Точка экстремума функции - это точка области определения функции , в которой значение функции принимает минимальное или максимальное значение. Значения функции в этих точках называются экстремумами (минимумом и максимумом) функции .

Определение . Точка x 1 области определения функции f (x ) называется точкой максимума функции , если значение функции в этой точке больше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) > f (x 0 + Δx ) x 1 максимум.

Определение . Точка x 2 области определения функции f (x ) называется точкой минимума функции , если значение функции в этой точке меньше значений функции в достаточно близких к ней точках, расположенных справа и слева от неё (то есть выполняется неравенство f (x 0 ) < f (x 0 + Δx ) ). В этом случае говорят, что функция имеет в точке x 2 минимум.

Допустим, точка x 1 - точка максимума функции f (x ) . Тогда в интервале до x 1 функция возрастает , поэтому производная функции больше нуля (f "(x ) > 0 ), а в интервале после x 1 функция убывает, следовательно, и производная функции меньше нуля (f "(x ) < 0 ). Тогда в точке x 1

Допустим также, что точка x 2 - точка минимума функции f (x ) . Тогда в интервале до x 2 функция убывает, а производная функции меньше нуля (f "(x ) < 0 ), а в интервале после x 2 функция возрастает, а производная функции больше нуля (f "(x ) > 0 ). В этом случае также в точке x 2 производная функции равна нулю или не существует.

Теорема Ферма (необходимый признак существования экстремума функции) . Если точка x 0 - точка экстремума функции f (x ) , то в этой точке производная функции равна нулю (f "(x ) = 0 ) или не существует.

Определение . Точки, в которых производная функции равна нулю или не существует, называются критическими точками .

Пример 1. Рассмотрим функцию .

В точке x = 0 производная функции равна нулю, следовательно, точка x = 0 является критической точкой. Однако, как видно на графике функции, она возрастает во всей области определения, поэтому точка x = 0 не является точкой экстремума этой функции.

Таким образом, условия о том, что производная функции в точке равна нулю или не существует, являются необходимыми условиями экстремума, но не достаточными, поскольку можно привести и другие примеры функций, для которых эти условия выполняются, но экстремума в соответствующей точке функция не имеет. Поэтому нужно располагать достаточными признаками , позволяющими судить, имеется ли в конкретной критической точке экстремум и какой именно - максимум или минимум.

Теорема (первый достаточный признак существования экстремума функции). Критическая точка x 0 f (x ) , если при переходе через эту точку производная функции меняет знак, причём, если знак меняется с "плюса" на "минус", то точкой максимума, а если с "минуса" на "плюс", то точкой минимума.

Если же вблизи точки x 0 , слева и справа от неё, производная сохраняет знак, то это означает, что функция либо только убывает, либо только возрастает в некоторой окрестности точки x 0 . В этом случае в точке x 0 экстремума нет.

Итак, чтобы определить точки экстремума функции, требуется выполнить следующее :

  1. Найти производную функции.
  2. Приравнять производную нулю и определить критические точки.
  3. Мысленно или на бумаге отметить критические точки на числовой оси и определить знаки производной функции в полученных интервалах. Если знак производной меняется с "плюса" на "минус", то критическая точка является точкой максимума, а если с "минуса" на "плюс", то точкой минимума.
  4. Вычислить значение функции в точках экстремума.

Пример 2. Найти экстремумы функции .

Решение. Найдём производную функции:

Приравняем производную нулю, чтобы найти критические точки:

.

Так как для любых значений "икса" знаменатель не равен нулю, то приравняем нулю числитель:

Получили одну критическую точку x = 3 . Определим знак производной в интервалах, разграниченных этой точкой:

в интервале от минус бесконечности до 3 - знак минус, то есть функция убывает,

в интервале от 3 до плюс бесконечности - знак плюс, то есть функция возрастает.

То есть, точка x = 3 является точкой минимума.

Найдём значение функции в точке минимума:

Таким образом, точка экстремума функции найдена: (3; 0) , причём она является точкой минимума.

Теорема (второй достаточный признак существования экстремума функции). Критическая точка x 0 является точкой экстремума функции f (x ) , если вторая производная функции в этой точке не равна нулю (f ""(x ) ≠ 0 ), причём, если вторая производная больше нуля (f ""(x ) > 0 ), то точкой максимума, а если вторая производная меньше нуля (f ""(x ) < 0 ), то точкой минимума.

