Под материальной точкой подразумевается макроскопическое тело, свойствами которой (масса, вращение, форма и т.д.) можно пренебречь, если есть необходимость описании его движения. О том, что такое материальная точка, вы узнаете из этой статьи.

Если говорить о том, может ли это тело рассмотрено в качестве такой точки, то здесь все определяется не размерами тела, а от поставленных в задаче условий. Как пример, радиус нашей планеты на порядок меньше расстояния между Солнцем и Землей, а орбитальное движение может быть описано как раз в виде движения материальной точки, которая обладает аналогичной земле массой и располагается в ее центре. Однако если рассматривать суточное движение планеты вокруг собственной оси, тогда заменять ей на материальную точку бессмысленно. Модель точки рассматриваемого типа к конкретному телу определяется не размерами самого тела, а в большей степени условиями его перемещения. Как пример, согласно теореме о движении центра масс системы при перемещении поступательного типа каждое твёрдое тело можно рассматривать в качестве материальной точки, положение которой аналогично центру масс тела.

Такие физические свойства точки как масса, скорость, положение и прочие определяют её поведение в каждый момент времени.

Положение в пространстве рассматриваемой точки определяется в виде положения геометрической точки. В механике материальная точка имеет массу, постоянную во времени и независимую от каких-либо факторов её перемещения и взаимодействия с прочими телами. Если использовать подход к построению механики, основанный на аксиомах, тогда за одну них берется следующее:

Аксиома

Материальной точкой называют тело - геометрическую точку, которой соответствует скаляр, именуемый массой: (r и m), где r является вектором в евклидовом пространстве, который относится к той или иной декартовой координатной системе. Масса постоянна и независима от положения точки во времени и пространстве.

Материальная точка запасает механическую энергию исключительно как кинетическую энергию её перемещения в пространстве, либо в качестве потенциальной энергии, которая вступает во взаимодействие с полем. Это говорит о том, что данная точка не может быть деформирована, вращаться вокруг своей же оси, а также она не реагирует на её изменения в пространстве. Параллельно с этим материальная точка движется с изменением её расстояния от пары углов Эйлера и какого-либо мгновенного центра поворота, задающих линии направление, а она в свою очередь соединяет эту точку с центром. Такой метод весьма распространен в механике.

Методика, по которой изучаются законы движения реальных объектов за счет исследования перемещения идеальной модели - это основа механики. Каждое макроскопическое тело может быть представлено в виде взаимодействующих друг с другом материальных точек, обладающими массами, соответствующими массам его частей. Изучение перемещения данных частей сводится к тому, что проводится изучение движения рассматриваемых точек.

Сам термин несколько ограничен в применении. Как пример разреженный газ при высоком температурном режиме характеризуется небольшим размером молекул относительно типичного расстояния между ними. И хотя этим можно пренебрегать в некоторых случаях и принимать молекулу за материальную точку, в основном все не так. Внутренняя энергия молекулы определяется колебаниями и вращениями, а её ёмкость зависит от размеров, структуры и свойств частицы. В некоторых случаях одноатомные молекулы могут быть рассмотрены как примеры материальной точки, но даже у них при высоком температурном режиме возбуждаются электронные оболочки из-за столкновений молекул с дальнейшим высвечиванием.

Первое задание

  • а) машину, въезжающую в гараж;
  • б) машину на трассе Москва - Ростов?
  • а) въезжающая в гараж машина не может считаться таким объектом, поскольку разница в размерах между автомобилем и гаражом относительно мала;
  • б) авто на трассе Москва - Ростов можно рассматривать как такую точку, поскольку размеры транспортного средства на порядки меньше пути.

Второе задание

  • а) мальчика, идущего домой из школы (путь 1 км);
  • б) мальчика, делающего физические упражнения?
  • а) Поскольку путь от школы к дому составляет километр, мальчик может быть рассмотрен в качестве такой точки, поскольку по своим размерам он очень мал относительно проходимого расстояния.
  • б) когда этот же ребенок выполняет утреннюю зарядку, его нельзя принимать за материальную точку.

