и более гидроксильные группы в составе молекулы органического вещества. Все двухатомные спирты называются гликолями.

Этиленгликоль

Этиленгликоль (тривиальное название) или этандиол (систематическое название). Химическая формула HO−CH2CH2−OHHO−CH2CH2−OH.

Двухатомный спирт, простейший представитель многоатомных спиртов. В очищенном виде представляет собой прозрачную бесцветную жидкость слегка маслянистой консистенции. Не имеет запаха и обладает сладковатым вкусом. Этиленгликоль токсичен. По степени воздействия на организм относится к веществам 3-го класса опасности. Попадание этиленгликоля или его растворов в организм человека может привести к необратимым изменениям в организме и к летальному исходу. Этиленгликоль - горючее вещество. Температура вспышки паров 120 градусов C.

Этиленгликоль находит широкое применение в технике в качестве охлаждающего реагента систем охлаждения двигателей и компьютеров, антифризов и тормозных жидкостей. Используется в органическом синтезе.

ПОЛУЧЕНИЕ ЭТИЛЕНГЛИКОЛЯ

В промышленности этиленгликоль получают путём:

· (I) гидратацией 1,2-дихлорэтана;

· (II) гидратацией хлоргидринов;

· (III) гидратации окиси этилена при повышенном давлении и температуре в присутствии 0,1-0,5 % серной или ортофосфорной кислоты, достигая 90 % выхода;

· (IV) окислением этилена перманганатом калия:

ХИМИЧЕСКИЕ СВОЙСТВА ЭТИЛЕНГЛИКОЛЯ

Этиленгликоль обладает всеми свойствами гликолей.

1. Взаимодействие с щелочными металлами : образует соли гликоляты

В отличие от одноатомных спиртов, многоатомные взаимодействуют также и соснованиями. Качественным реактивом на многоатомные спирты является щелочной раствор гидроксида меди(II), при взаимодействии с которым многоатомные спирты образуют комплексное соединение с медью ярко-синего цвета.

2. Взаимодействие с органическими кислотами: образует -одно- и двухзамещенные сложные эфиры (аналогично глицерину)

3. Взаимодействие с галогеноводородами HHal: образует этиленгалогенгидрины

HOCH2CH2OH+HHal⟶HOCH2CH2Hаl+H2O

4. Дегидратация при нагревании в присутствии концентрированной серной кислоты: образуется ацетальдегид 5. Окисление в зависимости от условий и окислителя: могут образовываться

· гликолевый альдегид,

· гликолевая кислота,

· глиоксаль,

· глиоксалевая и щавелевая кислоты;

Окисление молекулярным кислородом приводит к образованию формальдегида HCOH и муравьиной кислоты HCOOH.

Глицерин

Глицерин (тривиальное название) или пропантриол-1,2,3 (название по систематической номенклатуре).

Свойства фермионов (массы указаны в условных единицах относительно массы электрона), фактически в физике массы элементарных частиц при расчетах принято указывать в эквивалентной энергии, (Мэв). см. *)

Кварки

Аромат

Масса

Заряд

338561

Классификация элементарных частиц начала интенсивно развиваться с середины 1950-х годов. Параллельно предпринимались попытки "построить" все известные элементарные частицы из небольшого числа составных частей.

К числу таких попыток можно отнести нелокальную теорию поля Юкавы, единую теорию Гейзенберга и другие. Этим приятным фантазиям не суждено было стать настоящими физическими теориями. Главная причина их неудачи в том, что в них ещё недостаточно учитывались феноменальные свойствах элементарных частиц.

Первый реальный успех в деле классификации элементарных частиц выпал на долю Гелл-Манна и Цвейга, показавших, что все известные к 1964 г. барионы и мезоны (см. дальше) можно составить из трех фундаментальных объектов, названных Гелл-Манном кварками.

После 1964 г. были открыты новые барионы и мезоны , для классификации которых оказалось недостаточно трех кварков, введенных Гелл-Манном и Цвейгом. В настоящее время к трем первоначальным кваркам добавлены ещё три: общее число кварков возросло до шести. Кроме того, принято, что каждый кварк существует в трех "лицах"; если каждое из этих лиц считать за особую частицу, то полное число кварков равно 18. Забегая вперёд, поясним, что барионы образуются как соответствующим образом подобранные комбинации трёх кварков; разным тройкам кварков отвечают разные барионы. Мезоны строятся из двоек (пар) кварков.

Следует иметь ввиду, что согласно законам квантовой механики, элементарные частицы обладают волновыми свойствами и необычность их поведения определяется именно этим. Хотя стандартная модель способна достаточно точно описать все характеристики элементарных частиц, нам их поведение трудно представить только на основании повседневного опыта. Само слово «квантовый» означает «разбитый на части», т.е. дискретный. Поэтому, описывая элементарные частицы мы будем по мере описания перечислять и пояснять некоторые другие специфические характеристики элементарных частиц, которые описывают квантовые состояния частицы.

Основные понятия теории кварков выдвинули американские учёные. Чтобы различить шесть кварков (каждый из которых существует в трех лицах или видах), американские физики наделили кварки свойством, которое они назвали «аромат» . Разумеется, никакого различимого носом запаха кварки не испускают, но считается, что каждый из шести (тройных) кварков «пахнет» по-своему, имеет, так сказать, особый, собственный аромат. В частности, все три лица каждого кварка «пахнут» одинаково, то есть имеют общий для всей троицы единый аромат.

Что такое Аромат (flavor)?

Название для этой характеристики придумали Мюррей Гелл-Манн (Murray Gell-Mann) и Харальд Фрич (Harald Fritzsch), проходя мимо популярного кафе компании Baskin-Robbins с привлекательной рекламой множества сортов мороженого: «Count the Flavors. Where flavor counts» (в переводе, "Оцените ароматы. Аромат имеет значение") в 1968 г. Они пытались придумать новые названия для характеристик квантовых состояний.