Замечание 1. Если в точке x 0 обращаются в нуль и первая, и вторая производные, то в этой точке нельзя судить о наличии экстремума на основании второго достаточного признака. В этом случае нужно воспользоваться первым достаточным признаком экстремума функции.

Замечание 2. Второй достаточный признак экстремума функции неприменим и тогда, когда в стационарной точке первая производная не существует (тогда не существует и вторая производная). В этом случае также нужно вопользоваться первым достаточным признаком экстремума функции.

Локальный характер экстремумов функции

Из приведённых определений следует, что экстремум функции имеет локальный характер - это наибольшее и наименьшее значение функции по сравнению с близлежайшими значениями.

Предположим, вы рассматриваете свои заработки в отрезке времени протяжённостью в один год. Если в мае вы заработали 45 000 рублей, а в апреле 42 000 рублей и в июне 39 000 рублей, то майский заработок - максимум функции заработка по сравнению с близлежайшими значениями. Но в октябре вы заработали 71 000 рублей, в сентябре 75 000 рублей, а в ноябре 74 000 рублей, поэтому октябрьский заработок - минимум функции заработка по сравнению с близлежашими значениями. И вы легко видите, что максимум среди значений апреля-мая-июня меньше минимума сентября-октября-ноября.

Говоря обобщённо, на промежутке функция может иметь несколько экстремумов, причём может оказаться, что какой-либо минимум функции больше какого-либо максимума. Так, для функции изображённой на рисунке выше, .

То есть не следует думать, что максимум и минимум функции являются, соответственно, её наибольшим и наименьшим значениями на всём рассматриваемом отрезке. В точке максимума функция имеет наибольшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке максимума, а в точке минимума - наименьшее значение лишь по сравнению с теми значениями, которые она имеет во всех точках, достаточно близких к точке минимума.

Поэтому можно уточнить приведённое выше понятие точек экстремума функции и называть точки минимума точками локального минимума, а точки максимума - точками локального максимума.

Ищем экстремумы функции вместе

Пример 3.

Решение.Функция определена и непрерывна на всей числовой прямой. Её производная существует также на всей числовой прямой. Поэтому в данном случае критическими точками служат лишь те, в которых , т.е. , откуда и . Критическими точками и разбивают всю область определения функции на три интервала монотонности: . Выберем в каждой из них по одной контрольной точке и найдём знак производной в этой точке.

Для интервала контрольной точкой может служить : находим . Взяв в интервале точку , получим , а взяв в интервале точку , имеем . Итак, в интервалах и , а в интервале . Согласно первому достаточному признаку экстремума, в точке экстремума нет (так как производная сохраняет знак в интервале ), а в точке функция имеет минимум (поскольку производная при переходе через эту точку меняет знак с минуса на плюс). Найдём соответствующие значения функции: , а . В интервале функция убывает, так как в этом интервале , а в интервале возрастает, так как в этом интервале .

Чтобы уточнить построение графика, найдём точки пересечения его с осями координат. При получим уравнение , корни которого и , т. е. найдены две точки (0; 0) и (4; 0) графика функции. Используя все полученные сведения, строим график (см. в начале примера).

Пример 4. Найти экстремумы функции и построить её график.

Областью определения функции является вся числовая прямая, кроме точки , т.е. .

Для сокращения исследования можно воспользоваться тем, что данная функция чётная, так как . Поэтому её график симметричен относительно оси Oy и исследование можно выполнить только для интервала .

Находим производную и критические точки функции:

1) ;

2) ,

но функция терпит разрыв в этой точке, поэтому она не может быть точкой экстремума.

Таким образом, заданная функция имеет две критические точки: и . Учитывая чётность функции, проверим по второму достаточному признаку экстремума только точку . Для этого найдём вторую производную и определим её знак при : получим . Так как и , то является точкой минимума функции, при этом .

Чтобы составить более полное представление о графике функции, выясним её поведение на границах области определения:

(здесь символом обозначено стремление x к нулю справа, причём x остаётся положительным; аналогично означает стремление x к нулю слева, причём x остаётся отрицательным). Таким образом, если , то . Далее, находим

,

т.е. если , то .

Точек пересечения с осями график функции не имеет. Рисунок - в начале примера.

Продолжаем искать экстремумы функции вместе

Пример 8. Найти экстремумы функции .

Решение. Найдём область определения функции. Так как должно выполняться неравенство , то из получаем .