Что такое материальная точка? Какие физические величины связаны с ней, для чего вообще вводится понятие материальной точки? В этой статье мы порассуждаем об этих вопросах, приведем примеры задач, которые связаны с обсуждаемым понятием, а также поговорим о формулах, применяемых для их решения.

Определение

Итак, что же такое материальная точка? Разные источники дают определение в несколько разном литературном стиле. То же самое касается и преподавателей в вузах, колледжах и общеобразовательных учреждениях. Однако, согласно стандарту, материальной точкой называется тело, размерами которого (в сравнении с размерами системы отсчета) можно пренебречь.

Связь с реальными объектами

Казалось бы, как можно принять за материальную точку человека, велосипедиста, автомобиль, корабль и даже самолет, о которых в большинстве случаев идет речь в задачах по физике, когда речь заходит о механике движущегося тела? Давайте смотреть глубже! Для определения координаты движущегося тела в любой момент времени необходимо знать несколько параметров. Это и начальная координата, и скорость движения, и ускорение (если оно, конечно же, имеет место), и время.

Что необходимо для решения задач с материальными точками?

Координатную связь можно найти, только привязавшись к системе координат. Вот такой своеобразной системой координат для автомобиля и другого тела становится наша планета. А в сравнении с ее величиной размерами тела действительно можно пренебречь. Соответственно, если тело мы принимаем за материальную точку, ее координату в двухмерном (трехмерном) пространстве можно и нужно находить как координату геометрической точки.

Движение материальной точки. Задачи

В зависимости от сложности, задачи могут приобретать определенные условия. Соответственно, отталкиваясь от данных нам условий, можно использовать определенные формулы. Иногда, даже имея весь арсенал формул, решить задачу, что называется, "в лоб" все равно не представляется возможным. Поэтому крайне важно не просто знать формулы кинематики, имеющие отношение к материальной точке, но и уметь их использовать. То есть выражать нужную величину, а системы уравнений приравнивать. Вот основные формулы, которые мы будем применять в ходе решения задач:

Задача № 1

Автомобиль, стоящий на стартовой черте, резко начинает движение из неподвижного положения. Узнать, за какое время он разгонится до 20 метров в секунду, если его ускорение составляет 2 метра на секунду в квадрате.

Сразу хочется сказать, что эта задача - практически самое простое, что может ожидать ученика. Слово “практически” стоит здесь не просто так. Все дело в том, что проще может быть только подставить прямые значения в формулы. Нам же следует сначала выразить время, а затем произвести расчеты. Для решения задачи понадобится формула определения мгновенной скорости (мгновенная скорость - это скорость тела в определенный момент времени). Она имеет следующий вид:

Как мы видим, в левой части уравнения у нас стоит мгновенная скорость. Она нам там абсолютно не нужна. Поэтому делаем простые математические действия: произведение ускорения на время оставляем в правой части, а начальную скорость переносим влево. При этом следует внимательно следить за знаками, поскольку один неправильно оставленный знак может в корне изменить ответ к задаче. Далее немного усложняем выражение, избавляясь от ускорения в правой части: делим на него. В итоге справа у нас должно остаться чистое время, слева - двухуровневое выражение. Все это дело просто меняем местами, чтобы смотрелось привычнее. Остается только подставить величины. Итак, получается, что автомобиль разгонится за 10 секунд. Важно: мы решили задачу, предполагая, что в автомобиль в ней - материальная точка.

Задача № 2

Материальная точка начинает экстренное торможение. Определить, какой была начальная скорость в момент экстренного торможения, если до полной остановки тела прошло 15 секунд. Ускорение принять равным 2 метрам на секунду в квадрате.