В своё время, придумывая названия ароматов, американцы позабавились: они дали такие названия, чтобы не было неприятно нюхать, если бы кварки и в самом деле пахли. Названия даны веселые, смешные, похожие на названия духов в парфюмерной лавке: «очарование», «странность». Обычны названия только первых двух ароматов: «вверх» и «вниз». Однако, постепенно высокохудожественные названия (верхний, нижний, очарованный, странный, а особенно истинный и красивый) вышли из употребления учёных, и они предпочитают называть их просто по первой английской букве. Причём, вместо слов «истинный» (true ) и «красивый» (beauty ), предпочитают использовать слова «самый высокий» (top ) и «самый низкий» (bottom ). Проще уяснить, что т.н. аромат есть ни что иное, как тип кварка (u,d,s,c,b,t ).

К ароматам также относятся другие квантовые характеристики элементарных частиц (сейчас эти характеристики принято называть квантовыми числами): лептонное число (lepton number), барионное число (baryon number), электрический заряд (!), изоспин (или изотопический спин) (isospin), гиперзаряд (hypercharge), слабый гиперзаряд (weak hypercha-rge), слабый изоспин (weak isospin), странность (strangeness), очарование (charm), низменность (topness), высотность (bottomness). Они используются для учёта ряда свойств элементарных частиц.

Чтобы различить три вида (лица), в которые воплощается каждый из шести кварков, пользуются термином «цвет» . Конечно, кварки не имеют никакого видимого цвета. Такое название - просто метка, позволяющая различать «трех близнецов». Ну, а если говорить более строго научно, то цвет или цветовой заряд - это более сложный аналог спина, который характеризует взаимодействие кварков и глюонов . Название этой характеристики было выбрано по аналогии с оптикой, где красный, зеленый и синий цвета при смешении дают белый цвет. Дело в том, что в рамках сильного взаимодействия возможно притяжение либо двух частиц с противоположным цветом (цвет и антицвет), либо трех частиц с определенной комбинацией цветов, которая в сумме даёт «белый» цвет (разумеется, квантовый, а не оптический). Кварк имеет один из 3 цветов, а глюон - один из 8 цветов или антицветов. Откуда? Забегая вперед, сразу поясним.

Глюоны являются переносчиками сильного взаимодействия, именно они и "связывают" кварки между собой. Глюоны имеют не один, а два цветовых индекса (цвет и антицвет). Всего имеется 8 цветных глюонов , поскольку комбинация жж+сс+кк не имеет цветового заряда (т.е. является "белой") и, следовательно, не переносит сильное взаимодействие. В свободном состоянии глюоны не существуют. Они, как и кварки, "заперты" внутри бесцветных адронов . Все остальные элементарные частицы не имеют цвета.

Спин - одна из самых загадочных характеристик, которая демонстрирует, что существует пространство состояний, никак не связанных с перемещением частицы в обычном пространстве. Спин (от англ. to spin - "крутиться") электрона часто сравнивают с угловым моментом «быстро вращающегося волчка». Это неверно, поскольку спин не связан с движением в пространстве в нашем понимании и является внутренней квантовой характеристикой частицы, которая не имеет аналога в классической механике. Спин измеряется целыми и полуцелыми числами, умноженными на постоянную Планка (h/2π ) (хотя для краткости часто это умножение не упоминается). Такой фундаментальный вывод вытекает из релятивистской квантовой теории поля, которая предсказывает, а опыт подтверждает, что S =0; 1/2; 1; 3/2; 2; ...
Частица, обладающая спином J (сейчас принято спин обозначать через J, чтобы не путать с S-кварком), может находиться в (2 J +1) спиновых состояниях. Например, спин J электрона равен 1/2, поэтому у него может быть только два спиновых состояния 2·(1/2)+1, т.е. 1/2 и -1/2.

Итак, каждый из 18 кварков имеет собственный аромат и цвет . При помощи цвета мы различаем кварковые лица, «пахнущие» одинаково: существует шесть различных «запахов»-ароматов. Выше мы говорили, что барионы строятся как подходящие комбинации трех кварков. Под словом «подходящая» имеется в виду бесцветная комбинация. То же относится и к парам кварков, из которых строятся мезоны. Комбинации надо выбирать «бесцветными», потому что наблюдаемые реально элементарные частицы не имеют цвета. Например, протон имеет кварковую структуру p=(uud) , т.е. состоит из двух u -кварков и одного d -кварка, нейтрон - n=(udd) , т.е. состоит из одного u -кварка и двух d -кварков.

Сами кварки не существуют в свободном состоянии, они всегда «связаны» между собой в частицах, которые они образуют, по крайней мере, свободных кварков, то есть кварков, сильно отдаленных от всех иных кварков обнаружить не удаётся. Кварки существуют только в связанном состоянии, и явление, приводящее к неразрывности кварковых связей, называется конфайнмент.

Кратко суть конфайнмента (т.е. "удержания", "пленения") состоит в том, что силы, связывающие кварки друг с другом, при удалении не уменьшаются, а возрастают (!). Это приписывается свойствам сильного взаимодействия - глюонного поля, которое связывает кварки внутри адронов. Такой непривычный вывод даёт квантовая хромодинамика - теория, описывающая все свойства адронов и их столкновений. Так, например, при попытке «вырвать» кварк из протона глюонное поле порождает дополнительную кварк-антикварковую пару, и от протона уже отделяется не кварк, а пи-мезон. Пи-мезон уже может улететь сколь угодно далеко от протона, потому что силы между адронами ослабевают с расстоянием.

У элементарных частиц электрический заряд может быть кратным только заряду электрона, т.е равным 0, ±1, ±2, ... за исключением кварков, заряд которых равен -1/3 и +2/3 заряда электрона, но кварки в совокупности образуют частицы только с целочисленным электрическим зарядом. В микромире справедлив закон сохранения электрического заряда, утверждающий, что суммы зарядов частиц до и после взаимодействия равны.

Теперь возникает естественный вопрос: насколько реально существование самих кварков? Экспериментаторы интенсивно искали их, причём самыми разными способами (например, с помощью счетчиков, трековых детекторов и опытов типа опыта Милликена) и в самых различных источниках (на ускорителях, в космическом излучении, в морской воде, в земных породах, в метеоритах и т. п.). Однако все попытки непосредственной регистрации кварков пока оказались безуспешными.

Сейчас общепринята точка зрения, согласно которой кварки, будучи цветными объектами, в принципе не могут существовать в свободном состоянии, а могут находиться только внутри белых частиц - адронов.