Найдём первую производную функции:

Найдём критические точки функции.

Введение

Во многих областях науки и в практической деятельности часто приходится сталкиваться с задачами поиска экстремума функции. Дело в том, что многие технические, экономические и т.д. процессы моделируются функцией или несколькими функциями, зависящими от переменных – факторов, влияющих на состояние моделируемого явления. Требуется найти экстремумы таких функций для того, чтобы определить оптимальное (рациональное) состояние, управление процессом. Так в экономике, часто решаются задачи минимизации издержек или максимизации прибыли – микроэкономическая задача фирмы. В этой работе мы не рассматриваем вопросы моделирования, а рассматриваем только алгоритмы поиска экстремумов функций в простейшем варианте, когда на переменные не накладываются ограничения (безусловная оптимизация), и экстремум ищется только для одной целевой функции.


ЭКСТРЕМУМЫ ФУНКЦИИ

Рассмотрим график непрерывной функции y=f(x) , изображенной на рисунке. Значение функции в точке x 1 будет больше значений функции во всех соседних точках как слева, так и справа от x 1 . В этом случае говорят, что функция имеет в точке x 1 максимум. В точке x 3 функция, очевидно, также имеет максимум. Если рассмотреть точку x 2 , то в ней значение функции меньше всех соседних значений. В этом случае говорят, что функция имеет в точке x 2 минимум. Аналогично для точки x 4 .

Функция y=f(x) в точке x 0 имеет максимум , если значение функции в этой точке больше, чем ее значения во всех точках некоторого интервала, содержащего точку x 0 , т.е. если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) <f(x 0 ) .

Функция y=f(x) имеет минимум в точке x 0 , если существует такая окрестность точки x 0 , что для всех x x 0 , принадлежащих этой окрестности, имеет место неравенство f(x) >f(x 0 .

Точки, в которых функция достигает максимума и минимума, называются точками экстремума, а значения функции в этих точках экстремумами функции.

Обратим внимание на то, что функция, определенная на отрезке, может достигать максимума и минимума только в точках, заключенных внутри рассматриваемого отрезка.

Отмети, что если функция имеет в точке максимум, то это не означает, что в этой точке функция имеет наибольшее значение во всей области определения. На рисунке, рассмотренном выше, функция в точке x 1 имеет максимум, хотя есть точки, в которых значения функции больше, чем в точке x 1 . В частности, f (x 1) < f (x 4) т.е. минимум функции больше максимума. Из определения максимума следует только, что это самое большое значение функции в точках, достаточно близких к точке максимума.

Теорема 1. (Необходимое условие существования экстремума.) Если дифференцируемая функция y=f(x) имеет в точке x= x 0 экстремум, то ее производная в этой точке обращается в нуль.

Доказательство . Пусть для определенности в точке x 0 функция имеет максимум. Тогда при достаточно малых приращениях Δx имеем f(x 0 + Δx) 0 ) , т.е.

Но тогда

Переходя в этих неравенствах к пределу при Δx → 0 и учитывая, что производная f "(x 0) существует, а следовательно предел, стоящий слева, не зависит от того как Δx → 0, получаем: при Δx → 0 – 0 f" (x 0) ≥ 0 а при Δx → 0 + 0 f" (x 0) ≤ 0. Так как f " (x 0) определяет число, то эти два неравенства совместны только в том случае, когда f " (x 0) = 0.

Доказанная теорема утверждает, что точки максимума и минимума могут находиться только среди тех значений аргумента, при которых производная обращается в нуль.

Мы рассмотрели случай, когда функция во всех точках некоторого отрезка имеет производную. Как же обстоит дело в тех случаях, когда производная не существует? Рассмотрим примеры.

y =|x |.

Функция не имеет производной в точке x =0 (в этой точке график функции не имеет определенной касательной), но в этой точке функция имеет минимум, так как y (0)=0, а при всех x ≠ 0y > 0.

не имеет производной при x =0, так как обращается в бесконечность приx =0. Но в этой точке функция имеет максимум. не имеет производной при x =0, так как при x →0. В этой точке функция не имеет ни максимума, ни минимума. Действительно, f(x) =0 и при x <0f(x) <0, а при x >0f(x) >0.

Таким образом, из приведенных примеров и сформулированной теоремы видно, что функция может иметь экстремум лишь в двух случаях: 1) в точках, где производная существует и равна нулю; 2) в точке, где производная не существует.