Задача, в принципе, достаточно похожа на предыдущую. Но здесь есть пара своих нюансов. Во-первых, нам нужно определить скорость, которую мы обычно называем начальной. То есть в определенный момент начинается отсчет времени и расстояния, пройденного телом. Скорость при этом действительно будет подпадать под данное определение. Второй нюанс - знак ускорения. Напомним, что ускорение - это величина векторная. Следовательно, в зависимости от направления она будет изменять свой знак. Положительное ускорение наблюдается в том случае, если направление скорости тела совпадает с его направлением. Проще говоря, когда тело ускоряется. В противном случае (то есть в нашей ситуации с торможением) ускорение будет отрицательным. И эти два фактора нужно учитывать, чтобы решить данную задачу:

Как и в прошлый раз, сначала выразим необходимую нам величину. Чтобы избежать возни со знаками, начальную скорость оставим там, где она есть. С противоположным знаком переносим в другую часть уравнения произведение ускорения на время. Так как торможение было полным, конечная скорость составляет 0 метров в секунду. Подставляя эти и другие значения, легко находим начальную скорость. Она будет равна 30 метрам в секунду. Легко заметить, что, зная формулы, справляться с простейшими задачами не так уж и сложно.

Задача № 3

В определенный момент времени диспетчеры начинают слежение за перемещением воздушного объекта. Его скорость в этот момент равняется 180 километрам в час. Через промежуток времени, равный 10 секундам, его скорость увеличивается до 360 километров в час. Определите расстояние, пройденное самолетом за время перелета, если время полета составило 2 часа.

На самом деле в широком понимании данная задача имеет множество нюансов. Например, разгон воздушного судна. Понятно, что по прямолинейной траектории наше тело двигаться бы не могло в принципе. То есть ему нужно взлететь, набрать скорость, а потом уже на определенной высоте какой-то отрезок расстояния двигаться прямолинейно. В расчет не берутся отклонения, а также замедление самолета при посадке. Но это не наше дело в данном случае. Поэтому мы будем решать задачу в рамках школьных знаний, общих сведений о кинематическом движении. Чтобы решить задачу, нам понадобится следующая формула:

Но вот тут нас ожидает загвоздка, о которой мы говорили ранее. Знать формулы недостаточно - их нужно уметь использовать. То есть выводить одну величину при помощи альтернативных формул, находить ее и подставлять. При просмотре начальных сведений, которые имеются в задаче, сразу становится понятно, что решить ее просто так не получится. Об ускорении ничего не сказано, зато есть информация о том, как изменилась скорость за определенный промежуток времени. Значит, ускорение мы можем найти самостоятельно. Берем формулу нахождения мгновенной скорости. Она имеет вид

Ускорение и время оставляем в одной части, а начальную скорость переносим в другую. Затем делением обеих частей на время освобождаем правую часть. Здесь сразу же можно подсчитать ускорение, подставив прямые данные. Но гораздо целесообразнее выражать и дальше. Полученную для ускорения формулу подставляем в основную. Там можно немного сократить переменные: в числителе время дано в квадрате, а в знаменателе - в первой степени. Поэтому от этого знаменателя можно избавиться. Ну а дальше - простая подстановка, поскольку больше выражать ничего не надо. Ответ должен получиться следующий: 440 километров. Ответ будет другим, если переводить величины в другую размерность.

Заключение

Итак, что же мы выяснили в ходе этой статьи?

1) Материальная точка - это тело, размерами которого по сравнению с размерами системы отсчета можно пренебречь.

2) Для решения задач, связанных с материальной точкой, есть несколько формул (приведены в статье).

3) Знак ускорения в этих формулах зависит от параметра движения тела (ускорение или торможение).

Понятие материальной точки. Траектория. Путь и перемещение. Система отсчета. Скорость и ускорение при криволинейном движении. Нормальное и тангенциальное ускорения. Классификация механических движений.

Предмет механики . Механикой называют раздел физики, посвященный изучению закономерностей простейшей формы движения материи - механического движения.

Механика состоит из трех подразделов: кинематики, динамики и статики.

Кинематика изучает движение тел без учета причин, его вызывающих. Она оперирует такими величинами как перемещение, пройденный путь, время, скорость движения и ускорение.

Динамика исследует законы и причины, вызывающие движение тел, т.е. изучает движение материальных тел под действием приложенных к ним сил. К кинематическим величинам добавляются величины - сила и масса.

В статике исследуют условия равновесия системы тел.

Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени.