В частности, нельзя непосредственно зарегистрировать не только сами кварки q , но и дикварки qq , которые также должны нести некоторый цвет. Теоретическое обоснование конфайнмента цвета (его «удержания», «пленения») внутри адронов находится пока в стадии разработки. Решение проблемы кроется в весьма необычных свойствах сил, действующих между кварками: оказывается, энергия взаимодействия кварков не убывает с ростом расстояния между ними, как мы привыкли считать, а возрастает.

И тем не менее только с помощью кварков удаётся описать и объяснить всё многообразие свойств и превращений адронов, образующих чрезвычайно широкий класс. Мало того, опыты по рассеянию лептонов высоких энергий на протонах и нейтронах позволили измерить экспериментально основные характеристики кварков. Результаты этих опытов однозначно свидетельствуют о том, что кварки внутри адронов действительно есть, что их спин равен именно 1/2, что они обладают дробными электрическими зарядами и существуют в трех цветовых разновидностях.

Опыты по рассеянию электронов и позитронов из встречных пучков позволили почти непосредственно «увидеть» кварки. При столкновении эти частицы превращаются в фотон (виртуальный), который порождает кварк-антикварковую пару. Полный импульс системы равен нулю, а потому кварк и антикварк разлетаются в противоположные стороны. Они не могут существовать в свободном состоянии и «обесцвечиваются»: каждый генерирует большое количество мезонов, летящих преимущественно в его первоначальном направлении. В итоге образуются две достаточно узкие струи мезонов, которые и были зарегистрированы на опыте. Ни одна теоретическая схема, кроме кварковой, не в состоянии объяснить сколько-нибудь естественным способом двухструйную структуру событий и описать характеристики рождающихся мезонов.

Таким образом, принципиальная правильность общих концепций теории кварков сейчас не вызывает никаких сомнений. Кварки несомненно существуют, но только в связанном состоянии. Поэтому сам термин «существование» обрёл в физике микромира несколько неожиданную трактовку, и он требует даже философского переосмысления.

r, g, b Барионное число 1/3 Спин ½ ħ

В настоящее время известно 6 разных «сортов» (чаще говорят - «ароматов ») кварков, свойства которых даны в таблице. Кроме того, для калибровочного описания сильного взаимодействия постулируется, что кварки обладают и дополнительной внутренней характеристикой, называемой «цвет ». Каждому кварку соответствует антикварк - античастица с противоположными квантовыми числами .

: неверное или отсутствующее изображение

Свойства кварков

Символ Название Заряд Масса
рус. англ.
Первое поколение
d нижний down − 1 / 3 4,8±0,5 ± 0.3 МэВ / ²
u верхний up + 2 / 3 2,3±0,7 ± 0.5 МэВ/c²
Второе поколение
s странный strange − 1 / 3 95±5 МэВ/c²
c очарованный charm (charmed ) + 2 / 3 1275±25 МэВ /c²
Третье поколение
b прелестный beauty (bottom ) − 1 / 3 4180±30 МэВ/c²
t истинный truth (top ) + 2 / 3 173 340±270 ± 710 МэВ/c²

В силу неизвестных пока причин, кварки естественным образом группируются в три так называемые поколения (они так и представлены в таблице). В каждом поколении один кварк обладает зарядом +\frac{2}{3}, а другой -\frac{1}{3}. Подразделение на поколения распространяется также и на лептоны .

При высоких энергиях в столкновениях адронов могут наблюдаться процессы слабой аннигиляции кварков и антикварков в виртуальный или реальный W или Z-бозон слабого взаимодействия .

Дробный заряд кварков проявляются в процессе рождения струй адронов в аннигиляции e+e- при высоких энергиях .

Кварки порождаются глюонами только парой кварк-антикварк .

Реальность кварков

Из-за непривычного свойства сильного взаимодействия - конфайнмента - часто неспециалистами задаётся вопрос: а откуда мы уверены, что кварки существуют, если их никто никогда не увидит в свободном виде? Может, они - лишь математическая абстракция , и протон вовсе не состоит из них?

Причины, по которым кварки считают реально существующими объектами, таковы:

  • Во-первых, в 1960-х годах стало ясно, что все многочисленные адроны подчиняются более-менее простой классификации: сами собой объединяются в мультиплеты и супермультиплеты . Иными словами, при описании всех этих мультиплетов требуется очень небольшое число свободных параметров. То есть, все адроны обладают небольшим числом степеней свободы : все барионы с одинаковым спином обладают тремя степенями свободы, а все мезоны - двумя. Первоначально гипотеза кварков как раз и заключалась в этом наблюдении, и слово «кварк», по сути, было краткой формой фразы «субадронная степень свободы».
  • Далее, при учёте спина оказалось, что каждой такой степени свободы можно приписать спин ½ и, кроме того, каждой паре кварков можно приписать орбитальный момент - словно они и есть частицы, которые могут вращаться друг относительно друга. Из этого предположения возникло стройное объяснение и всему разнообразию спинов адронов, а также их магнитных моментов .
  • Более того, с открытием новых частиц выяснилось, что никаких модификаций теории не требуется: каждый новый адрон удачно вписывался в кварковую конструкцию без каких-либо её перестроек (если не считать добавления новых кварков).
  • Как проверить, что заряд у кварков действительно дробный? Кварковая модель предсказывала, что при аннигиляции высокоэнергетических электрона и позитрона будут рождаться не сами адроны, а сначала пары кварк-антикварк, которые потом уже превращаются в адроны. Результат расчёта течения такого процесса напрямую зависел от того, каков заряд рождённых кварков. Эксперимент полностью подтвердил эти предсказания .
  • С наступлением эры ускорителей высокой энергии стало возможным изучать распределение импульса внутри, например, протона. Выяснилось, что импульс в протоне не распределён равномерно по нему, а частями сосредоточен в отдельных степенях свободы. Эти степени свободы назвали партонами (от англ. part - часть). Более того, оказалось, что партоны, в первом приближении, обладают спином ½ и теми же зарядами, что и кварки. С ростом энергии оказалось, что количество партонов растёт, но такой результат и ожидался в кварковой модели при сверхвысоких энергиях .
  • С повышением энергии ускорителей стало возможным также попытаться выбить отдельный кварк из адрона в высокоэнергетическом столкновении. Кварковая теория давала чёткие предсказания, как должны были выглядеть результаты таких столкновений - в виде струй . Такие струи действительно наблюдались в эксперименте. Заметим, что если бы протон ни из чего не состоял, то струй бы заведомо не было .
  • При высокоэнергетических столкновениях адронов вероятность того, что адроны рассеются на некоторый угол без разрушения, уменьшается с ростом величины угла. Эксперименты подтвердили, что, например, для протона скорость получается точно такая, какая ожидается для объекта, состоящего из трёх кварков .
  • При столкновениях протонов с высокими энергиями экспериментально наблюдается аннигиляция кварка одного протона с антикварком другого протона с образованием пары мюон-антимюон (процесс Дрелла - Яна) .
  • Кварковая модель с позиций взаимодействия кварков между собой при помощи глюонов хорошо объясняет расщепление масс между членами декуплета \Delta^{-} - \Sigma^{-} - \Xi^{-} - \Omega^{-} .
  • Кварковая модель хорошо объясняет расщепление масс между \Xi^{-} - \Xi^{0} .
  • Кварковая модель предсказывает для отношения магнитных моментов протона и нейтрона величину \frac{\mu_{P}}{\mu_{N}}=-\frac{3}{2}, что находится в хорошем соответствии с экспериментальным значением −1,47. Для отношения магнитных моментов гиперона и протона теория кварков предсказывает величину \frac{\mu_{\Lambda}}{\mu_{P}}=-\frac{1}{3}, что также находится в хорошем соответствии с экспериментальным значением −0,29 ± 0,05 .

