Уравнение вида f (x ; a ) = 0 называется уравнением с переменной х и параметром а .

Решить уравнение с параметром а – это значит, для каждого значения а найти значения х , удовлетворяющие этому уравнению.

Пример 1. ах = 0

Пример 2. ах = а

Пример 3.

х + 2 = ах
х – ах = -2
х(1 – а) = -2

Если 1 – а = 0, т.е. а = 1, то х 0 = -2 корней нет

Если 1 – а 0, т.е. а 1, то х =

Пример 4.

(а 2 – 1) х = 2а 2 + а – 3
(а – 1)(а + 1)х = 2(а – 1)(а – 1,5)
(а – 1)(а + 1)х = (1а – 3)(а – 1)

Если а = 1, то 0х = 0
х – любое действительное число

Если а = -1, то 0х = -2
Корней нет

Если а 1, а -1, то х = (единственное решение).

Это значит, что каждому допустимому значению а соответствует единственное значение х .

Например:

если а = 5, то х = = ;

если а = 0, то х = 3 и т. д.

Дидактический материал

1. ах = х + 3

2. 4 + ах = 3х – 1

3. а = +

при а = 1 корней нет.

при а = 3 корней нет.

при а = 1 х – любое действительное число, кроме х = 1

при а = -1, а = 0 решений нет.

при а = 0, а = 2 решений нет.

при а = -3, а = 0, 5, а = -2 решений нет

при а = -с , с = 0 решений нет.

Квадратные уравнения с параметром

Пример 1. Решить уравнение

(а – 1)х 2 = 2(2а + 1)х + 4а + 3 = 0

При а = 1 6х + 7 = 0

В случае а 1 выделим те значения параметра, при которых Д обращается в нуль.

Д = (2(2а + 1)) 2 – 4(а – 1)(4а + 30 = 16а 2 + 16а + 4 – 4(4а 2 + 3а – 4а – 3) = 16а 2 + 16а + 4 – 16а 2 + 4а + 12 = 20а + 16

20а + 16 = 0

20а = -16

Если а < -4/5, то Д < 0, уравнение имеет действительный корень.

Если а > -4/5 и а 1, то Д > 0,

х =

Если а = 4/5, то Д = 0,

Пример 2. При каких значениях параметра а уравнение

х 2 + 2(а + 1)х + 9а – 5 = 0 имеет 2 различных отрицательных корня?

Д = 4(а + 1) 2 – 4(9а – 5) = 4а 2 – 28а + 24 = 4(а – 1)(а – 6)

4(а – 1)(а – 6) > 0

по т. Виета: х 1 + х 2 = -2(а + 1)
х 1 х 2 = 9а – 5

По условию х 1 < 0, х 2 < 0 то –2(а + 1) < 0 и 9а – 5 > 0

В итоге 4(а – 1)(а – 6) > 0
- 2(а + 1) < 0
9а – 5 > 0
а < 1: а > 6
а > - 1
а > 5/9

(Рис. 1 )

< a < 1, либо a > 6

Пример 3. Найдите значения а , при которых данное уравнение имеет решение.

х 2 – 2(а – 1)х + 2а + 1 = 0

Д = 4(а – 1) 2 – 4(2а + 10 = 4а 2 – 8а + 4 – 8а – 4 = 4а 2 – 16а

4а 2 – 16 0

4а (а – 4) 0

а(а – 4)) 0

а(а – 4) = 0

а = 0 или а – 4 = 0
а = 4

(Рис. 2 )

Ответ: а 0 и а 4

Дидактический материал

1. При каком значении а уравнение ах 2 – (а + 1) х + 2а – 1 = 0 имеет один корень?

2. При каком значении а уравнение (а + 2) х 2 + 2(а + 2)х + 2 = 0 имеет один корень?

3. При каких значениях а уравнение (а 2 – 6а + 8) х 2 + (а 2 – 4) х + (10 – 3а а 2) = 0 имеет более двух корней?

4. При каких значениях а уравнение 2х 2 + х а = 0 имеет хотя бы один общий корень с уравнением 2х 2 – 7х + 6 = 0?

5. При каких значениях а уравнения х 2 +ах + 1 = 0 и х 2 + х + а = 0 имеют хотя бы один общий корень?

1. При а = - 1/7, а = 0, а = 1

2. При а = 0

3. При а = 2

4. При а = 10

5. При а = - 2

Показательные уравнения с параметром

Пример 1 .Найти все значения а , при которых уравнение

9 х – (а + 2)*3 х-1/х +2а *3 -2/х = 0 (1) имеет ровно два корня.

Решение. Умножив обе части уравнения (1) на 3 2/х, получим равносильное уравнение

3 2(х+1/х) – (а + 2)*3 х+1/х + 2а = 0 (2)

Пусть 3 х+1/х = у , тогда уравнение (2) примет вид у 2 – (а + 2)у + 2а = 0, или

(у – 2)(у а ) = 0, откуда у 1 =2, у 2 = а .

Если у = 2, т.е. 3 х+1/х = 2 то х + 1/х = log 3 2 , или х 2 – х log 3 2 + 1 = 0.

Это уравнение не имеет действительных корней, так как его Д = log 2 3 2 – 4 < 0.

Если у = а , т.е. 3 х+1/х = а то х + 1/х = log 3 а , или х 2 – х log 3 а + 1 = 0. (3)

Уравнение (3) имеет ровно два корня тогда и только тогда, когда

Д = log 2 3 2 – 4 > 0, или |log 3 а| > 2.

Если log 3 а > 2, то а > 9, а если log 3 а < -2, то 0 < а < 1/9.

Ответ: 0 < а < 1/9, а > 9.

Пример 2 . При каких значениях а уравнение 2 2х – (а – 3) 2 х – 3а = 0 имеет решения?

Для того чтобы заданное уравнение имело решения, необходимо и достаточно, чтобы уравнение t 2 – (a – 3) t – 3a = 0 имело хотя бы один положительный корень. Найдем корни по теореме Виета: х 1 = -3, х 2 = а = >

а – положительное число.

Ответ: при а > 0

Дидактический материал

1. Найти все значения а, при которых уравнение

25 х – (2а + 5)*5 х-1/х + 10а * 5 -2/х = 0 имеет ровно 2 решения.

2. При каких значениях а уравнение

2 (а-1)х?+2(а+3)х+а = 1/4 имеет единственный корень?

3. При каких значениях параметра а уравнение

4 х - (5а -3)2 х +4а 2 – 3а = 0 имеет единственное решение?

Логарифмические уравнения с параметром

Пример 1. Найти все значения а , при которых уравнение

log 4x (1 + ах ) = 1/2 (1)

имеет единственное решение.

Решение. Уравнение (1) равносильно уравнению

1 + ах = 2х при х > 0, х 1/4 (3)

х = у

ау 2 –у + 1 = 0 (4)

Не выполняется (2) условие из (3).