Материальная точка - тело, размерами и формой которого можно пренебречь в данных условиях движения, считая массу тела сосредоточенной в данной точке. Модель материальной точки – простейшая модель движения тела в физике. Тело можно считать материальной точкой, когда его размеры много меньше характерных расстояний в задаче.

Для описания механического движения необходимо указать тело, относительно которого рассматривается движение. Произвольно выбранное неподвижное тело, по отношению к которому рассматривается движение данного тела, называется телом отсчета .

Система отсчета - тело отсчета вместе со связанными с ним системой координат и часами.

Рассмотрим движение материальной точки М в прямоугольной системе координат, поместив начало координат в точку О.

Положение точки М относительно системы отсчета можно задать не только с помощью трех декартовых координат , но также с помощью одной векторной величины - радиуса-вектора точки М, проведенного в эту точку из начала системы координат (рис. 1.1). Если - единичные вектора (орты) осей прямоугольной декартовой системы координат, то

либо зависимость от времени радиус-вектора этой точки

Три скалярных уравнения (1.2) или эквивалентное им одно векторное уравнение (1.3) называются кинематическими уравнениями движения материальной точки .

Траекторией материальной точки называется линия, описываемая пространстве этой точкой при ее движении (геометрическое место концов радиуса-вектора частицы). В зависимости от формы траектории различают прямолинейное и криволинейное движения точки. Если все участки траектории точки лежат в одной плоскости, то движение точки называют плоским.

Уравнения (1.2) и (1.3) задают траекторию точки в так называемой параметрической форме. Роль параметра играет время t. Решая эти уравнения совместно и исключая из них время t, найдем уравнение траектории.

Длиной пути материальной точки называют сумму длин всех участков траектории, пройденных точкой за рассматриваемый промежуток времени.

Вектором перемещения материальной точки называется вектор, соединяющий начальное и конечное положение материальной точки, т.е. приращение радиуса-вектора точки за рассматриваемый промежуток времени

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории. Из того, что перемещение является вектором, следует подтверждающийся на опыте закон независимости движений: если материальная точка участвует в нескольких движениях, то результирующее перемещение точки равно векторной сумме ее перемещений, совершаемых ею за тоже время в каждом из движений порознь

Для характеристики движения материальной точки вводят векторную физическую величину - скорость , величину, определяющую как быстроту движения, так и направление движения в данный момент времени.

Пусть материальная точка движется по криволинейной траектории МN так, что в момент времени t она находится в т.М, а в момент времени в т. N. Радиус-векторы точек М и N соответственно равны , а длина дуги МN равна (рис. 1.3).

Вектором средней скорости точки в интервале времени от t до t t называют отношение приращения радиуса-вектора точки за этот промежуток времени к его величине :

Вектор средней скорости направлен также, как вектор перемещения т.е. вдоль хорды МN.

Мгновенная скорость или скорость в данный момент времени . Если в выражении (1.5) перейти к пределу, устремляя к нулю, то мы получим выражение для вектора скорости м.т. в момент времени t прохождения ее через т.М траектории.

В процессе уменьшения величины точка N приближается к т.М, и хорда МN, поворачиваясь вокруг т.М, в пределе совпадает по направлению с касательной к траектории в точке М. Поэтому вектор и скорость v движущейся точки направлены по касательной траектории в сторону движения. Вектор скорости v материальной точки можно разложить на три составляющие, направленные вдоль осей прямоугольной декартовой системы координат.

Из сопоставления выражений (1.7) и (1.8) следует, что проекции скорости материальной точки на оси прямоугольной декартовой системы координат равны первым производным по времени от соответствующих координат точки:

Движение, при котором направление скорости материальной точки не изменяется, называется прямолинейным. Если численное значение мгновенной скорости точки остается во время движения неизменным, то такое движение называется равномерным.

Если же за произвольные равные промежутки времени точка проходит пути разной длины, то численное значение ее мгновенной скорости с течением времени изменяется. Такое движение называют неравномерным.