В целом, можно сказать, что гипотеза кварков и всё, что из неё вытекает (в частности, КХД), является наиболее консервативной гипотезой относительно строения адронов, которая способна объяснить имеющиеся экспериментальные данные. Попытки обойтись без кварков наталкиваются на трудности с описанием всех тех многочисленных экспериментов, которые очень естественно описывались в кварковой модели.

Открытые вопросы

В отношении кварков остаются вопросы, на которые пока нет ответа:

Впрочем, история с адронами и кварками, а также симметрия между кварками и лептонами, наводит на подозрение, что кварки могут сами состоять из чего-то более простого. Рабочее название для гипотетических частиц-составляющих кварков - преоны . С точки зрения данных экспериментов, до сих пор никаких подозрений на неточечную структуру кварков не возникало. Однако попытки построить такие теории делаются независимо от экспериментов. Серьёзных успехов в этом направлении пока нет.

Другой подход состоит в построении теории Великого объединения . Польза от такой теории была бы не только в объединении сильного и электрослабого взаимодействий, но и в едином описании лептонов и кварков. Несмотря на активные усилия, построить такую теорию также пока не удалось.

Альтернативные модели

Название

Слово «кварк» было заимствовано Гелл-Манном из романа Дж. Джойса «Поминки по Финнегану », где в одном из эпизодов чайки кричат: «Three quarks for Muster Mark!» (обычно переводится как «Три кварка для Мастера/Мюстера Марка!»). Само слово «quark» в этой фразе предположительно является звукоподражанием крику морских птиц. Есть другая версия (выдвинутая Р. Якобсоном), согласно которой Джойс усвоил это слово из немецкого во время своего пребывания в Вене. В немецком слово Quark имеет два значения: 1) творог, 2) чепуха. В немецкий же данное слово попало из западнославянских языков (чеш. tvaroh , польск. twaróg - «творог») . Согласно рассказу ирландского физика Лохлина О’Раферти , Джойс во время пребывания в Германии на сельскохозяйственной выставке услышал рекламный слоган «Drei Mark für Musterquark» («три марки за образцовый творог»), который был им позже перефразирован для романа .

Дж. Цвейг называл их тузами , но данное название не прижилось и забылось - возможно, потому, что тузов четыре, а кварков в первоначальной модели было три.

См. также

  • Кварконий - мезон , состоящий из кварка и антикварка одного и того же типа
  • Преоны - гипотетические частицы, из которых могли бы состоять кварки и лептоны
  • Кварковая звезда - гипотетическая нейтронная звезда с экстремальной плотностью и вырожденным состоянием вещества

Напишите отзыв о статье "Кварк"

Примечания

  1. .
  2. .
  3. , с. 40.
  4. , с. 246.
  5. A. V. Belitsky, A. V. Radyushkin. Unraveling hadron structure with generalized parton distributions // Phys. Rept. - 2005. - № 418 . - P. 1-387. - arXiv :hep-ph/0504030 . arXiv :hep-ph/0504030
  6. , с. 23.
  7. , с. 306.
  8. , с. 369.
  9. , с. 379.
  10. , с. 116.
  11. Игорь Иванов. . Сложные вопросы в физике элементарных частиц (2 августа 2013). Проверено 9 августа 2013. .
  12. S. Sakata. Progr. Theor. Phys. 16 (1956), 686
  13. Y. Katayama, K. Matumoto, S. Tanaka, E. Yamada. Possible unified models of elementary particles with two neutrinos. Progr. Theor. Phys. 28 (1962), 675
  14. C. Z. Yuan, X. H. Mo, P. Wang.
  15. В. В. Иванов. Ранние коптские заимствования в славянском // Славянская языковая и этноязыковая системы в контакте с неславянским окружением. - М .: Языки славянской культуры, 2002. - С. 57-58.
  16. H. Leutwyler // H. Fritzsch and M. Gell-Mann, eds. Fifty Years of Quarks. - Singapore: World Scientific, 2014. - arXiv :1410.4000 .

Литература

  • Jean Letessier, Johann Rafelski, T. Ericson, P. Y. Landshoff. Hadrons and Quark-Gluon Plasma. - Cambridge University Press, 2002. - 415 p. - ISBN 9780511037276 .
  • Боголюбов Н.Н., Логунов А.А., Оксак А.И., Тодоров И.Т. Общие принципы квантовой теории поля. - Москва: Наука, 1987. - С. 3, 226-228, 362, 363, 366, 412, 414-416, 420, 421, 423, 425, 428, 561, 562, 571, 572, 574, 614. - 616 с.
  • Клоуз Ф. Введение в кварки и партоны. - М .: Мир , 1982. - 438 с.
  • Никитин Ю. П., Розенталь И. Л. Ядерная физика высоких энергий. - М .: Атомиздат , 1980. - 232 с.
  • Коккедэ Я. Теория кварков. - М .: Мир , 1971. - 341 с.