Однако, если в некоторой точке x 0 мы знаем, что f "(x 0 ) =0, то отсюда нельзя делать вывод, что в точке x 0 функция имеет экстремум.

Например.

.

Но точка x =0 не является точкой экстремума, поскольку слева от этой точки значения функции расположены ниже оси Ox , а справа выше.

Значения аргумента из области определения функции, при которых производная функции обращается в нуль или не существует, называются критическими точками .

Из всего вышесказанного следует, что точки экстремума функции находятся среди критических точек, и, однако, не всякая критическая точка является точкой экстремума. Поэтому, чтобы найти экстремум функции, нужно найти все критические точки функции, а затем каждую из этих точек исследовать отдельно на максимум и минимум. Для этого служит следующая теорема.

Теорема 2. (Достаточное условие существования экстремума.) Пусть функция непрерывна на некотором интервале, содержащем критическую точку x 0 , и дифференцируема во всех точках этого интервала (кроме, быть может, самой точки x 0). Если при переходе слева направо через эту точку производная меняет знак с плюса на минус, то в точке x = x 0 функция имеет максимум. Если же при переходе через x 0 слева направо производная меняет знак с минуса на плюс, то функция имеет в этой точке минимум.

Таким образом, если

f "(x) >0 при x <x 0 и f "(x)< 0 при x> x 0 , то x 0 – точка максимума;

при x <x 0 и f "(x)> 0 при x> x 0 , то x 0 – точка минимума.

Доказательство . Предположим сначала, что при переходе через x 0 производная меняет знак с плюса на минус, т.е. при всех x , близких к точке x 0 f "(x)> 0 для x< x 0 , f "(x)< 0 для x> x 0 . Применим теорему Лагранжа к разности f(x) - f(x 0 ) = f "(c)(x- x 0), где c лежит между x и x 0 .

Пусть x < x 0 . Тогда c< x 0 и f "(c)> 0. Поэтомуf "(c)(x- x 0)< 0и, следовательно,

f(x) - f(x 0 )< 0,т.е. f(x)< f(x 0 ).

Пусть x > x 0 . Тогда c> x 0 и f "(c)< 0. Значитf "(c)(x- x 0)< 0. Поэтому f(x) - f(x 0 ) <0,т.е.f(x) < f(x 0 ) .

Таким образом, для всех значений x достаточно близких к x 0 f(x) < f(x 0 ) . А это значит, что в точке x 0 функция имеет максимум.

Аналогично доказывается вторая часть теоремы о минимуме.

Проиллюстрируем смысл этой теоремы на рисунке. Пусть f "(x 1 ) =0 и для любых x, достаточно близких к x 1 , выполняются неравенства

f "(x)< 0 при x< x 1 , f "(x)> 0 при x> x 1 .

Тогда слева от точки x 1 функция возрастает, а справа убывает, следовательно, при x = x 1 функция переходит от возрастания к убыванию, то есть имеет максимум.

Аналогично можно рассматривать точки x 2 и x 3 .


Схематически все вышесказанное можно изобразить на картинке:

Правило исследования функции y=f(x) на экстремум

Найти область определения функции f(x).

Найти первую производную функции f "(x) .

Определить критические точки, для этого:

найти действительные корни уравнения f "(x) =0;

найти все значения x при которых производная f "(x) не существует.

Определить знак производной слева и справа от критической точки. Так как знак производной остается постоянным между двумя критическими точками, то достаточно определить знак производной в какой-либо одной точке слева и в одной точке справа от критической точки.

Вычислить значение функции в точках экстремума.

Экстремум (от лат. extremum - крайнее)

