№1 Дата05.09.14

Предмет Геометрия

Класс 11

Тема урока: Понятие о многогранном угле. Трехгранный угол.

Цели урока:

    ввести понятия: “трехгранные углы”, “многогранные углы”, “многогранник”;

    ознакомить учащихся с элементами трехгранного и многогранного углов, многогранника, а также определениями выпуклого многогранного угла и свойствами плоских углов многогранного угла;

    продолжить работу по развитию пространственных представлений и пространственного воображения, а также логического мышления учащихся.

Тип урока: изучения нового материала

ХОД УРОКА

1. Организационный момент.

Приветствие учащихся, проверка готовности класса к уроку, организация внимания учащихся, раскрытие общих целей урока и плана его проведения.

2. Формирование новых понятий и способов действия.

Задачи: Обеспечить восприятие, осмысление и запоминание учащимися изучаемого материала. Обеспечить усвоение учащимися методики воспроизведения изученного материала, содействовать философскому осмыслению усваиваемых понятий, законов, правил, формул. Установить правильность и осознанность учащимися изученного материала, выявить пробелы первичного осмысления, провести коррекцию. Обеспечить соотнесение учащимися своего субъективного опыта с признаками научного знания.

Пусть даны три луча а, b и с с общим началом точкой О (рис. 1.1). Эти три луча не обязательно лежат в одной плоскости. На рисунке 1.2 лучи b и с лежат в плоскости р, а луч а не лежит в этой плоскости.

Лучи а, b и с попарно задают три выделенных дугами плоских угла (рис. 1.3).

Рассмотрим фигуру, состоящую из трех указанных выше углов и части пространства, ограниченной этими плоскими углами. Эту пространственную фигуру называют трехгранным углом (рис. 2).

Лучи а, b и с называются ребрами трехгранного угла, а углы: = AOC, = AOB,

= BOC , ограничивающие трехгранный угол, - его гранями. Эти углы-грани образуют поверхность трехгранного угла. Точка О называется вершиной трехгранного угла. Трехгранный угол можно обозначать так: OABC

Рассмотрев внимательно все многогранные углы, изображенные на рисунке 3, мы можем заключить, что у каждого из многогранных углов одинаковое число ребер и граней:

4 грани и одна вершина;

    у пятигранного угла - 5 ребер, 5 граней и одна вершина;


  • у шестигранного угла - 6 ребер, 6 граней и одна вершина и т. д.

Многогранные углы бывают выпуклыми и невыпуклыми.

Представьте себе, что мы взяли четыре луча с общим началом, как на рисунке 4. В этом случае мы получили невыпуклый многогранный угол.

Определение 1. Многогранный угол называется выпуклым, если он лежит по одну сторону от плоскости каждой его грани.

Другими словами, выпуклый многогранный угол всегда можно положить любой его гранью на некоторую плоскость. Вы видите, что в случае, изображенном на рисунке 4, так поступить не всегда удается. Четырехгранный угол, изображенный на рисунке 4, является невыпуклым.

Отметим, что в нашем учебнике, если мы говорим “многогранный угол”, то имеем в виду, что он выпуклый. Если рассматриваемый многогранный угол невыпуклый, об этом будет сказано отдельно.

    Свойства плоских углов многогранного угла

Теорема 1. Каждый плоский угол трехгранного угла меньше суммы двух других плоских углов.

Теорема 2. Сумма величин всех плоских углов выпуклого многогранного угла меньше 360°.

3. Применение. Формирование умений и навыков.

Задачи: Обеспечить применение учащимися знаний и способов действий, которые им необходимы для СР, создать условия для выявления школьниками индивидуальных способов применения изученного.

6.Этап информации о домашнем задании.

Задачи: Обеспечить понимание учащимися цели, содержания и способов выполнения домашнего задания.

§1(1.1, 1.2) стр. 4, № 9.

7.Подведение итогов урока.

Задача: Дать качественную оценку работы класса и отдельных учащихся.

8.Этап рефлексии.

Задачи: Инициировать рефлексию учащихся на самооценку своей деятельности. Обеспечить усвоение учащимися принципов само регуляции и сотрудничества.

Беседа по вопросам:

Что тебе на уроке было интересно?

Что не понятно?

На что обратить внимание учителю на следующем уроке?

Как ты оценишь свою работу на уроке?