Ссылки

  • на сайте Particle Data Group

Отрывок, характеризующий Кварк

На другой день простившись только с одним графом, не дождавшись выхода дам, князь Андрей поехал домой.
Уже было начало июня, когда князь Андрей, возвращаясь домой, въехал опять в ту березовую рощу, в которой этот старый, корявый дуб так странно и памятно поразил его. Бубенчики еще глуше звенели в лесу, чем полтора месяца тому назад; всё было полно, тенисто и густо; и молодые ели, рассыпанные по лесу, не нарушали общей красоты и, подделываясь под общий характер, нежно зеленели пушистыми молодыми побегами.
Целый день был жаркий, где то собиралась гроза, но только небольшая тучка брызнула на пыль дороги и на сочные листья. Левая сторона леса была темна, в тени; правая мокрая, глянцовитая блестела на солнце, чуть колыхаясь от ветра. Всё было в цвету; соловьи трещали и перекатывались то близко, то далеко.
«Да, здесь, в этом лесу был этот дуб, с которым мы были согласны», подумал князь Андрей. «Да где он», подумал опять князь Андрей, глядя на левую сторону дороги и сам того не зная, не узнавая его, любовался тем дубом, которого он искал. Старый дуб, весь преображенный, раскинувшись шатром сочной, темной зелени, млел, чуть колыхаясь в лучах вечернего солнца. Ни корявых пальцев, ни болячек, ни старого недоверия и горя, – ничего не было видно. Сквозь жесткую, столетнюю кору пробились без сучков сочные, молодые листья, так что верить нельзя было, что этот старик произвел их. «Да, это тот самый дуб», подумал князь Андрей, и на него вдруг нашло беспричинное, весеннее чувство радости и обновления. Все лучшие минуты его жизни вдруг в одно и то же время вспомнились ему. И Аустерлиц с высоким небом, и мертвое, укоризненное лицо жены, и Пьер на пароме, и девочка, взволнованная красотою ночи, и эта ночь, и луна, – и всё это вдруг вспомнилось ему.
«Нет, жизнь не кончена в 31 год, вдруг окончательно, беспеременно решил князь Андрей. Мало того, что я знаю всё то, что есть во мне, надо, чтобы и все знали это: и Пьер, и эта девочка, которая хотела улететь в небо, надо, чтобы все знали меня, чтобы не для одного меня шла моя жизнь, чтоб не жили они так независимо от моей жизни, чтоб на всех она отражалась и чтобы все они жили со мною вместе!»

Возвратившись из своей поездки, князь Андрей решился осенью ехать в Петербург и придумал разные причины этого решенья. Целый ряд разумных, логических доводов, почему ему необходимо ехать в Петербург и даже служить, ежеминутно был готов к его услугам. Он даже теперь не понимал, как мог он когда нибудь сомневаться в необходимости принять деятельное участие в жизни, точно так же как месяц тому назад он не понимал, как могла бы ему притти мысль уехать из деревни. Ему казалось ясно, что все его опыты жизни должны были пропасть даром и быть бессмыслицей, ежели бы он не приложил их к делу и не принял опять деятельного участия в жизни. Он даже не понимал того, как на основании таких же бедных разумных доводов прежде очевидно было, что он бы унизился, ежели бы теперь после своих уроков жизни опять бы поверил в возможность приносить пользу и в возможность счастия и любви. Теперь разум подсказывал совсем другое. После этой поездки князь Андрей стал скучать в деревне, прежние занятия не интересовали его, и часто, сидя один в своем кабинете, он вставал, подходил к зеркалу и долго смотрел на свое лицо. Потом он отворачивался и смотрел на портрет покойницы Лизы, которая с взбитыми a la grecque [по гречески] буклями нежно и весело смотрела на него из золотой рамки. Она уже не говорила мужу прежних страшных слов, она просто и весело с любопытством смотрела на него. И князь Андрей, заложив назад руки, долго ходил по комнате, то хмурясь, то улыбаясь, передумывая те неразумные, невыразимые словом, тайные как преступление мысли, связанные с Пьером, с славой, с девушкой на окне, с дубом, с женской красотой и любовью, которые изменили всю его жизнь. И в эти то минуты, когда кто входил к нему, он бывал особенно сух, строго решителен и в особенности неприятно логичен.
– Mon cher, [Дорогой мой,] – бывало скажет входя в такую минуту княжна Марья, – Николушке нельзя нынче гулять: очень холодно.
– Ежели бы было тепло, – в такие минуты особенно сухо отвечал князь Андрей своей сестре, – то он бы пошел в одной рубашке, а так как холодно, надо надеть на него теплую одежду, которая для этого и выдумана. Вот что следует из того, что холодно, а не то чтобы оставаться дома, когда ребенку нужен воздух, – говорил он с особенной логичностью, как бы наказывая кого то за всю эту тайную, нелогичную, происходившую в нем, внутреннюю работу. Княжна Марья думала в этих случаях о том, как сушит мужчин эта умственная работа.