значение непрерывной функции f (x), являющееся или максимумом, или минимумом. Точнее: непрерывная в точке х 0 функция f (x) имеет в x 0 максимум (минимум), если существует окрестность (x 0 + δ, x 0 - δ) этой точки, содержащаяся в области определения f (x ), и такая, что во всех точках этой окрестности выполняется неравенство f (x 0 ), ≥ f (x ) [соответственно, f (x 0 ) ≤ f (x )]. Если при этом существует такая окрестность, что в ней f (x 0 ) > f (x ) [или f (x 0 ) (x )] при х x 0 , то говорят о строгом, или собственном, максимуме (минимуме), в противном случае - о нестрогом, или несобственном, максимуме (минимуме) (на рис. 1 в точке А достигается строгий максимум, в точке В - нестрогий минимум). Точки максимума и минимума называются точками экстремума. Для того чтобы функция f (x ) имела Э. в некоторой точке x 0 , необходимо, чтобы она была непрерывна в x 0 и чтобы либо f` (x 0 ) = 0 (точка А на рис. 1 ), либо f` (x 0 ) не существовала (точка С на рис. 1 ). Если при этом в некоторой окрестности точки x 0 производная f" (x ) слева от x 0 положительна, а справа отрицательна, то f (x ) имеет в x 0 максимум; если f" (x ) слева от x 0 отрицательна, а справа положительна, то - минимум (первое достаточное условие Э.). Если же f" (x ) не меняет знака при переходе через точку x 0 , то функция f (x ) не имеет Э. в точке x 0 (точки D, Е и F на рис. 1 ). Если f (x ) в точке x 0 имеет п последовательных производных, причём f" (x 0 ) = f`` (x 0 ) =...= f (n-1) (x 0 )=0, a f (n) (x 0 )≠0, то при п нечётном f (x ) не имеет Э. в точке x 0 , а при п чётном имеет минимум, если f (n) (x 0 ) > 0, и максимум, если f (n) (x 0 ) Э. функции не следует смешивать с наибольшим и наименьшим значениями функции (См. Наибольшее и наименьшее значения функции).

Аналогично Э. функции одного переменного определяется Э. функции нескольких переменных. Необходимым условием Э. является в этом случае обращение в нуль или же несуществование частных производных первого порядка. Например, на рис. 2 частные производные равны нулю в точке М , на рис. 3 в точке М они не существуют. Если в некоторой окрестности точки М (х 0 , y 0 ) существуют и непрерывны первые и вторые частные производные функции f (x, у ) и в самой точке f" x = f" y = 0,

Δ = f " xx f " уу > 0,

то f (x, у ) в точке М имеет Э. (максимум при f " xx 0 и минимум при f " xx > 0); Э. в точке М не существует, если Δ М является т. н. седловиной, или точкой минимакса, см. рис. 4 ).

Достаточные условия Э. функций многих переменных сводятся к положительной (или отрицательной) определённости квадратичной формы

Σ n i, k=1 a ik Δx i Δx k

Термин «Э.» употребляется также при изучении наибольших и наименьших значений функционалов в вариационном исчислении (См. Вариационное исчисление).

Лит.: Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1, М., 1971.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Экстремум" в других словарях:

    - (от латинского extremum крайнее), общее название максимума и минимума … Современная энциклопедия

    - (от лат. extremum крайнее) см. Максимум и минимум … Большой Энциклопедический словарь

    Сущ., кол во синонимов: 1 термин (18) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    - (от лат. extremum крайнее) англ. extreme; нем. Extremum. Значение нек рой величины или функции / (х), являющееся ее максимумом или минимумом. Antinazi. Энциклопедия социологии, 2009 … Энциклопедия социологии

    экстремум - крайнее значение — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы крайнее значение EN extreme value … Справочник технического переводчика

    Экстремум - (от латинского extremum крайнее), общее название максимума и минимума. … Иллюстрированный энциклопедический словарь

    У этого термина существуют и другие значения, см. Экстремум (значения). Экстремум (лат. extremum крайний) в математике максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум,… … Википедия

    - (лат. extremum крайнее) мат. наибольшие и наименьшие значения функции; употр. для объединения понятий максимума и минимума. Новый словарь иностранных слов. by EdwART, 2009. экстремум [ Словарь иностранных слов русского языка

    - [рэ], а; м. [лат. extremum крайнее] Матем. Наибольшее и наименьшее значения функции, включающие понятия минимума и максимума. * * * экстремум (от лат. extremum крайнее), см. Максимум и минимум. * * * ЭКСТРЕМУМ ЭКСТРЕМУМ (от лат. extremum… … Энциклопедический словарь

    экстремум - Экстремальная точка, Экстремум (Extreme point) Самая верхняя, самая нижняя, крайняя левая и крайняя правая точки контура, то есть точки в пределах контура знака, значение координат которых по одной из осей минимальное или максимальное … Шрифтовая терминология

Книги

  • Комплект таблиц. Математика. Производная и ее применение. 12 таблиц + карточки + методика , . Учебный альбом из 12 листов и 48 карточек. Приращение аргумента. Приращение функции. Производная. Физический производной. Касательная к кривой. Геометрический смыслпроизводной. Критические…

>> Экстремумы

Экстремум функции

Определение экстремума

Функция y = f (x ) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f (x 1) < f (x 2) (f (x 1) > f (x 2)).