Пусть а 0, то ау 2 – 2у + 1 = 0 имеет действительные корни тогда и только тогда, когда Д = 4 – 4а 0, т.е. при а 1.Чтобы решить неравенство (3), построим графики функций Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение курса алгебры и математического анализа. – М.: Просвещение, 1990

  • Крамор В.С . Повторяем и систематизируем школьный курс алгебры и начал анализа. – М.: Просвещение, 1990.
  • Галицкий М.Л., Гольдман А.М., Звавич Л.И . Сборник задач по алгебре. – М.: Просвещение, 1994.
  • Звавич Л.И., Шляпочник Л.Я. Алгебра и начала анализа. Решение экзаменационных задач. – М.: Дрофа, 1998.
  • Макарычев Ю.Н. и др. Дидактические материалы по алгебре 7, 8, 9 кл. – М.: Просвещение, 2001.
  • Саакян С.И., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа для 10–11-х классов. – М.: Просвещение, 1990.
  • Журналы “Математика в школе”.
  • Л.С. Лаппо и др. ЕГЭ. Учебное пособие. – М.: Экзамен, 2001–2008.
  • 1. Системы линейных уравнений с параметром

    Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод. Знание графической интерпретации линейных систем позволяет легко ответить на вопрос о количестве корней и их существовании.

    Пример 1.

    Найти все значения для параметра а, при которых система уравнений не имеет решений.

    {х + (а 2 – 3)у = а,
    {х + у = 2.

    Решение.

    Рассмотрим несколько способов решения данного задания.

    1 способ . Используем свойство: система не имеет решений, если отношение коэффициентов перед х равно отношению коэффициентов перед у, но не равно отношению свободных членов (а/а 1 = b/b 1 ≠ c/c 1). Тогда имеем:

    1/1 = (а 2 – 3)/1 ≠ а/2 или систему

    {а 2 – 3 = 1,
    {а ≠ 2.

    Из первого уравнения а 2 = 4, поэтому с учетом условия, что а ≠ 2, получаем ответ.

    Ответ: а = -2.

    2 способ . Решаем методом подстановки.

    {2 – у + (а 2 – 3)у = а,
    {х = 2 – у,

    {(а 2 – 3)у – у = а – 2,
    {х = 2 – у.

    После вынесения в первом уравнении общего множителя у за скобки, получим:

    {(а 2 – 4)у = а – 2,
    {х = 2 – у.

    Система не имеет решений, если первое уравнение не будет иметь решений, то есть

    {а 2 – 4 = 0,
    {а – 2 ≠ 0.

    Очевидно, что а = ±2, но с учетом второго условия в ответ идет только ответ с минусом.

    Ответ: а = -2.

    Пример 2.

    Найти все значения для параметра а, при которых система уравнений имеет бесконечное множество решений.

    {8х + ау = 2,
    {ах + 2у = 1.

    Решение.

    По свойству, если отношение коэффициентов при х и у одинаковое, и равно отношению свободных членов системы, то она имеет бесконечное множество решений (т. е. а/а 1 = b/b 1 = c/c 1). Следовательно 8/а = а/2 = 2/1. Решая каждое из полученных уравнений находим, что а = 4 – ответ в данном примере.

    Ответ: а = 4.

    2. Системы рациональных уравнений с параметром

    Пример 3.

    {3|х| + у = 2,
    {|х| + 2у = a.

    Решение.

    Умножим первое уравнение системы на 2:

    {6|х| + 2у = 4,
    {|х| + 2у = a.

    Вычтем из первого второе уравнение, получим 5|х| = 4 – а. Это уравнение будет иметь единственное решение при а = 4. В других случаях это уравнение будет иметь два решения (при а < 4) или ни одного (при а > 4).

    Ответ: а = 4.

    Пример 4.

    Найти все значения параметра а, при которых система уравнений имеет единственное решение.

    {х + у = а,
    {у – х 2 = 1.

    Решение.

    Данную систему решим с использованием графического метода. Так, графиком второго уравнения системы является парабола, поднятая по оси Оу вверх на один единичный отрезок. Первое уравнение задает множество прямых, параллельных прямой y = -x (рисунок 1) . Из рисунка хорошо видно, что система имеет решение, если прямая у = -х + а является касательной к параболе в точке с координатами (-0,5; 1,25). Подставив в уравнение прямой вместо х и у эти координаты, находим значение параметра а:

    1,25 = 0,5 + а;

    Ответ: а = 0,75.

    Пример 5.

    Используя метод подстановки, выясните, при каком значении параметра а, система имеет единственное решение.

    {ах – у = а + 1,
    {ах + (а + 2)у = 2.

    Решение.

    Из первого уравнения выразим у и подставим во второе:

    {у = ах – а – 1,
    {ах + (а + 2)(ах – а – 1) = 2.

    Приведем второе уравнение к виду kx = b, которое будет иметь единственное решение при k ≠ 0. Имеем:

    ах + а 2 х – а 2 – а + 2ах – 2а – 2 = 2;

    а 2 х + 3ах = 2 + а 2 + 3а + 2.

    Квадратный трехчлен а 2 + 3а + 2 представим в виде произведения скобок

    (а + 2)(а + 1), а слева вынесем х за скобки:

    (а 2 + 3а)х = 2 + (а + 2)(а + 1).

    Очевидно, что а 2 + 3а не должно быть равным нулю, поэтому,

    а 2 + 3а ≠ 0, а(а + 3) ≠ 0, а значит а ≠ 0 и ≠ -3.

    Ответ: а ≠ 0; ≠ -3.

    Пример 6.

    Используя графический метод решения, определите, при каком значении параметра а, система имеет единственное решение.

    {х 2 + у 2 = 9,
    {у – |х| = а.

    Решение.

    Исходя из условия, строим окружность с центром в начале координат и радиусом 3 единичных отрезка, именно ее задает первое уравнение системы

    х 2 + у 2 = 9. Второе уравнение системы (у = |х| + а) – ломаная. С помощью рисунка 2 рассматриваем все возможные случаи ее расположения относительно окружности. Легко видеть, что а = 3.

    Ответ: а = 3.

    Остались вопросы? Не знаете, как решать системы уравнений?
    Чтобы получить помощь репетитора – .
    Первый урок – бесплатно!

    blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

    Задание 1 #6329

    Уровень задания: Равен ЕГЭ

    Найдите все значения параметра \(a\) , при каждом из которых система \[\begin{cases} (x-2a-2)^2+(y-a)^2=1\\ y^2=x^2\end{cases}\]

    имеет ровно четыре решения.