2.4. Многогранные углы

В соответствии с тематическим планированием, на данный параграф отводится один час учебного времени (один урок).

1. Проверка домашнего задания (5 мин.)

2. Выполняем этап работы с информацией (20 –25 мин.)

Технологически этап ориентирован на преимущественное формирование познавательных универсальных учебных действий (умения формулировать вопросы к тексту, самостоятельно формулировать ответы с опорой на текст).

В этом параграфе находит дальнейшее развитие понятие трёхгранного угла. Появляется многогранный угол, и в связи с этим появляется возможность уточнить понятие многоугольника.

В связи с многогранными углами ещё раз обсуждается проблема выпуклости фигур. На примере многогранных углов мы дополнительно уточняем представления учащихся о выпуклых и невыпуклых фигурах (многоугольники, многогранные углы, произвольные фигуры).

Для многогранных углов полезно сформулировать свойства их плоских углов , аналогичные соответственным свойствам плоских углов трёхгранного угла (без доказательства):

1. Каждый плоский угол многогранного угла меньше суммы остальных плоских углов.

2. Сумма всех плоских углов многогранного угла меньше 360º.

3. Выполняем этап развития умений (15 20 мин.)

Этап ориентирован на выработку

познавательных УУД – формирование умений:

– по использованию математических знаний для решения различных математических задач и оценки полученных результатов;

– по использованию доказательной математической речи;

– по работе с информацией, в том числе и с различными математическими текстами;

Регулятивных УУД – формирование умений ставить личные цели деятельности, планировать свою работу, действовать по плану, оценивать полученные результаты;

коммуникативных УУД – формирование умений совместно с другими детьми в группе находить решение задачи и оценивать полученные результаты.

Обсуждаем, что это этап разъяснения всего непонятного, а также тренинга. Устанавливаем цели работы на данном этапе, добиваясь при этом от детей личного целеполагания: разъяснить для себя всё, что недостаточно хорошо понятно, потренироваться в решении тех задач, которые вызывают затруднения.

Здесь можно поработать с заданиями 34, 35 на стр. 29–30.

Предлагаем также несколько дополнительных задач.

1) Многогранный угол имеет n граней. Сколько у него рёбер?

Ответ: n рёбер.

2) Можно ли изготовить модель четырёхгранного угла с плоскими углами: 1) 80°, 130°, 70°, 100°; 2) 45°, 60°, 120°, 90°; 3) 80°, 80°, 80°, 80°? Если модель получилась, то какого угла: выпуклого или невыпуклого?

Ответ: 1) можно; 2) можно как выпуклого, так и невыпуклого; 3) можно, только выпуклого.

3) Опираясь на известное вам свойство плоских углов трёхгранного угла, докажите, что каждый плоский угол четырёхгранного угла меньше суммы трёх остальных его плоских углов.

Указание: Через два противолежащих ребра нужно провести плоскость и рассмотреть получившиеся трёхгранные углы. Доказательство справедливо только для выпуклых углов.

4) В четырёхгранном угле все плоские углы равны. Докажите, что они острые.

Решение: 1. Пусть α – градусная мера плоского угла.

2. Тогда 4α < 360° (по свойству суммы плоских углов выпуклого многогранного угла).

3. Следовательно, α < 90°, т. е. α – острый угол.

5) В выпуклом многогранном угле каждый из плоских углов равен а) 30°; б) 45°; в) 80°; г) 150°. Сколько граней может иметь такой многогранный угол?

Ответ: а) 3 ≤ n < 12; б) 3 ≤ n < 8; в) 3 ≤ n < 4,5; г) 3 ≤ n < 2,4 (такого многогранного угла не существует). При подсчетах нужно учитывать, что n – число целое.

6) В выпуклом многогранном угле все плоские углы равны между собой. Многогранный угол имеет а) 6; б) 8; в) 10 граней. Чему могут быть равны плоские углы данного многогранного угла?

Рассуждаем так же, как и при решении задачи 5, n α < 360°, где n – количество граней многогранного угла, α– градусная мера плоского угла; 0 ≤ α < 360°/ n .

Ответ: а) 0 ≤ α< 60°; б) 0 ≤ α< 45°; в) 0 ≤ α< 36°.

По истечении времени, отведённого для выполнения заданий, результаты работы выносятся педагогом на доску и обсуждаются учащимися. Подводится итог работы, происходит самооценка, связанная с определением того, что ясно и получается и того, что не ясно и не получается.