Если дифференцируемая функция y = f (x ) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x ) > 0

(f " (x ) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f (x ), если существует окрестность точки x о , для всех точек которой верно неравенство f (x ) ≤ f (x о ) (f (x ) f (x о )).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Точки экстремума

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f (x ), то либо f " (x о ) = 0, либо f (x о ) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x ) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f (x ) имеет
f "
(x ) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о ) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f (x ). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие .

На отрезке функция y = f (x ) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Пример 3.22.

Решение. Так как f " (

Задачи на нахождения экстремума функции

Пример 3.23. a

Решение. x и y y
0
x
> 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции кв . ед ).

Пример 3.24. p ≈

Решение. p p
S "

R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функции f (x ) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x ) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f (2) = 14 и минимум f (3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy . Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a . Поэтому y = a - 2x и S = x (a - 2x), где
0
x a /2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2 × a/4 =a/2. Поскольку x = a /4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При x a /4 S " > 0, а при x >a /4 S " < 0, значит, в точке x=a /4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв . ед ). Поскольку S непрерывна на и ее значения на концах S(0) и S(a /2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16 p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2 p R(R+Н). Мы знаем объем цилиндра V = p R 2 Н Þ Н = V/ p R 2 =16 p / p R 2 = 16/ R 2 . Значит, S(R) = 2 p (R 2 +16/R). Находим производную этой функции:
S "
(R) = 2 p (2R- 16/R 2) = 4 p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.

© БГЭУ Лекция № 2

проф. Дымков М. П.

Замечание 1. Обратное утверждение звучит несколько иначе. Если

функция возрастает на промежутке, то f ′ (x 0 )≥ 0 или не существует.

Пример 1.

y = x3

возрастает на

всей числовой

соответственно

f (x )> 0 , но в точке

x = 0 производная

f (0)= 0.

Пример 2 . Функция

x ≥ 0 ,

не имеет производной в точке

х=0

x < 0

(левая и правая производная различны), однако она возрастает при всех значениях х , в том числе и в точкех = 0.

Замечание 2. Опираясь на более «мягкие» условия, можно сформулировать прямую теорему: если производная функции, непрерывной на промежутке, неотрицательна, то функция на этом промежутке не убывает. Тогда прямая и обратная теоремы на формализованном языке звучат так:

для того,

чтобы непрерывная на промежутке функция y = f(x) была

неубывающей

этом промежутке, необходимо

и достаточно, чтобы

f ′ (x0 ) ≥ 0 .

Понятие экстремума

Определение.

x0 называется точкой

локального максимума

функции f (x) , если существует такая окрестность точки x0 , что для всех х из этой окрестности f(x) ≤ f(x0 ) .

Определение. Точка x0 называется точкой локального минимума функции f(x) , если существует такая окрестность точки x0 , что для всех х из этой окрестности f(x) ≥ f(x0 ) .

Значение функции в точке максимума называется локальным максимумом, значение функции в точке минимума - локальным минимумом данной функции. Максимум и минимум функции называются ее локальными экстремумами

(extremum – крайний).

Определение. Точка x0 называется точкой строгого локального максимума (минимума) функции y= f(x) , если для всех х из окрестности точки x0 верно строгое неравенство f(x) < f(x0 ) (соответственно

f (x) > f(x0 ) ).

Замечание. В приведенном определении локального экстремума мы не предполагаем непрерывности функции в точкеx 0 .

X ≠ 0 ,

разрывна в точке

х = 0, но имеет в этой

Функция y =

x = 0

точке максимум, поскольку существует окрестность точки х = 0, в которойf (x )< f (x 0 ).

Наибольшее (наименьшее) значение функции на промежутке называется глобальным экстремумом. Глобальный экстремум может достигаться либо в точках локального экстремума, либо на концах отрезка.

Необходимое условие экстремума

Теорема 2. (о необходимом условии экстремума).

Если функция y = f(x) имеет экстремум в точке x0 , то ее производная f′ (x0 ) в этой точке либо равна нулю, либо не существует.

◄Если в точке x 0 функция имеет экстремум и дифференцируема, то в

некоторой окрестности этой точки выполнены условия теоремы Ферма, следовательно, производная функции в этой точке равна нулю.