    (ЕГЭ 2018, основная волна)

    Второе уравнение системы можно переписать в виде \(y=\pm x\) . Следовательно, рассмотрим два случая: когда \(y=x\) и когда \(y=-x\) . Тогда количество решений системы будет равно сумме количества решений в первом и во втором случаях.

    1) \(y=x\) . Подставим в первое уравнение и получим: \ (заметим, что в случае \(y=-x\) мы поступим так же и тоже получим квадратное уравнение)
    Чтобы исходная система имела 4 различных решения, нужно, чтобы в каждом из двух случаев получилось по 2 решения.
    Квадратное уравнение имеет два корня, когда его \(D>0\) . Найдем дискриминант уравнения (1):
    \(D=-4(a^2+4a+2)\) .
    Дискриминант больше нуля: \(a^2+4a+2<0\) , откуда \(a\in (-2-\sqrt2; -2+\sqrt2)\) .

    2) \(y=-x\) . Получаем квадратное уравнение: \ Дискриминант больше нуля: \(D=-4(9a^2+12a+2)>0\) , откуда \(a\in \left(\frac{-2-\sqrt2}3; \frac{-2+\sqrt2}3\right)\) .

    Необходимо проверить, не совпадают ли решения в первом случае с решениями во втором случае.

    Пусть \(x_0\) – общее решение уравнений (1) и (2), тогда \ Отсюда получаем, что либо \(x_0=0\) , либо \(a=0\) .
    Если \(a=0\) , то уравнения (1) и (2) получаются одинаковыми, следовательно, имеют одинаковые корни. Этот случай нам не подходит.
    Если \(x_0=0\) – их общий корень, то тогда \(2x_0^2-2(3a+2)x_0+(2a+2)^2+a^2-1=0\) , откуда \((2a+2)^2+a^2-1=0\) , откуда \(a=-1\) или \(a=-0,6\) . Тогда вся исходная система будет иметь 3 различных решения, что нам не подходит.

    Учитывая все это, в ответ пойдут:

    Ответ:

    \(a\in\left(\frac{-2-\sqrt2}3; -1\right)\cup\left(-1; -0,6\right)\cup\left(-0,6; -2+\sqrt2\right)\)

    Задание 2 #4032

    Уровень задания: Равен ЕГЭ

    Найдите все значения \(a\) , при каждом из которых система \[\begin{cases} (a-1)x^2+2ax+a+4\leqslant 0\\ ax^2+2(a+1)x+a+1\geqslant 0 \end{cases}\]

    имеет единственное решение.

    Перепишем систему в виде: \[\begin{cases} ax^2+2ax+a\leqslant x^2-4\\ ax^2+2ax+a\geqslant -2x-1 \end{cases}\] Рассмотрим три функции: \(y=ax^2+2ax+a=a(x+1)^2\) , \(g=x^2-4\) , \(h=-2x-1\) . Из системы следует, что \(y\leqslant g\) , но \(y\geqslant h\) . Следовательно, чтобы система имела решения, график \(y\) должен находиться в области, которая задается условиями: “выше” графика \(h\) , но “ниже” графика \(g\) :

    (будем называть “левую” область областью I, “правую” область – областью II)
    Заметим, что при каждом фиксированном \(a\ne 0\) графиком \(y\) является парабола, вершина которой находится в точке \((-1;0)\) , а ветви обращены либо вверх, либо вниз. Если \(a=0\) , то уравнение выглядит как \(y=0\) и графиком является прямая, совпадающая с осью абсцисс.
    Заметим, что для того, чтобы исходная система имела единственное решение, нужно, чтобы график \(y\) имел ровно одну общую точку с областью I или с областью II (это значит, что график \(y\) должен иметь единственную общую точку с границей одной из этих областей).

    Рассмотрим по отдельности несколько случаев.

    1) \(a>0\) . Тогда ветви параболы \(y\) обращены вверх. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола \(y\) касалась границы области I или границы области II, то есть касалась параболы \(g\) , причем абсцисса точки касания должна быть \(\leqslant -3\) или \(\geqslant 2\) (то есть парабола \(y\) должна коснуться границы одной из областей, которая находится выше оси абсцисс, раз парабола \(y\) лежит выше оси абсцисс).

    \(y"=2a(x+1)\) , \(g"=2x\) . Условия касания графиков \(y\) и \(g\) в точке с абсциссой \(x_0\leqslant -3\) или \(x_0\geqslant 2\) : \[\begin{cases} 2a(x_0+1)=2x_0\\ a(x_0+1)^2=x_0^2-4 \\ \left[\begin{gathered}\begin{aligned} &x_0\leqslant -3\\ &x_0\geqslant 2 \end{aligned}\end{gathered}\right. \end{cases} \quad\Leftrightarrow\quad \begin{cases} \left[\begin{gathered}\begin{aligned} &x_0\leqslant -3\\ &x_0\geqslant 2 \end{aligned}\end{gathered}\right.\\ a=\dfrac{x_0}{x_0+1}\\ x_0^2+5x_0+4=0 \end{cases}\] Из данной системы \(x_0=-4\) , \(a=\frac43\) .
    Получили первое значение параметра \(a\) .

    2) \(a=0\) . Тогда \(y=0\) и видно, что прямая имеет бесконечное множество общих точек с областью II. Следовательно, это значение параметра нам не подходит.


    3) \(a<0\) . Тогда ветви параболы \(y\) обращены вниз. Чтобы у исходной системы было единственное решение, нужно, чтобы парабола \(y\) имела одну общую точку с границей области II, лежащей ниже оси абсцисс. Следовательно, она должна проходить через точку \(B\) , причем, если парабола \(y\) будет иметь еще одну общую точку с прямой \(h\) , то эта общая точка должна быть “выше” точки \(B\) (то есть абсцисса второй точки должна быть \(<1\) ).

    Найдем \(a\) , при которых парабола \(y\) проходит через точку \(B\) : \[-3=a(1+1)^2\quad\Rightarrow\quad a=-\dfrac34\] Убеждаемся, что при этом значении параметра вторая точка пересечения параболы \(y=-\frac34(x+1)^2\) с прямой \(h=-2x-1\) – это точка с координатами \(\left(-\frac13; -\frac13\right)\) .
    Таким образом, получили еще одно значение параметра.

    Так как мы рассмотрели все возможные случаи для \(a\) , то итоговый ответ: \

    Ответ:

    \(\left\{-\frac34; \frac43\right\}\)

    Задание 3 #4013

    Уровень задания: Равен ЕГЭ

    Найдите все значения параметра \(a\) , при каждом из которых система уравнений \[\begin{cases} 2x^2+2y^2=5xy\\ (x-a)^2+(y-a)^2=5a^4 \end{cases}\]

    имеет ровно два решения.