В этом случае часто пользуются скалярной величиной , называемой средней путевой скоростью неравномерного движения на данном участке траектории. Она равна численному значению скорости такого равномерного движения, при котором на прохождение пути затрачивается то же время , что и при заданном неравномерном движении:

Т.к. только в случае прямолинейного движения с неизменной по направлению скоростью, то в общем случае:

Величину пройденного точкой пути можно представить графически пло­щадью фигуры ограниченной кривой v = f (t ), прямыми t = t 1 и t = t 1 и осью времени на графике скорости.

Закон сложения скоростей . Если материальная точка одновременно участвует в нескольких движениях, то результирующее перемещения в соответствии с законом независимости движения, равно векторной (геометрической) сумме элементарных перемещений, обусловленных каждым из этих движений в отдельности:

В соответствии с определением (1.6):

Таким образом, скорость результирующего движения равна геометрической сумме скоростей всех движений, в которых участвует материальная точка, (это положение носит название закона сложения скоростей).

При движении точки мгновенная скорость может меняться как по величине, так и по направлению. Ускорение характеризует быстроту изменения модуля и направления вектора скорости, т.е. изменение величины вектора скорости за единицу времени.

Вектор среднего ускорения . Отношение приращения скорости к промежутку времени , в течение которого произошло это приращение, выражает среднее ускорение:

Вектор, среднего ускорения совпадает по направлению с вектором .

Ускорение, или мгновенное ускорение равно пределу среднего ускорения при стремлении промежутка времени к нулю:

В проекциях на соответствующие координаты оси:

При прямолинейном движении векторы скорости и ускорения совпадают с направлением траектории. Рассмотрим движение материальной точки по криволинейной плоской траектории. Вектор скорости в любой точке траектории направлен по касательной к ней. Допустим, что в т.М траектории скорость была , а в т.М 1 стала . При этом считаем, что промежуток времени при переходе точки на пути из М в М 1 настолько мал, что изменением ускорения по величине и направлению можно пренебречь. Для того, чтобы найти вектор изменения скорости , необходимо определить векторную разность:

Для этого перенесем параллельно самому себе, совмещая его начало с точкой М. Разность двух векторов равна вектору, соединяющему их концы равна стороне АС МАС, построенного на векторах скоростей, как на сторонах. Разложим вектор на две составляющих АВ и АД, и обе соответственно через и . Таким образом вектор изменения скорости равен векторной сумме двух векторов:

Таким образом, ускорение материальной точки можно представить как векторную сумму нормального и тангенциального ускорений этой точки

По определению:

где - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент. Вектор тангенциального ускорения направлен по касательной к траектории движения тела.

Если использовать для единичного касательного вектора обозначение , то можно записать тангенциальное ускорение в векторном виде:

Нормальное ускорение характеризует быстроту изменения скорости по направлению. Вычислим вектор:

Для этого проведем перпендикуляр через точки М и М1 к касательным к траектории (рис. 1.4) Точку пересечения обозначим через О. При достаточно малом участок криволинейной траектории можно считать частью окружности радиуса R. Треугольники МОМ1 и МВС подобны, потому, что являются равнобедренными треугольниками с одинаковыми углами при вершинах. Поэтому:

Но , тогда:

Переходя к пределу при и учитывая, что при этом , находим:

,

Так как при угол , направление этого ускорения совпадает с направлением нормали к скорости , т.е. вектор ускорения перпендикулярен . Поэтому это ускорение часто называют центростремительным.

Нормальное ускорение (центростремительное) направлено по нормали к траектории к центру ее кривизны O и характеризует быстроту изменения направления вектора скорости точки.

Полное ускорение определяется векторной суммой тангенциального нормального ускорений (1.15). Так как векторы этих ускорений взаимноперпендикулярны, то модуль полного ускорения равен:

Направление полного ускорения определяется углом между векторам и :

Классификация движений.

Для классификаций движений воспользуемся формулой для определения полного ускорения

Предположим, что

Следовательно,
Это случай равномерного прямолинейного движения.

Но

2)
Следовательно

Это случай равномерного движения. В этом случае

При v 0 = 0 v t = at – скорость равноускоренного движения без начальной скорости.

Криволинейное движение с постоянной скоростью.