Но функция y = f (x ) может иметь экстремум и не быть дифференцируемой в этой точке. Достаточно указать пример. Примером может

служить функция y =

которая имеет минимум в точке

x = 0,

однако не

дифференцируема в этой точке.

Замечание

Геометрическую

иллюстрацию теоремы дает Рис.1. Функция

y = f (x ), график которой представлен на этом

y = f (x)

рисунке, имеет экстремумы в точках x 1 , x 3 , x 4 ,

производная

существует,

она равна нулю, в

обращается

бесконечность.

точках x 2 ,

функция экстремума не имеет,

причем в точке x 2 производная обращается в

бесконечность, в точке x 5

производная равна

Замечание 2. Точки, в которых выполняется необходимое условие

экстремума для непрерывной функции, называются критическими

Они определяются из уравнения

f (x )= 0

(стационарные

точки) или f

(x )= ∞ .

Замечание 3 . Не в каждой своей критической точке функция обязательно имеет максимум или минимум.

Пример 4. Рассмотрим функциюy = x 3 . Критической для этой функции

является точка х = 0, что следует из уравненияf ′ (x )= 3x 2 = 0. Однако эта функция при всехх является возрастающей и экстремума не имеет.

© БГЭУ Лекция № 2

Исследование функций с помощью производных проф. Дымков М. П.

Теорема 3.

(о достаточных условиях экстремума).

Пусть для

y = f(x) выполнены следующие условия:

1) y = f(x)

непрерывна в окрестности точки x0 ;

(x )= 0

f (x) = ∞

меняет свой знак.

(x) при переходе через точку x0

Тогда в точке x = x0 функция y= f(x) имеет экстремум:

минимум , если при переходе через точку x0

производная меняет свой знак

с минуса на плюс;

максимум , если при переходе через точку

x0 производная меняет свой

знак с плюса на минус.

f (x) при переходе через точку x0 не меняет своего

Если производная

знака, экстремума в точке x = x0 нет.◄

Условия теоремы можно свести в следующую таблицу

Знак производной

Экстремум

Максимум

Так как по условию f (x )< 0 приx < x 0 , то на левом относительно точки

x 0 интервале функция

убывает. Так как f (x )> 0 приx > x 0 ,

y = f(x)

относительно точки

интервале

функция f (x ) возрастает.

Следовательно,

f (x0 )

есть наименьшее значение функции f (x ) в окрестности

x 0 , а это означает, чтоf (x 0 )

есть локальный минимум функции

f (x) .

Если при переходе с левого интервала на правый функция продолжает убывать, то в точке x 0 не будет достигаться минимальное значение функции

(экстремума нет).

Аналогично доказывается существование максимума.

На рис. 2 a-h представлены возможные случаи наличия или отсутствия экстремума непрерывной функции, производная которой в критической точке равна нулю или обращается в бесконечность.

© БГЭУ Лекция № 2

Исследование функций с помощью производных

проф. Дымков М. П.

Замечание.

Если условие непрерывности функции в

не выполнено, то вопрос о наличии

экстремума остается открытым.

Пример 5.

Рассмотрим

разрывную

X + 1,

x ≤ 0,

(рис.3). Производная

этой функции меняет знак

f (x) =

x > 0

переходе через точку x 0 = 0 ,

однако функция в точке

x 0= 0

экстремума не

Пример 6. Пусть дана функция

X ≠ 0,

(рис.4). Как видно из рисунка,

f (x)

f (x) =

x = 0

имеет локальный максимум в точке

x 0= 0

Однако функция

имеет разрыв в точке x 0 = 0 .

Замечание

функция имеет в точке x 0 экстремум, например,

минимум, то необязательно слева от точки

x 0 функция монотонно убывает, а

справа от x 0 монотонно возрастает.

Пример 7. Пусть дана функция

2 − cos

X ≠ 0,

f (x) =

x = 0

y = 3 x2

y = x

Можно показать, что в

х = 0

непрерывна

Производная функции

f (x) = 2 x

− sin

в любой окрестности

точки х = 0 меняет знак бесконечно много раз. Поэтому функцияf (x ) не

является монотонно убывающей или возрастающей ни слева, ни справа от точки х = 0.