    1) Рассмотрим первое уравнение системы как квадратное относительно \(x\) : \ Дискриминант равен \(D=9y^2\) , следовательно, \ Тогда уравнение можно переписать в виде \[(x-2y)\cdot (2x-y)=0\] Следовательно, всю систему можно переписать в виде \[\begin{cases} \left[\begin{gathered}\begin{aligned} &y=2x\\ &y=0,5x\end{aligned}\end{gathered}\right.\\ (x-a)^2+(y-a)^2=5a^4\end{cases}\] Совокупность задает две прямые, второе уравнение системы задает окружность с центром в \((a;a)\) и радиусом \(R=\sqrt5a^2\) . Чтобы исходное уравнение имело два решения, нужно, чтобы окружность пересекала график совокупности ровно в двух точках. Вот чертеж, когда, например, \(a=1\) :


    Заметим, что так как координаты центра окружности равны, то центр окружности “бегает” по прямой \(y=x\) .

    2) Так как у прямой \(y=kx\) тангенс угла наклона этой прямой к положительному направлению оси \(Ox\) равен \(k\) , то тангенс угла наклона прямой \(y=0,5x\) равен \(0,5\) (назовем его \(\mathrm{tg}\,\alpha\) ), прямой \(y=2x\) – равен \(2\) (назовем его \(\mathrm{tg}\,\beta\) ). Заметим, что \(\mathrm{tg}\,\alpha\cdot \mathrm{tg}\,\beta=1\) , следовательно, \(\mathrm{tg}\,\alpha=\mathrm{ctg}\,\beta=\mathrm{tg}\,(90^\circ-\beta)\) . Следовательно, \(\alpha=90^\circ-\beta\) , откуда \(\alpha+\beta=90^\circ\) . Это значит, что угол между \(y=2x\) и положительным направлением \(Oy\) равен углу между \(y=0,5x\) и положительным направлением \(Ox\) :


    А так как прямая \(y=x\) является биссектрисой I координатного угла (то есть углы между ней и положительными направлениями \(Ox\) и \(Oy\) равны по \(45^\circ\) ), то углы между \(y=x\) и прямыми \(y=2x\) и \(y=0,5x\) равны.
    Все это нам нужно было для того, чтобы сказать, что прямые \(y=2x\) и \(y=0,5x\) симметричны друг другу относительно \(y=x\) , следовательно, если окружность касается одной из них, то она обязательно касается и второй прямой.
    Заметим, что если \(a=0\) , то окружность вырождается в точку \((0;0)\) и имеет лишь одну точку пересечения с обеими прямыми. То есть этот случай нам не подходит.
    Таким образом, для того, чтобы окружность имела 2 точки пересечения с прямыми, нужно, чтобы она касалась этих прямых:


    Видим, что случай, когда окружность располагается в третьей четверти, симметричен (относительно начала координат) случаю, когда она располагается в первой четверти. То есть в первой четверти \(a>0\) , а в третьей \(a<0\) (но такие же по модулю).
    Поэтому рассмотрим только первую четверть.


    Заметим, что \(OQ=\sqrt{(a-0)^2+(a-0)^2}=\sqrt2a\) , \(QK=R=\sqrt5a^2\) . Тогда \ Тогда \[\mathrm{tg}\,\angle QOK=\dfrac{\sqrt5a^2}{\sqrt{2a^2-5a^4}}\] Но, с другой стороны, \[\mathrm{tg}\,\angle QOK=\mathrm{tg}\,(45^\circ-\alpha)=\dfrac{\mathrm{tg}\, 45^\circ-\mathrm{tg}\,\alpha}{1+\mathrm{tg}\,45^\circ\cdot \mathrm{tg}\,\alpha}\] следовательно, \[\dfrac{1-0,5}{1+1\cdot 0,5}=\dfrac{\sqrt5a^2}{\sqrt{2a^2-5a^4}} \quad\Leftrightarrow\quad a=\pm \dfrac15\] Таким образом, мы уже сразу получили и положительное, и отрицательное значение для \(a\) . Следовательно, ответ: \

    Ответ:

    \(\{-0,2;0,2\}\)

    Задание 4 #3278

    Уровень задания: Равен ЕГЭ

    Найдите все значения \(a\) , для каждого из которых уравнение \

    имеет единственное решение.

    (ЕГЭ 2017, официальный пробный 21.04.2017)

    Сделаем замену \(t=5^x, t>0\) и перенесем все слагаемые в одну часть: \ Получили квадратное уравнение, корнями которого по теореме Виета являются \(t_1=a+6\) и \(t_2=5+3|a|\) . Для того, чтобы исходное уравнение имело один корень, достаточно, чтобы полученное уравнение с \(t\) тоже имело один (положительный!) корень.
    Заметим сразу, что \(t_2\) при всех \(a\) будет положительным. Таким образом, получаем два случая:

    1) \(t_1=t_2\) : \ &a=-\dfrac14 \end{aligned} \end{gathered} \right.\]

    2) Так как \(t_2\) всегда положителен, то \(t_1\) должен быть \(\leqslant 0\) : \

    Ответ:

    \((-\infty;-6]\cup\left\{-\frac14;\frac12\right\}\)

    Задание 5 #3252

    Уровень задания: Равен ЕГЭ

    \[\sqrt{x^2-a^2}=\sqrt{3x^2-(3a+1)x+a}\]

    имеет ровно один корень на отрезке \(\) .

    (ЕГЭ 2017, резервный день)

    Уравнение можно переписать в виде: \[\sqrt{(x-a)(x+a)}=\sqrt{(3x-1)(x-a)}\] Таким образом, заметим, что \(x=a\) является корнем уравнения при любых \(a\) , так как уравнение принимает вид \(0=0\) . Для того, чтобы этот корень принадлежат отрезку \(\) , нужно, чтобы \(0\leqslant a\leqslant 1\) .
    Второй корень уравнения находится из \(x+a=3x-1\) , то есть \(x=\frac{a+1}2\) . Для того, чтобы это число было корнем уравнения, нужно, чтобы оно удовлетворяло ОДЗ уравнения, то есть: \[\left(\dfrac{a+1}2-a\right)\cdot \left(\dfrac{a+1}2+a\right)\geqslant 0\quad\Rightarrow\quad -\dfrac13\leqslant a\leqslant 1\] Для того, чтобы этот корень принадлежал отрезку \(\) , нужно, чтобы \ Таким образом, чтобы корень \(x=\frac{a+1}2\) существовал и принадлежал отрезку \(\) , нужно, чтобы \(-\frac13\leqslant a\leqslant 1\) .
    Заметим, что тогда при \(0\leqslant a\leqslant 1\) оба корня \(x=a\) и \(x=\frac{a+1}2\) принадлежат отрезку \(\) (то есть уравнение имеет два корня на этом отрезке), кроме случая, когда они совпадают: \ Таким образом, нам подходят \(a\in \left[-\frac13; 0\right)\) и \(a=1\) .