Князь Андрей приехал в Петербург в августе 1809 года. Это было время апогея славы молодого Сперанского и энергии совершаемых им переворотов. В этом самом августе, государь, ехав в коляске, был вывален, повредил себе ногу, и оставался в Петергофе три недели, видаясь ежедневно и исключительно со Сперанским. В это время готовились не только два столь знаменитые и встревожившие общество указа об уничтожении придворных чинов и об экзаменах на чины коллежских асессоров и статских советников, но и целая государственная конституция, долженствовавшая изменить существующий судебный, административный и финансовый порядок управления России от государственного совета до волостного правления. Теперь осуществлялись и воплощались те неясные, либеральные мечтания, с которыми вступил на престол император Александр, и которые он стремился осуществить с помощью своих помощников Чарторижского, Новосильцева, Кочубея и Строгонова, которых он сам шутя называл comite du salut publique. [комитет общественного спасения.]
Теперь всех вместе заменил Сперанский по гражданской части и Аракчеев по военной. Князь Андрей вскоре после приезда своего, как камергер, явился ко двору и на выход. Государь два раза, встретив его, не удостоил его ни одним словом. Князю Андрею всегда еще прежде казалось, что он антипатичен государю, что государю неприятно его лицо и всё существо его. В сухом, отдаляющем взгляде, которым посмотрел на него государь, князь Андрей еще более чем прежде нашел подтверждение этому предположению. Придворные объяснили князю Андрею невнимание к нему государя тем, что Его Величество был недоволен тем, что Болконский не служил с 1805 года.
«Я сам знаю, как мы не властны в своих симпатиях и антипатиях, думал князь Андрей, и потому нечего думать о том, чтобы представить лично мою записку о военном уставе государю, но дело будет говорить само за себя». Он передал о своей записке старому фельдмаршалу, другу отца. Фельдмаршал, назначив ему час, ласково принял его и обещался доложить государю. Через несколько дней было объявлено князю Андрею, что он имеет явиться к военному министру, графу Аракчееву.
В девять часов утра, в назначенный день, князь Андрей явился в приемную к графу Аракчееву.
Лично князь Андрей не знал Аракчеева и никогда не видал его, но всё, что он знал о нем, мало внушало ему уважения к этому человеку.
«Он – военный министр, доверенное лицо государя императора; никому не должно быть дела до его личных свойств; ему поручено рассмотреть мою записку, следовательно он один и может дать ход ей», думал князь Андрей, дожидаясь в числе многих важных и неважных лиц в приемной графа Аракчеева.
Князь Андрей во время своей, большей частью адъютантской, службы много видел приемных важных лиц и различные характеры этих приемных были для него очень ясны. У графа Аракчеева был совершенно особенный характер приемной. На неважных лицах, ожидающих очереди аудиенции в приемной графа Аракчеева, написано было чувство пристыженности и покорности; на более чиновных лицах выражалось одно общее чувство неловкости, скрытое под личиной развязности и насмешки над собою, над своим положением и над ожидаемым лицом. Иные задумчиво ходили взад и вперед, иные шепчась смеялись, и князь Андрей слышал sobriquet [насмешливое прозвище] Силы Андреича и слова: «дядя задаст», относившиеся к графу Аракчееву. Один генерал (важное лицо) видимо оскорбленный тем, что должен был так долго ждать, сидел перекладывая ноги и презрительно сам с собой улыбаясь.
Но как только растворялась дверь, на всех лицах выражалось мгновенно только одно – страх. Князь Андрей попросил дежурного другой раз доложить о себе, но на него посмотрели с насмешкой и сказали, что его черед придет в свое время. После нескольких лиц, введенных и выведенных адъютантом из кабинета министра, в страшную дверь был впущен офицер, поразивший князя Андрея своим униженным и испуганным видом. Аудиенция офицера продолжалась долго. Вдруг послышались из за двери раскаты неприятного голоса, и бледный офицер, с трясущимися губами, вышел оттуда, и схватив себя за голову, прошел через приемную.
Вслед за тем князь Андрей был подведен к двери, и дежурный шопотом сказал: «направо, к окну».
Князь Андрей вошел в небогатый опрятный кабинет и у стола увидал cорокалетнего человека с длинной талией, с длинной, коротко обстриженной головой и толстыми морщинами, с нахмуренными бровями над каре зелеными тупыми глазами и висячим красным носом. Аракчеев поворотил к нему голову, не глядя на него.
– Вы чего просите? – спросил Аракчеев.
– Я ничего не… прошу, ваше сиятельство, – тихо проговорил князь Андрей. Глаза Аракчеева обратились на него.
– Садитесь, – сказал Аракчеев, – князь Болконский?
– Я ничего не прошу, а государь император изволил переслать к вашему сиятельству поданную мною записку…
– Изволите видеть, мой любезнейший, записку я вашу читал, – перебил Аракчеев, только первые слова сказав ласково, опять не глядя ему в лицо и впадая всё более и более в ворчливо презрительный тон. – Новые законы военные предлагаете? Законов много, исполнять некому старых. Нынче все законы пишут, писать легче, чем делать.
– Я приехал по воле государя императора узнать у вашего сиятельства, какой ход вы полагаете дать поданной записке? – сказал учтиво князь Андрей.
– На записку вашу мной положена резолюция и переслана в комитет. Я не одобряю, – сказал Аракчеев, вставая и доставая с письменного стола бумагу. – Вот! – он подал князю Андрею.
На бумаге поперег ее, карандашом, без заглавных букв, без орфографии, без знаков препинания, было написано: «неосновательно составлено понеже как подражание списано с французского военного устава и от воинского артикула без нужды отступающего».
– В какой же комитет передана записка? – спросил князь Андрей.
– В комитет о воинском уставе, и мною представлено о зачислении вашего благородия в члены. Только без жалованья.
Князь Андрей улыбнулся.
– Я и не желаю.
– Без жалованья членом, – повторил Аракчеев. – Имею честь. Эй, зови! Кто еще? – крикнул он, кланяясь князю Андрею.