Определение

Материальной точкой называется макроскопическое тело, размерами, формой, вращением и внутренней структурой которого можно пренебречь при описании его движения.

Вопрос о том, можно ли данное тело рассматривать как материальную точку, зависит не от размеров этого тела, а от условий решаемой задачи. Например, радиус Земли значительно меньше расстояния от Земли до Солнца, и ее орбитальное движение можно хорошо описать как движение материальной точки с массой, равной массе Земли и расположенной в ее центре. Однако при рассмотрении суточного движения Земли вокруг собственной оси замена ее материальной точкой не имеет смысла. Применимость модели материальной точки к конкретному телу зависит не столько от размеров самого тела, сколько от условий его движения. В частности, в соответствии с теоремой о движении центра масс системы при поступательном движении любое твёрдое тело можно считать материальной точкой, положение которой совпадает с центром масс тела.

Масса, положение, скорость и некоторые другие физические свойства материальной точки в каждый конкретный момент времени полностью определяют её поведение.

Положение материальной точки в пространстве определяется как положение геометрической точки. В классической механике масса материальной точки полагается постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами. При аксиоматическом подходе к построению классической механики в качестве одной из аксиом принимается следующее:

Аксиома

Материальная точка - геометрическая точка, которой поставлен в соответствие скаляр, называемый массой: $(r,m)$, где $r$ - вектор в евклидовом пространстве, отнесённом к какой-либо декартовой системе координат. Масса полагается постоянной, независящей ни от положения точки в пространстве, ни от времени.

Механическая энергия может быть запасена материальной точкой лишь в виде кинетической энергии её движения в пространстве и (или) потенциальной энергии взаимодействия с полем. Это автоматически означает неспособность материальной точки к деформациям (материальной точкой может быть названо лишь абсолютно твёрдое тело) и вращению вокруг собственной оси и изменениям направления этой оси в пространстве. Вместе с этим модель движения тела, описываемого материальной точкой, которое заключается в изменении её расстояния от некоторого мгновенного центра поворота и двух углов Эйлера, которые задают направление линии, соединяющей эту точку с центром, чрезвычайно широко используется во многих разделах механики.

Метод изучения законов движения реальных тел путём исследования движения идеальной модели - материальной точки - является основным в механике. Любое макроскопическое тело можно представить как совокупность взаимодействующих материальных точек g, с массами, равными массам его частей. Изучение движения этих частей сводится к изучению движения материальных точек.

Ограниченность применения понятия о материальной точке видна из такого примера: в разреженном газе при высокой температуре размер каждой молекулы очень мал по сравнению с типичным расстоянием между молекулами. Казалось бы, им можно пренебречь и считать молекулу материальной точкой. Однако это не всегда так: колебания и вращения молекулы - важный резервуар «внутренней энергии» молекулы, «ёмкость» которого определяется размерами молекулы, её структурой и химическими свойствами. В хорошем приближении как материальную точку можно иногда рассматривать одноатомную молекулу (инертные газы, пары металлов, и др.), но даже у таких молекул при достаточно высокой температуре наблюдается возбуждение электронных оболочек за счёт соударений молекул, с последующим высвечиванием.

Задание 1

а) автомобиль, въезжающий в гараж;

б) автомобиль на трассе Воронеж - Ростов?

а) автомобиль, въезжающий в гараж, нельзя принять за материальную точку, так как в данных условиях существенны размеры автомобиля;

б) автомобиль на трассе Воронеж-Ростов можно принять за материальную точку, так как размеры автомобиля намного меньше расстояния между городами.

Можно ли принять за материальную точку:

а) мальчика, который по дороге из школы домой проходит 1 км;

б) мальчика, делающего зарядку.

а) Когда мальчик, возвращаясь из школы, проходит до дома расстояние в 1 км, то мальчика в этом движении можно рассматривать как материальную точку, потому что его размеры малы по сравнению с расстоянием, которое он проходит.

б) когда тот же мальчик выполняет упражнения утренней зарядки, то материальной точкой считать его никак нельзя.