    Ответ:

    \(a\in \left[-\frac13;0\right)\cup\{1\}\)

    Задание 6 #3238

    Уровень задания: Равен ЕГЭ

    Найдите все значения параметра \(a\) , при каждом из которых уравнение \

    имеет единственный корень на отрезке \(.\)

    (ЕГЭ 2017, резервный день)

    Уравнение равносильно: \ ОДЗ уравнения: \[\begin{cases} x\geqslant 0\\ x-a\geqslant 0\\3a(1-x) \geqslant 0\end{cases}\] На ОДЗ уравнение перепишется в виде: \

    1) Пусть \(a<0\) . Тогда ОДЗ уравнения: \(x\geqslant 1\) . Следовательно, для того, чтобы уравнение имело единственный корень на отрезке \(\) , этот корень должен быть равен \(1\) . Проверим: \ Не подходит под \(a<0\) . Следовательно, эти значения \(a\) не подходят.

    2) Пусть \(a=0\) . Тогда ОДЗ уравнения: \(x\geqslant 0\) . Уравнение перепишется в виде: \ Полученный корень подходит под ОДЗ и входит в отрезок \(\) . Следовательно, \(a=0\) – подходит.

    3) Пусть \(a>0\) . Тогда ОДЗ: \(x\geqslant a\) и \(x\leqslant 1\) . Следовательно, если \(a>1\) , то ОДЗ – пустое множество. Таким образом, \(0 Рассмотрим функцию \(y=x^3-a(x^2-3x+3)\) . Исследуем ее.
    Производная равна \(y"=3x^2-2ax+3a\) . Определим, какого знака может быть производная. Для этого найдем дискриминант уравнения \(3x^2-2ax+3a=0\) : \(D=4a(a-9)\) . Следовательно, при \(a\in (0;1]\) дискриминант \(D<0\) . Значит, выражение \(3x^2-2ax+3a\) положительно при всех \(x\) . Следовательно, при \(a\in (0;1]\) производная \(y">0\) . Следовательно, \(y\) возрастает. Таким образом, по свойству возрастающей функции уравнение \(y(x)=0\) может иметь не более одного корня.

    Следовательно, для того, чтобы корень уравнения (точка пересечения графика \(y\) с осью абсцисс) находился на отрезке \(\) , нужно, чтобы \[\begin{cases} y(1)\geqslant 0\\ y(a)\leqslant 0 \end{cases}\quad\Rightarrow\quad a\in \] Учитывая, что изначально в рассматриваемом случае \(a\in (0;1]\) , то ответ \(a\in (0;1]\) . Заметим, что корень \(x_1\) удовлетворяет \((1)\) , корни \(x_2\) и \(x_3\) удовлетворяют \((2)\) . Также заметим, что корень \(x_1\) принадлежит отрезку \(\) .
    Рассмотрим три случая:

    1) \(a>0\) . Тогда \(x_2>3\) , \(x_3<3\) , следовательно, \(x_2\notin .\) Тогда уравнение будет иметь один корень на \(\) в одном из двух случаях:
    - \(x_1\) удовлетворяет \((2)\) , \(x_3\) не удовлетворяет \((1)\) , или совпадает с \(x_1\) , или удовлетворяет \((1)\) , но не входит в отрезок \(\) (то есть меньше \(0\) );
    - \(x_1\) не удовлетворяет \((2)\) , \(x_3\) удовлетворяет \((1)\) и не равен \(x_1\) .
    Заметим, что \(x_3\) не может быть одновременно меньше нуля и удовлетворять \((1)\) (то есть быть больше \(\frac35\) ). Учитывая это замечание, случаи записываются в следующую совокупность: \[\left[ \begin{gathered}\begin{aligned} &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2>0\\ 3-a\leqslant \dfrac35\end{cases}\\ &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2\leqslant 0\\ 3-a> Решая данную совокупность и учитывая, что \(a>0\) , получим: \

    2) \(a=0\) . Тогда \(x_2=x_3=3\in .\) Заметим, что в этом случае \(x_1\) удовлетворяет \((2)\) и \(x_2=3\) удовлетворяет \((1)\) , то есть уравнение имеет два корня на \(\) . Это значение \(a\) нам не подходит.

    3) \(a<0\) . Тогда \(x_2<3\) , \(x_3>3\) и \(x_3\notin \) . Рассуждая аналогично пункту 1), нужно решить совокупность: \[\left[ \begin{gathered}\begin{aligned} &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2>0\\ 3+a\leqslant \dfrac35\end{cases}\\ &\begin{cases} \dfrac9{25}-6\cdot \dfrac35+10-a^2\leqslant 0\\ 3+a> \dfrac35\end{cases} \end{aligned}\end{gathered}\right.\] Решая данную совокупность и учитывая, что \(a<0\) , получим: \\]

    Ответ:

    \(\left(-\frac{13}5;-\frac{12}5\right] \cup\left[\frac{12}5;\frac{13}5\right)\)

    МКОУ «Лодейнопольская средняя общеобразовательная школа № 68»

    _________________________________________________________________________________________________________________________________

    Выступление на заседании МО

    Методы решения задач

    с параметрами

    Прокушева Наталья Геннадьевна

    г. Лодейное Поле

    2013-2014

    Задачи с параметрами

    Задачи с параметрами относятся к наиболее сложным из задач, предлагающихся как на Едином государственном экзамене, так и на дополнительных конкурсных экзаменах в ВУЗы.

    Они играют важную роль в формировании логического мышления и математической культуры. Затруднения, возникающие при их решении связаны с тем, что каждая задача с параметрами представляет собой целый класс обычных задач, для каждой из которых должно быть получено решение.

    Если в уравнении (неравенстве) некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а уравнение (неравенство) параметрическим.

    Как правило, неизвестные обозначаются последними буквами латинского алфавита: x , y , z , …, а параметры – первыми: a , b , c , …

    Решить уравнение (неравенство) с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они. Два уравнения (неравенства), содержащие одни и те же параметры, называются равносильными, если:

    а) они имеют смысл при одних и тех же значениях параметров;

    б) каждое решение первого уравнения (неравенства) является решением второго и наоборот.

    Естественно, такой небольшой класс задач многим не позволяет усвоить главное: параметр, будучи фиксированным, но неизвестным числом, имеет как бы двойственную природу. Во-первых, предполагаемая известность позволяет «общаться» с параметром как с числом, а во-вторых, – степень свободы общения ограничивается его неизвестностью. Так, деление на выражение, содержащее параметр, извлечение корня четной степени из подобных выражений требуют предварительных исследований. Как правило, результаты этих исследований влияют и на решение, и на ответ.