Ожидая уведомления о зачислении его в члены комитета, князь Андрей возобновил старые знакомства особенно с теми лицами, которые, он знал, были в силе и могли быть нужны ему. Он испытывал теперь в Петербурге чувство, подобное тому, какое он испытывал накануне сражения, когда его томило беспокойное любопытство и непреодолимо тянуло в высшие сферы, туда, где готовилось будущее, от которого зависели судьбы миллионов. Он чувствовал по озлоблению стариков, по любопытству непосвященных, по сдержанности посвященных, по торопливости, озабоченности всех, по бесчисленному количеству комитетов, комиссий, о существовании которых он вновь узнавал каждый день, что теперь, в 1809 м году, готовилось здесь, в Петербурге, какое то огромное гражданское сражение, которого главнокомандующим было неизвестное ему, таинственное и представлявшееся ему гениальным, лицо – Сперанский. И самое ему смутно известное дело преобразования, и Сперанский – главный деятель, начинали так страстно интересовать его, что дело воинского устава очень скоро стало переходить в сознании его на второстепенное место.
Князь Андрей находился в одном из самых выгодных положений для того, чтобы быть хорошо принятым во все самые разнообразные и высшие круги тогдашнего петербургского общества. Партия преобразователей радушно принимала и заманивала его, во первых потому, что он имел репутацию ума и большой начитанности, во вторых потому, что он своим отпущением крестьян на волю сделал уже себе репутацию либерала. Партия стариков недовольных, прямо как к сыну своего отца, обращалась к нему за сочувствием, осуждая преобразования. Женское общество, свет, радушно принимали его, потому что он был жених, богатый и знатный, и почти новое лицо с ореолом романической истории о его мнимой смерти и трагической кончине жены. Кроме того, общий голос о нем всех, которые знали его прежде, был тот, что он много переменился к лучшему в эти пять лет, смягчился и возмужал, что не было в нем прежнего притворства, гордости и насмешливости, и было то спокойствие, которое приобретается годами. О нем заговорили, им интересовались и все желали его видеть.
На другой день после посещения графа Аракчеева князь Андрей был вечером у графа Кочубея. Он рассказал графу свое свидание с Силой Андреичем (Кочубей так называл Аракчеева с той же неопределенной над чем то насмешкой, которую заметил князь Андрей в приемной военного министра).
– Mon cher, [Дорогой мой,] даже в этом деле вы не минуете Михаил Михайловича. C"est le grand faiseur. [Всё делается им.] Я скажу ему. Он обещался приехать вечером…
– Какое же дело Сперанскому до военных уставов? – спросил князь Андрей.
Кочубей, улыбнувшись, покачал головой, как бы удивляясь наивности Болконского.
– Мы с ним говорили про вас на днях, – продолжал Кочубей, – о ваших вольных хлебопашцах…
– Да, это вы, князь, отпустили своих мужиков? – сказал Екатерининский старик, презрительно обернувшись на Болконского.
– Маленькое именье ничего не приносило дохода, – отвечал Болконский, чтобы напрасно не раздражать старика, стараясь смягчить перед ним свой поступок.
– Vous craignez d"etre en retard, [Боитесь опоздать,] – сказал старик, глядя на Кочубея.
– Я одного не понимаю, – продолжал старик – кто будет землю пахать, коли им волю дать? Легко законы писать, а управлять трудно. Всё равно как теперь, я вас спрашиваю, граф, кто будет начальником палат, когда всем экзамены держать?
– Те, кто выдержат экзамены, я думаю, – отвечал Кочубей, закидывая ногу на ногу и оглядываясь.
– Вот у меня служит Пряничников, славный человек, золото человек, а ему 60 лет, разве он пойдет на экзамены?…
– Да, это затруднительно, понеже образование весьма мало распространено, но… – Граф Кочубей не договорил, он поднялся и, взяв за руку князя Андрея, пошел навстречу входящему высокому, лысому, белокурому человеку, лет сорока, с большим открытым лбом и необычайной, странной белизной продолговатого лица. На вошедшем был синий фрак, крест на шее и звезда на левой стороне груди. Это был Сперанский. Князь Андрей тотчас узнал его и в душе его что то дрогнуло, как это бывает в важные минуты жизни. Было ли это уважение, зависть, ожидание – он не знал. Вся фигура Сперанского имела особенный тип, по которому сейчас можно было узнать его. Ни у кого из того общества, в котором жил князь Андрей, он не видал этого спокойствия и самоуверенности неловких и тупых движений, ни у кого он не видал такого твердого и вместе мягкого взгляда полузакрытых и несколько влажных глаз, не видал такой твердости ничего незначащей улыбки, такого тонкого, ровного, тихого голоса, и, главное, такой нежной белизны лица и особенно рук, несколько широких, но необыкновенно пухлых, нежных и белых. Такую белизну и нежность лица князь Андрей видал только у солдат, долго пробывших в госпитале. Это был Сперанский, государственный секретарь, докладчик государя и спутник его в Эрфурте, где он не раз виделся и говорил с Наполеоном.

Частицы в составе атомного ядра состоят из еще более фундаментальных частиц — кварков.

На протяжении двух последних веков ученые, интересующиеся строением Вселенной, искали базовые строительные блоки, из которых состоит материя, — самые простые и неделимые составляющие материального мира. Атомная теория объяснила всё многообразие химических веществ, постулировав существование ограниченного набора атомов так называемых химических элементов, объяснив природу всех остальных веществ через различные их сочетания. Таким образом, от сложности и многообразия на внешнем уровне ученым удалось перейти к простоте и упорядоченности на элементарном уровне.

Но простая картина атомного строения вещества вскоре столкнулась с серьезными проблемами. Прежде всего, по мере открытия всё новых и новых химических элементов стали обнаруживаться странные закономерности в их поведении, которые, правда, удалось прояснить благодаря вводу в научный обиход периодической системы Менделеева . Однако представления о строении материи всё равно сильно усложнились.

В начале XX столетия стало ясно, что атомы отнюдь не являются элементарными «кирпичиками» материи, а сами имеют сложную структуру и состоят из еще более элементарных частиц — нейтронов и протонов, образующих атомные ядра, и электронов, которые эти ядра окружают. И снова усложненность на одном уровне, казалось бы, сменила простота на следующем уровне детализации строения вещества. Однако и эта кажущаяся простота продержалась недолго, поскольку ученые стали открывать всё новые и новые элементарные частицы . Труднее всего было разобраться с многочисленными адронами — тяжелыми частицами, родственными нейтрону и протону, которые, как оказалось, во множестве рождаются и тут же распадаются в процессе различных ядерных процессов.

Более того, в поведении различных адронов были обнаружены необъяснимые закономерности — и из них у физиков стало складываться некое подобие периодической таблицы. Использовав математический аппарат так называемой теории групп , физикам удалось объединить адроны в группы по восемь — два типа частиц в центре и шесть в вершинах правильного шестиугольника. При этом частицы из каждой восьмеричной группы, располагающиеся на одном и том же месте в таком графическом представлении, обладают рядом общих свойств, подобно тому как схожие свойства демонстрируют химические элементы из одного столбца таблицы Менделеева, а частицы, расположенные по горизонтальным линиям в каждом шестиугольнике, обладают приблизительно равной массой, но отличаются электрическими зарядами (см. рисунок). Такая классификация получила название восьмеричный путь (в честь одноименной доктрины в буддистской теологии). В начале 1960-х годов теоретики поняли, что такую закономерность можно объяснить лишь тем, что элементарные частицы на самом деле таковыми не являются, а сами состоят из еще более фундаментальных структурных единиц.