В окружающем нас мире всё находится в непрерывном движении. Под движением в общем смысле этого слова подразумевают любые изменения, происходящие в природе. Наиболее простым видом движения является механическое движение.

Из курса физики 7 класса вы знаете, что механическим движением тела называется изменение его положения в пространстве относительно других тел, происходящее с течением времени.

При решении различных научных и практических задач, связанных с механическим движением тел, нужно уметь описывать это движение, т. е. определять траекторию, скорость, пройденный путь, положение тела и некоторые другие характеристики движения для любого момента времени.

Например, запуская летательный аппарат с Земли на другую планету, учёные должны предварительно рассчитать, где находится эта планета относительно Земли в момент посадки на неё аппарата. А для этого необходимо выяснить, как меняются с течением времени направление и модуль скорости этой планеты и по какой траектории она движется.

Из курса математики вы знаете, что положение точки можно задать с помощью координатной прямой или прямоугольной системы координат (рис. 1). Но как задать положение тела, имеющего размеры? Ведь каждая точка этого тела будет иметь свою собственную координату.

Рис. 1. Положение точки можно задать с помощью координатной прямой или прямоугольной системы координат

При описании движения тела, имеющего размеры, возникают и другие вопросы. Например, что следует понимать под скоростью тела, если оно, перемещаясь в пространстве, одновременно вращается вокруг собственной оси? Ведь скорость разных точек этого тела будет различна как по модулю, так и по направлению. Например, при суточном вращении Земли диаметрально противоположные её точки движутся в противоположных направлениях, причём чем ближе к оси расположена точка, тем меньше её скорость.

Каким же образом можно задать координату, скорость и другие характеристики движения тела, имеющего размеры? Оказывается, во многих случаях вместо движения реального тела можно рассматривать движение так называемой материальной точки, т. е. точки, обладающей массой этого тела.

Для материальной точки можно однозначно определить координату, скорость и другие физические величины, так как она не имеет размеров и не может вращаться вокруг собственной оси.

Материальных точек нет в природе. Материальная точка - это понятие, использование которого упрощает решение многих задач и при этом позволяет получить достаточно точные результаты.

  • Материальная точка - это понятие, вводимое в механике для обозначения тела, которое рассматривается как точка, имеющая массу

Практически всякое тело можно рассматривать как материальную точку в тех случаях, когда расстояния, проходимые точками тела, очень велики по сравнению с его размерами.

Например, материальными точками считают Землю и другие планеты при изучении их движения вокруг Солнца. В данном случае различия в движении разных точек любой планеты, вызванные её суточным вращением, не влияют на величины, описывающие годовое движение.

Материальными точками считают планеты при изучении их движения вокруг Солнца

Но при решении задач, связанных с суточным вращением планет (например, при определении времени восхода солнца в разных местах поверхности земного шара), считать планету материальной точкой бессмысленно, так как результат задачи зависит от размеров этой планеты и скорости движения точек её поверхности. Так, например, во Владимирской часовой зоне солнце взойдёт на 1 ч позже, в Иркутской - на 2 ч позже, а в Московской - на 8 ч позже, чем в Магаданской.

За материальную точку правомерно принять самолёт, если требуется, например, определить среднюю скорость его движения на пути из Москвы в Новосибирск. Но при вычислении силы сопротивления воздуха, действующей на летящий самолёт, считать его материальной точкой нельзя, поскольку сила сопротивления зависит от формы и скорости движения самолёта.

За материальную точку можно принять самолёт, летящий из одного города в другой

Тело, движущееся поступательно 1 , можно принимать за материальную точку даже в том случае, если его размеры соизмеримы с проходимыми им расстояниями. Например, поступательно движется человек, стоящий на ступеньке движущегося эскалатора (рис. 2, а). В любой момент времени все точки тела человека движутся одинаково. Поэтому если мы хотим описать движение человека (т.е. определить, как меняется со временем его скорость, путь и т. д.), то достаточно рассмотреть движение только одной его точки. При этом решение задачи значительно упрощается.

При прямолинейном движении тела достаточно одной координатной оси для определения его положения.