    Как начинать решать такие задачи? Не надо бояться задач с параметрами. Прежде всего, надо сделать то, что делается при решении любого уравнения или неравенства- привести заданное уравнение (неравенство) к более простому виду, если это возможно: разложить рациональное выражение на множители, разложить тригонометрический многочлен на множители, избавиться от модулей, логарифмов, и т.д.. затем необходимо внимательно еще и еще прочитать задание.

    При решении задач, содержащих параметр, встречаются задачи, которые условно можно разделить на два большие класса. В первый класс можно отнести задачи, в которых надо решить неравенство или уравнение при всех возможных значениях параметра. Ко второму классу отнесем задания, в которых надо найти не все возможные решения, а лишь те из них, которые удовлетворяют некоторым дополнительным условиям.

    Наиболее понятный для школьников способ решения таких задач состоит в том, что сначала находят все решения, а затем отбирают те, которые удовлетворяют дополнительным условиям. Но это удается не всегда. Встречаются большое количество задач, в которых найти все множество решений невозможно, да нас об этом и не просят. Поэтому приходится искать способ решить поставленную задачу, не имея в распоряжении всего множества решений данного уравнения или неравенства, например, поискать свойства входящих в уравнение функций, которые позволят судить о существовании некоторого множества решений.

    Основные типы задач с параметрами

    Тип 1. Уравнения, неравенства, их системы и совокупности, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству.

    Этот тип задач является базовым при овладении темой «Задачи с параметрами», поскольку вложенный труд предопределяет успех и при решении задач всех других основных типов.

    Тип 2. Уравнения, неравенства, их системы и совокупности, для которых требуется определить количество решений в зависимости от значения параметра (параметров).

    Обращаем внимание на то, что при решении задач данного типа нет необходимости ни решать заданные уравнения, неравенства, их системы и совокупности и т. д., ни приводить эти решения; такая лишняя в большинстве случаев работа является тактической ошибкой, приводящей к неоправданным затратам времени. Однако не стоит абсолютизировать сказанное, так как иногда прямое решение в соответствии с типом 1 является единственным разумным путем получения ответа при решении задачи типа 2.

    Тип 3. Уравнения, неравенства, их системы и совокупности, для которых требуется найти все те значения параметра, при которых указанные уравнения, неравенства, их системы и совокупности имеют заданное число решений (в частности, не имеют или имеют бесконечное множество решений).

    Легко увидеть, что задачи типа 3 в каком-то смысле обратны задачам типа 2.

    Тип 4. Уравнения, неравенства, их системы и совокупности, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

    Например, найти значения параметра, при которых:

    1) уравнение выполняется для любого значения переменной из заданного промежутка;
    2) множество решений первого уравнения является подмножеством множества решений второго уравнения и т. д.

    Комментарий. Многообразие задач с параметром охватывает весь курс школьной математики (и алгебры, и геометрии), но подавляющая часть из них на выпускных и вступительных экзаменах относится к одному из четырех перечисленных типов, которые по этой причине названы основными.

    Наиболее массовый класс задач с параметром - задачи с одной неизвестной и одним параметром. Следующий пункт указывает основные способы решения задач именно этого класса.

    Основные методы решения задач с параметром

    Способ I (аналитический). Это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Иногда говорят, что это способ силового, в хорошем смысле «наглого» решения.

    Способ II (графический). В зависимости от задачи (с переменной x и параметром a ) рассматриваются графики или в координатной плоскости (x; y ), или в координатной плоскости (x ; a ).

    Комментарий. Исключительная наглядность и красота графического способа решения задач с параметром настолько увлекает изучающих тему «Задачи с параметром», что они начинают игнорировать другие способы решения, забывая общеизвестный факт: для любого класса задач их авторы могут сформулировать такую, которая блестяще решается данным способом и с колоссальными трудностями остальными способами. Поэтому на начальной стадии изучения опасно начинать с графических приемов решения задач с параметром.

    Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными и выбирается та переменная, относительно которой аналитическое решение признается более простым. После естественных упрощений возвращаемся к исходному смыслу переменных x и a и заканчиваем решение.

    Перейдем теперь к демонстрации указанных способов решения задач с параметром.

    1. Линейные уравнения и неравенства с параметрами

    Линейная функция: – уравнение прямой с угловым коэффициентом . Угловой коэффициент равен тангенсу угла наклона прямой к положительному направлению оси .

    Линейные уравнения с параметрами вида

    Если , уравнение имеет единственное решение.

    Если , тоуравнение не имеет решений , когда , и уравнение имеет бесконечно много решений , когда .

    Пример 1. Решить уравнение | x | = a .

    Решение:

      a > 0, => x 1,2 = ± a

      a = 0, => x = 0

      a < 0, => решений нет.

    Ответ: x 1,2 = ±a при a > 0; x = 0 при a = 0; решений нет при a < 0.

    Пример 2. Решить уравнение |3 – x | = a .

    Решение:

      a > 0, => 3 – x = ± a , => x = 3 ± a

      a = 0, => 3 – x = 0. => x = 3

      a < 0, => решений нет.

    Ответ: x 1,2 = 3 ±a при a > 0; x = 3 при a = 0; решений нет при a < 0.

    Пример 3. Решить уравнение m ² x m = x + 1.

    Решение:

    m ² x m = x + 1

    m ² x x = m + 1

    (m² – 1)x = m + 1


    Ответ:
    при m ± 1; x Є R при m = –1; решений нет при m = 1.

    Пример 4. а решить уравнение: ( a 2 – 4) x = a + 2 .

    Решение: Разложим коэффициент при на множители. .

    Если , уравнение имеет единственное решение: .

    Если , уравнение не имеет решений.

    Если , тоуравнение имеет бесконечно много решений .

    Пример 6. При всех значениях параметра a решить уравнение:
    .

    Решение: ОДЗ: . При этом условии уравнение равносильно следующему: . Проверим принадлежность к ОДЗ: , если . Если же , то уравнение не имеет решений.

    Пример 7. При всех значениях параметра а решить уравнение: | х + 3| – a | x – 1| = 4.

    Решение: Разобьем числовую прямую на 3 части точками, в которых выражения под знаком модуля обращаются в нуль и решим 3 системы:

    1) , если . Найденный будет решением, если .

    2) , если . Найденный удовлетворяет нужному неравенству, следовательно, является решением при . Если же , то решением является любой .

    3) , если . Найденный не удовлетворяет нужному неравенству, следовательно, не является решением при . Если же , то решением является любой x > 1.

    Ответ: при ; при ;

    п ри ; является также решением при всех .

    Пример 8. Найти все а , при каждом из которых хотя бы одно из решений уравнения 15x – 7a = 2 – 3ax + 6a меньше 2 .

    Решение: Найдем решения уравнения при каждом . , если . Решим неравенство: .

    При уравнение не имеет решений.

    Ответ : а Î (–5 , 4) .

    Линейные неравенства с параметрами

    Например: Решить неравенство: kx < b .