Схема исследования функции на экстремум:

1) найти производную f ′ (x );

2) найти критические точки, т.е. такие значения х , в которыхf ′ (x )= 0 или

f ′ (x ) = ∞;

3) исследовать знак производной слева и справа от каждой критической

© БГЭУ Лекция № 2

Исследование функций с помощью производных

проф. Дымков М. П.

точки. Если при переходе через критическую точку

производная f (x )

свой знак с плюса на минус, то в точке x 0

f (x)

имеет максимум, если

знак f (x )

меняется с минуса на плюс,

то в точке x 0

функция f (x )

Если при переходе х через критическую точкуx 0 знакf

(x ) не

меняется, то в точке x 0 функцияf (x ) не имеет ни максимума, ни минимума; 4) найти значения функции в экстремальных точках.

Теорема 4. (2 -ое достаточное условие экстремума). Пусть для функцииy = f (x ) выполнены следующие условия:

1. y = f (x ) непрерывна в окрестности точкиx 0 ,

2. f ′ (x )= 0 в точкеx 0

3. f ′′ (x )≠ 0 в точкеx 0 .

Тогда, в точке x 0

достигается экстремум, причем:

если f ′′ (x 0 )> 0, то в точке

x = x0

y = f(x)

имеет минимум,

f ′′ (x 0 )< 0 , то

x = x0

функция y = f (x ) имеет максимум.

◄ По определению 2-й производнойf

f ′ (x) − f′ (x0 )

) = lim

− x

x→ x0

Но по условию f

) = lim

(x )= 0.

− x

(x )> 0, то

x→ x0

f ′ (x)

в некоторой

окрестности

x = x.

x < x

x − x0

x > x0

дробь положительна,

при условии

положительна, если f (x )< 0 .

f (x ) при переходе через точку

x = x0

меняет знак,

f (x )> 0 . Следовательно,

поэтому есть экстремум. Знак производной меняется с минуса на плюс, значит, это минимум. Аналогично доказывается случай f ′′ (x 0 )< 0 .

Пример 8 . Исследовать на экстремум функциюy = x 2 + 2x + 3. Находим производнуюy ′= 2x + 2 .

1) Находим критические точки, для чего приравниваем к нулю производную: y ′= 2x + 2= 0,→ x 0 = - 1.

2) Изучаем знак производной слева и справа от этой точки (рис. 6).

Поскольку знак производной меняется с минуса на плюс, в точке х = − 1 достигается минимум.

3) Находим величину минимума: ymin (− 1)= 2.

.

3) Исследуем знак у" слева и справа от точкиx = 0. Очевидно,f ′ (x )< 0 ,

минимума данной функции.

4) ymin (0)= 1.

Пример 10.

Исследовать на экстремум функцию y = e -x 2 .

1) Находим первую производную: y ′= - 2xe -x 2 .

2) Приравнивая производную нулю, находим единственную критическую точку x = 0.

3) Далее находим вторую производную: y ′′= − 2e - x 2 + 4x 2 e − x 2 . Ее значение

в точке x = 0 равно -2.

4) Делаем вывод о наличии максимума функции и вычисляем: y max (0)= 1.

Наибольшее и наименьшее значение функции, непрерывной на отрезке

Если функция f (x ) определена и непрерывна на отрезке [а ;b ], то,

согласно 2-й теореме Вейерштрасса, она на этом отрезке достигает своего наибольшего и наименьшего значения.

Если свое наибольшее значение М функцияf (x ) принимает вовнутренней точке x 0 отрезка [а ;b ], тоM = f (x 0 ) будет локальным максимумом функцииf (x ), т. к. в этом случае существует окрестность точкиx 0 такая, что значенияf (x ) для всех точекх из этой окрестности будут не

больше f (x 0 ) .

Однако свое наибольшее значение М функцияf (x )может принимать и на концах отрезка [а ;b ]. Поэтому, чтобы найти наибольшее значениеМ непрерывной на отрезке [а ;b ] функцииf (x ), надо найти все максимумы функции в интервале(а ;b ) и значенияf (x ) на концах отрезка [а ;b ] и выбрать

среди них наибольшее число. Вместо ограничиться нахождением значений Наименьшим значением m непрерывной

исследования на максимум можно функции в критических точках. на отрезке [а ;b ] функцииf (x ) будет

наименьшее число среди всех минимумов функции f (x ) в интервале (a ;b ) и значенийf (a ) иf (b ) .

f ′ (x) -

Исследовать на экстремум функцию y = 3

1) Находим производную y ′=