Эти структурные единицы назвали кварками (слово позаимствовано из замысловатого романа Джеймса Джойса «Поминки по Финнегану»). Эти новые обитатели микромира оказались существами весьма странными. Для начала, они обладают дробным электрическим зарядом: 1/3 или 2/3 заряда электрона или протона (см. таблицу). А далее, по мере развития теории, выяснилось, что отдельно их не увидишь, поскольку они вообще не могут пребывать в свободном, не связанном друг с другом внутри элементарных частиц состоянии, и о самом факте их существования можно судить только по свойствам, проявляемым адронами, в состав которых они входят. Чтобы лучше понять этот феномен, получивший название пленение или заточение кварков , представьте, что у вас в руках длинный эластичный шнур, каждый конец которого представляет собой кварк. Если приложить к такой системе достаточно энергии — растянуть и порвать шнур, то он порвется где-то посередине, и свободного конца вы не получите, а получите два резиновых шнура покороче, и у каждого из них опять окажется два конца. То же и с кварками: какими бы энергиями мы ни воздействовали на элементарные частицы, стремясь «выбить» из них кварки, нам этого не удастся — частицы будут распадаться на другие частицы, сливаться, перестраиваться, но свободных кварков мы не получим.

Сегодня, согласно теории, предсказывается существование шести разновидностей кварков, и в лабораториях уже открыты элементарные частицы, содержащие все шесть типов. Самые распространенные кварки — верхний , или протонный (обозначается u — от английского up , или p proton ) и нижний , или нейтронный (обозначается d — от down , или n — от neutron ), поскольку именно из них состоят единственные по-настоящему долгоживущие адроны — протон (uud ) и нейтрон (udd ). Следующий дублет включает странные кварки s (strange ) и очарованные кварки с (charmed ). Наконец, последний дублет состоит из красивых и истинных кварков — b (от beauty , или bottom ) и t (от truth , или top ). Каждый из шести кварков, помимо электрического заряда, характеризуется изотопическим (условно направленным) спином . Наконец, каждый из кварков может принимать три значения квантового числа, которое называется его цветом (color ) и обладает ароматом (flavor ). Конечно же, кварки не пахнут и не имеют цвета в традиционном понимании, просто такое название сложилось исторически для обозначения их определенных свойств (см. Квантовая хромодинамика).

Стандартная модель останавливается на уровне кварков в детализации строения материи, из которой состоит наша Вселенная; кварки — самое фундаментальное и элементарное в ее структуре. Однако некоторые физики-теоретики полагают, что «луковицу можно лущить и дальше», но это уже чисто умозрительные построения. По моему личному мнению, Стандартная модель правильно описывает строение вещества, и хотя бы в этом направлении наука дошла до логического завершения процесса познания.

Кварки
Quarks

Кварки - бесструктурные точечные частицы со спином 1/2ћ, участвующие в сильном взаимодействии (как и во всех остальных) и являющиеся элементарными составляющими всех адронов.
Существует шесть типов кварков, обозначаемых буквами u, d, s, c, b, t (от английских слов up, down, strange, charmed, bottom, top). Говорят о шести “ароматах” кварков. Каждый кварк имеет барионное число В = + 1/3 и дробный электрический заряд. Кварки u, c, t имеют заряд +2/3, а кварки d, s, b, - заряд –1/3 (в единицах элементарного заряда е = 1.6 . 10 -19 Кл). Кварки имеют массы. Самый лёгкий кварк u (его масса несколько МэВ/с 2), самый тяжёлый – t (его масса 174 ГэВ/с 2).

Характеристики кварков

Характеристика

Тип кварка

Электрический заряд Q

Барионное число B

Четность P

Изоспин I

Проекция изоспина I 3

Странность S

Масса в составе адрона, ГэВ

Масса свободного кварка, ГэВ

0.095+ 0.025

1.25+ 0.1

Из кварков состоят все адроны: барионы и мезоны – обширный класс элементарных частиц, участвующих в сильном взаимодействии и имеющих внутреннюю структуру и размеры около 10 -13 см. Сами кварки на современном уровне знаний бесструктурны (как и лептоны), т.е. ведут себя как точечные частицы. Их размер не более 10 -17 см. Кварки не наблюдают в свободном состоянии. Они “заперты” в адронах. Их присутствие в адронах надёжно установлено многочисленными экспериментами. В соответствии с современными концепциями кварки невозможно выбить из адрона.
Каждый из шести кварков обладает присущим только ему специфическим квантовым числом (ароматом). Так s-кварк имеет квантовое число “странность”, равное –1, с-кварк – квантовое число “очарование”, равное + 1 и т.д. У каждого кварка есть античастица – антикварк. Антикварки имеют противоположные знаки электрического заряда, барионного квантового числа и ароматов. Так античастица с-кварка, обозначаемая , имеет заряд –2/3, барионное число В = –1/3 и квантовое число “очарование” –1.
Все адроны состоят из кварков: барионы – из трёх кварков, мезоны – из кварка и антикварка. Так, протон состоит из двух u-кварков и одного d-кварка (p = uud), нейтрон – из двух d-кварков и одного u-кварка (n = udd).

Протон и нейтрон – барионы. Кварковая структура пи-мезонов π + и π - следующая: π + = u, π - = d (черта сверху обозначает античастицу).

Помимо всех перечисленных характеристик кварки обладают ещё одной специфической внутренней характеристикой, называемой цветовым зарядом или просто “цветом”. Сильные взаимодействия между кварками обусловлены наличием у кварков этих цветовых зарядов. Цвет кварка может принимать одно из трёх значений и их условились обозначать теми же терминами, что и оптические цвета, например, красный, зелёный и синий, хотя смысл этих названий другой. Таким образом, кварк каждого аромата может быть красным, зелёным или синим. Кварк одного цвета может перейти в кварк другого цвета, испустив цветной глюон – частицу, являющуюся переносчиком сильного взаимодействия. Сильное взаимодействие между кварками – это обмен ими цветом посредством обмена глюонами. Кварки в адронах находятся в таких цветовых состояниях, что суммарный цветовой заряд адрона равен нулю. Говорят, что адроны бесцветные или белые.
Квантовое число цвет обеспечивает необходимую антисимметрию волновой функции адронов, состоящих из одинаковых кварков, что согласуется с принципом Паули. С учётом квантового числа цвет, принимающего три значения, структуры барионов и мезонов записываются в виде