    Если k > 0, то
    . Если k < 0, то
    . Если k = 0, то при b > 0 решением является любой x Є R , а при
    решений нет.

    Аналогично решите остальные неравенства в рамочке.

    Пример 1. Для всех значений параметра а решить неравенство
    .

    Решение:


    . Если скобка перед x положительна, т.е. при
    , то
    . Если скобка перед x отрицательна, т.е. при
    , то
    . Если же a = 0 или a = , то решений нет.

    Ответ:
    при
    ;
    при
    ;

    решений нет при a = 0 или a = .

    Пример 2 . Для всех значений параметра а решить неравенство |х – а| – |x + a | < 2a .

    Решение:

    При a =0 имеем неверное неравенство 0 < 0, т.е. решений нет. Пусть a > 0, тогда при x < –a оба модуля раскрываются с минусом и получаем неверное неравенство 2a < 2a , т.е. решений нет. Если x Є [–a ; a ] , то первый модуль раскрывается с минусом, а второй с плюсом и получаем неравенство –2x < 2a , т.е. x > –a , т.е., решением является любой x Є (–a ; a ]. Если x > a оба модуля раскрываются с плюсом и получаем верное неравенство –2a < 2a , т.е. , решением является любой x Є (a ; +∞). Объединяя оба ответа, получим, что при a > 0 x Є (–a ; +∞).

    Пусть a < 0, тогда первое слагаемое больше, чем второе, поэтому разность в левой части неравенства положительна и, следовательно, не может быть меньше отрицательного числа 2a . Т.о., при a < 0 решений нет.

    Ответ: x Є (–a ; +∞) при a > 0, решений нет при
    .

    Замечание. Решение данной задачи получается быстрее и проще, если использовать геометрическую интерпретацию модуля разности двух чисел, как расстояние между точками. Тогда выражение в левой части можно интерпретировать, как разность расстояний от точки х до точек а и –а .

    Пример 3. Найти все а , при каждом из которых все решения неравенства
    удовлетворяют неравенству 2x a ² + 5 < 0.

    Решение:

    Решением неравенства |x | ≤ 2 является множество A =[–2; 2], а решением неравенства 2x a ² + 5 < 0 является множество B = (–∞;
    ) . Чтобы удовлетворить условию задачи, нужно, чтобы множество А входило в множество В (). Это условие выполнится тогда и только тогда, когда .

    Ответ: a Є (–∞; –3)U (3; +∞).

    Пример 4. Найти все значения a , при которых неравенство
    выполняется для всех x из отрезка .

    Решение:

    Дробь – меньше нуля между корнями, поэтому надо выяснить, какой корень больше.

    –3a + 2 < 2a + 4
    и –3a + 2 > 2a + 4
    . Т.о., при
    x Є (–3a + 2; 2a + 4) и чтобы неравенство выполнялось для всех x из отрезка , нужно, чтобы

    При
    x Є (2a + 4; –3a + 2) и чтобы неравенство выполнялось для всех x из отрезка , нужно, чтобы

    При a = – (когда корни совпадают) решений нет, т.к. в этом случае неравенство приобретает вид: .

    Ответ:
    .

    Пример 5. а неравенство справедливо при всех отрицательных значениях х ?

    Решение:

    Функция монотонно возрастает, если коэффициент при x неотрицательный, и она монотонно убывает, если коэффициент при x отрицательный.

    Выясним знак коэффициента при

    a ≤ –3,

    a ≥ 1; (a ² + 2 a – 3) < 0 <=> –3 < a < 1.

    a ≤ –3,

    Пусть a ≥ 1. Тогда функция f (x ) монотонно не убывает, и условие задачи будет выполнено, если f (x ) ≤ 0 <=> 3a ² – a – 14 ≤ 0 <=>
    .

    a ≤ –3,

    Вместе с условиями a ≥ 1; получим:

    Пусть –3 < a < 1. Тогда функция f (x ) монотонно убывает, и условие задачи никогда не может быть выполнено.

    Ответ :
    .

    2. Квадратные уравнения и неравенства с параметрами

    Квадратичная функция:
    .

    В множестве действительных чисел это уравнение исследуется по следующей схеме.

    Пример 1 . При каких значениях a уравнение x ² – ax + 1 = 0 не имеет действительных корней?

    Решение:

    x ² – ax + 1 = 0

    D = a ² – 4 · 1 = a ² – 4


    a ² – 4 < 0 + – +

    ( a – 2)( a + 2) < 0 –2 2

    Ответ : при a Є (–2; 2)

    Пример 2. При каких значениях а уравнение а (х ² – х + 1) = 3 х + 5 имеет два различных действительных корня?

    Решение:

    а (х ² – х + 1) = 3 х + 5, а ≠ 0

    ах ² – ах+ а – 3 х – 5 = 0

    ах ² – ( а + 3) х + а – 5 = 0

    D = ( a +3)² – 4 a ( a – 5) = a ² +6 a + 9 – 4 a ² + 20 a = –3 a ² + 26 a + 9

    3 a ² + 26 a + 9 > 0

    3 a ² – 26 a – 9 < 0

    D = 26² – 4 · 3 · (–9) = 784

    a 1 =
    ; a 2 =
    + – +

    0 9

    Ответ: при a Є (–1/3; 0) U (0; 9)

    Пример 3. Решить уравнение
    .

    Решение:



    ОДЗ : x ≠1, x a

    x – 1 + x a = 2, 2 x = 3 + a ,

    1)
    ; 3 + a ≠ 2; a ≠ –1

    2)
    ; 3 +
    a ≠ 2 a ; a ≠ 3

    Ответ:
    при a Є (–∞; –1) U (–1; 3) U (3; +∞);

    решений нет при a = –1; 3 .

    Пример 4 . Решить уравнение | x ²–2 x –3 | = a .

    Решение:

    Рассмотрим функции y = | x ²–2 x –3 | и y = a .

    При a < 0 нет решений;
    при a = 0 и a > 4 два решения;
    при 0 < a < 4 – четыре решения;
    при a = 4 – три решения.

    Ответ:

    при a < 0 нет решений;
    при a = 0 и a > 4 два решения;
    при 0 < a < 4 – четыре решения;
    при a = 4 – три решения.

    Пример 5. Найти все значения a , при каждом из которых уравнение | x ²–( a +2) x +2 a | = | 3 x –6 |
    имеет ровно два корня. Если таких значений a больше одного, в ответе укажите их произведение.

    Решение:

    Разложим квадратный трехчлен x ²–( a +2) x +2 a на множители.
    ;
    ;
    ;

    Получим | ( x –2)( x a ) | = 3 | x –2 |.
    Это уравнение равносильно совокупности

    Поэтому данное уравнение имеет ровно два корня, если a + 3 = 2 и a – 3 = 2.
    Отсюда находим, что искомыми значениями a являются a 1 = –1; a 2 = 5; a 1 · a 2 = –5.