Например, положение тележки с капельницей (рис. 2, б), движущейся по столу прямолинейно и поступательно, в любой момент времени можно определить с помощью линейки, расположенной вдоль траектории движения (тележка с капельницей принимается за материальную точку). Линейку в этом опыте удобно принять за тело отсчёта, а её шкала может служить координатной осью. (Напомним, что телом отсчёта называется тело, относительно которого рассматривается изменение положения других тел в пространстве.) Положение тележки с капельницей будет определяться относительно нулевого деления линейки.

Рис. 2. При поступательном движении тела все его точки движутся одинаково

Но если необходимо определить, например, путь, который прошла тележка за определённый промежуток времени, или скорость её движения, то помимо линейки понадобится прибор для измерения времени - часы.

В данном случае роль такого прибора выполняет капельница, из которой через равные промежутки времени падают капли. Поворачивая кран, можно добиться того, чтобы капли падали с интервалом, например, в 1 с. Посчитав число промежутков между следами капель на линейке, можно определить соответствующий промежуток времени.

Из приведённых примеров ясно, что для определения положения движущегося тела в любой момент времени, вида движения, скорости тела и некоторых других характеристик движения необходимы тело отсчёта, связанная с ним система координат (или одна координатная ось, если тело движется вдоль прямой) и прибор для измерения времени.

  • Система координат, тело отсчёта, с которым она связана, и прибор для измерения времени образуют систему отсчёта, относительно которой рассматривается движение тела

Конечно, во многих случаях нельзя непосредственно измерить координаты движущегося тела в любой момент времени. У нас нет реальной возможности, например, расположить измерительную ленту и расставить наблюдателей с часами вдоль многокилометрового пути движущегося автомобиля, плывущего по океану лайнера, летящего самолёта, снаряда, вылетевшего из артиллерийского орудия,различных небесных тел, движение которых мы наблюдаем, и т. д.

Тем не менее знание законов физики позволяет определить координаты тел, движущихся в различных системах отсчёта, в частности в системе отсчёта, связанной с Землёй.

Вопросы

  1. Что называется материальной точкой?
  2. С какой целью используется понятие «материальная точка»?
  3. В каких случаях движущееся тело обычно рассматривают как материальную точку?
  4. Приведите пример, показывающий, что одно и то же тело в одной ситуации можно считать материальной точкой, а в другой - нет.
  5. В каком случае положение движущегося тела можно задать с помощью одной координатной оси?
  6. Что такое система отсчёта?

Упражнение 1

  1. Можно ли считать автомобиль материальной точкой при определении пути, который он прошёл за 2 ч, двигаясь со средней скоростью, равной 80 км/ч; при обгоне им другого автомобиля?
  2. Самолёт совершает перелёт из Москвы во Владивосток. Может ли рассматривать самолёт как материальную точку диспетчер, наблюдающий за его движением; пассажир этого самолёта?
  3. Когда говорят о скорости машины, поезда и других транспортных средств, тело отсчёта обычно не указывают. Что подразумевают в этом случае под телом отсчёта?
  4. Мальчик стоял на земле и наблюдал, как его младшая сестра каталась на карусели. После катания девочка сказала брату, что и он сам, и дома, и деревья быстро проносились мимо неё. Мальчик же стал утверждать, что он вместе с домами и деревьями был неподвижен, а двигалась сестра. Относительно каких тел отсчёта рассматривали движение девочка и мальчик? Объясните, кто прав в споре.
  5. Относительно какого тела отсчёта рассматривают движение, когда говорят: а) скорость ветра равна 5 м/с; б) бревно плывёт по течению реки, поэтому его скорость равна нулю; в) скорость плывущего по реке дерева равна скорости течения воды в реке; г) любая точка колеса движущегося велосипеда описывает окружность; д) солнце утром восходит на востоке, в течение дня движется по небу, а вечером заходит на западе?

1 Поступательное движение - движение тела, при котором прямая, соединяющая любые две точки этого тела, перемещается, оставаясь всё время параллельной своему первоначальному направлению. Поступательным может быть как прямолинейное, так и криволинейное движение. Например, поступательно движется кабина колеса обозрения.