    Ответ: –5.

    Пример 6. Найти все значения a , при которых корни уравнения ax ² – 2( a + 1) x a + 5 = 0 положительны .

    Решение:

    Контрольная точка a = 0, т.к. меняет суть уравнения.

    1. a = 0 –2x + = 0;

    Ответ: a Є U .

    Пример 7. При каких значениях параметра a уравнение | x ² – 4 x + 3 | = ax имеет 3 корня.

    Решение:

    Построим графики функций y = | x ² – 4 x + 3 | и y = ax .

    На отрезке построен график функции
    .
    Данное уравнение будет иметь три корня, если график функции y = ax будет являться касательной к графику y = x ²+ 4 x – 3 на
    отрезке .

    Уравнение касательной имеет вид y = f (x 0 ) + f ’(x 0 )(x x 0 ),



    Т.к. уравнение касательной y = a , получим систему уравнений

    Т.к. x 0 Є ,

    Ответ: при a = 4 – 2
    .

    Квадратные неравенства с параметрами

    Пример. Найдите все значения параметра a , при каждом из которых среди решений неравенства
    нет ни одной точки отрезка .

    Решение:

    Сначала решим неравенство при всех значениях параметра, а потом найдем те из них, для которых среди решений нет ни одной точки отрезка .
    Пусть
    , ax = t ²

    t ≥ 0

    При такой замене переменных ОДЗ неравенства выполняется автоматически. x можно выразить через t , если a ≠ 0. Поэтому случай, когда a = 0, рассмотрим отдельно.
    1.Пусть a = 0, тогда х > 0, и заданный отрезок является решением.
    2.Пусть a ≠ 0, тогда
    и неравенство
    примет вид
    ,

    Решение неравенства зависит от значений a , поэтому придется рассмотреть два случая.
    1) Если a >0, то
    при
    , или в старых переменных,

    Решение не содержит ни одной точки заданного отрезка , тогда и только тогда, когда выполнены условия a ≤ 7,

    16a ≥ 96. Отсюда, a Є .
    2). Если а < 0, то
    ;
    ; t Є (4a ; a ). Так как t ≥ 0, то решений нет.

    Ответ: .

      Иррациональные уравнения с параметрами

    При решении иррациональных уравнений и неравенств с параметром, во-первых, следует учитывать область допустимых значений. Во-вторых, если обе части неравенства – неотрицательные выражения, то такое неравенство можно возводить в квадрат с сохранением знака неравенства.
    Во многих случаях иррациональные уравнения и неравенства после замены переменных сводятся к квадратным.

    Пример 1. Решить уравнение
    .

    Решение:

    ОДЗ: x + 1 ≥ 0, x ≥ –1, a ≥ 0.

    x + 1 = a ².

    Если x = a ² – 1, то условие выполняется.

    Ответ: x = a ² – 1 при а ≥ 0; решений нет при a < 0.

    Пример 2. Решить уравнение
    .

    Решение:

    ОДЗ: x + 3 ≥ 0, x ≥ –3,

    a – x ≥ 0; x a ;

    x + 3 = a – x ,

    2x = a – 3,

    <=>
    <=>
    <=> a ≥ –3.

    Ответ:
    при a ≥ –3; решений нет при a < –3.

    Пример 3. Сколько корней имеет уравнение
    в зависимости от значений параметра а ?

    Решение:

    Область допустимых значений уравнения: x Є [–2; 2]

    Построим графики функций. График первой функции – это верхняя половина окружности x ² + y ² = 4. График второй функции – биссектрисы первого и второго координатных углов. Из графика первой функции вычтем график второй и получим график функции
    . Если заменить у на а , то последний график функции есть множество точек (х; а), удовлетворяющих исходному уравнению.

    По графику видим ответ.

    Ответ: при а Є (–∞; –2) U (1; +∞), корней нет;

    при а Є [–2; 2), два корня;

    при а = 1, один корень.

    Пример 4. При каких значениях параметра а уравнение
    имеет единственное решение?

    Решение:

    1 способ (аналитический):

    Ответ:

    2 способ (графический):

    Ответ: при а ≥ –2 уравнение имеет единственное решение

    Пример 5. При каких значениях параметра а уравнение = 2 + х имеет единственное решение.

    Решение:

    Рассмотрим графический вариант решения данного уравнения, то есть построим две функции:
    у 1 = 2 + х и у 2 =

    Первая функция является линейной и проходит через точки (0; 2) и (–2; 0).
    График второй функции содержит параметр. Рассмотрим сначала график этой функции при а = 0 (рис.1). При изменении значения параметра график будет передвигаться по оси ОХ на соответсвующее значение влево (при положительных а ) или вправо (при отрицательных а ) (рис.2)



    Из рисунка видно, что при а < –2 графики не пересекают друг друга, а следовательно не имеют общих решений. Если же значение параметра а больше либо равно –2, то графики имеют одну точку пересечения, а следовательно одно решение.

    Ответ: при a ≥ –2 уравнение имеет единственное решение.

      Тригонометрические уравнения с параметрами.

    Пример 1. Решите уравнение sin (– x + 2 x – 1) = b + 1.

    Решение:


    Учитывая нечетность функции
    , данное уравнение сведем к равносильному
    .

    1. b = –1

    3. b =–2

    4. | b + 1| > 1

    Решений нет.

    5. b Є(–1; 0)

    6. b Є(–2; –1)

    Пример 2. Найдите все значения параметра p, при которых уравнение
    не имеет решений.

    Решение:

    Выразим cos 2x через sinx .

    Пусть
    тогда задача свелась к нахождению всех значений p , при которых уравнение не имеет решений на [–1; 1]. Уравнение алгоритмически не решается, поэтому решим задачу, используя график. Запишем уравнение в виде , и теперь эскиз графика левой части
    строится несложно.
    Уравнение не имеет решений, если прямая y = p + 9 не пересекает график на отрезке [–1; 1], т. е.

    Ответ: p Є (–∞; –9) U (17; +∞).

    Системы уравнений с параметрами

      Системы двух линейных уравнений с параметрами

    Система уравнений

    Решениями системы двух линейных уравненийявляются точки пересечения двух прямых: и .

    Возможны 3 случая:

    1. Прямые не параллельны . Тогда и их нормальные вектора не параллельны, т.е. . В этом случае система имеет единственное решение.

    2. Прямые параллельны и не совпадают. Тогда и их нормальные вектора параллельны, но сдвиги различны, т.е. .

    В этом случае система решений не имеет .

    3. Прямые совпадают. Тогда их нормальные вектора параллельны и сдвиги совпадают, т.е. . В этом случае система имеет бесконечно много решений – все точки прямой.