4. Формулируем домашнее задание по различным уровням сложности – в зависимости от результатов работы на предыдущем этапе.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

В планиметрии одним из объектов изучения является угол.

Угол - это геометрическая фигура, состоящая из точки - вершины угла и двух лучей, исходящих из этой точки.

Два угла одна сторона, которых общая и две другие являются продолжением одна другой, в планиметрии называются смежными.

Циркуль можно рассматривать как модель плоского угла.

Вспомним понятие двухгранного угла.

Это фигура, образованная прямой а и двумя полуплоскостями с общей границей а, не принадлежащими одной плоскости в геометрии называется двугранным углом. Полуплоскости - это грани двугранного угла. Прямая а - это ребро двугранного угла.

Крыша дома наглядно демонстрирует двухгранный угол.

Но крыша дома на рисунке два выполнена в виде фигуры образованной из шести плоских углов с общей вершиной так, что углы берутся в определенном порядке и каждая пара соседних углов, включая первый и последний, имеет общую сторону. Как называется такая форма крыши?

В геометрии фигура, составленная из углов

А углы из которых составлен этот угол называются плоскими углами. Стороны плоских углов называются ребрами многогранного угла. Точка О называется вершиной угла.

Примеры многогранных углов можно найти в тетраэдре и параллелепипеде.

Грани тетраэдра DBA, ABC, DBC образуют многогранный угол ВADC. Чаще он называется трёхгранным углом.

В параллелепипеде грани АА1D1D, ABCD, AA1B1B образую трехгранный угол AA1DB.

Ну а крыша дома выполнена в форме шестигранного угла. Она состоит из шести плоских углов.

Для многогранного угла справедлив ряд свойств. Сформулируем их и докажем. Здесь говорится, что утверждение

Во-первых, для любого выпуклого многогранного угла существует плоскость, пересекающая все его рёбра.

Рассмотри для доказательства многогранный угол ОА1А2 А3…Аn.

По условию он выпуклый. Угол называется выпуклым, если он лежит по одну сторону от плоскости каждого из своих плоских углов.

Так как по условию этот угол выпуклый, то точки О, А1, А2 ,А3, Аn лежат по одну сторону от плоскости ОА1А2

Проведем среднюю линию KM треугольника ОА1А2 и выберем из ребер ОА3, ОА4, ОАn то ребро которое образует с плоскостью ОКМ, наименьший двугранный угол. Пусть это будет ребро ОАi.(оа итое)

Рассмотрим полуплоскость α с границей КМ, делящую двугранный угол ОКМАi на два двухгранных угла. Все вершины от А до Аn лежат по одну сторону от плоскости α, а точка О по другую сторону. Следовательно, плоскость α пересекает все ребра многогранного угла. Утверждение доказано.

Выпуклые многогранные углы обладают ещё одним важным свойством.

Сумма плоских углов выпуклого многогранного угла меньше 360°.

Рассмотрим выпуклый многогранный угол с вершиной в точке О. В силу доказанного утверждения существует плоскость, которая пересекает все его ребра.

Проведем такую плоскость α, пусть она пересекает рёбра угла в точках А1, А2, А3 и так далее Аn.

Плоскость α от внешней области плоского угла будет отсекать треугольник. Сумма углов которого 180°. Получим, что сумма всех плоских углов от А1ОА2 до АnОА1 равна выражению преобразуем, данное выражение перегруппируем слагаемые, получим

В данном выражении суммы указанные в скобках, являются суммами плоских углов трехгранного угла, а как известно они больше третьего плоского угла.

Данное неравенство можно записать для всех трёхгранных углов образующих данный многогранный угол.

Следовательно, получим следующее продолжение равенства

Полученный ответ доказывает, что сумма плоских углов выпуклого многогранного угла меньше 360 градусов.

Многогранные углы Многогранный угол является пространственным аналогом многоугольника на плоскости. Напомним, что многоугольником на плоскости называется фигура, образованная простой замкнутой ломаной этой плоскости и ограниченной ею внутренней областью.

Определение многогранного угла Поверхность, образованную конечным набором плоских углов A 1 SA 2, A 2 SA 3, …, An-1 SAn, An. SA 1 с общей вершиной S, в которых соседние углы не имеют общий точек, кроме точек общего луча, а не соседние углы не имеют общих точек, кроме общей вершины, будем называть многогранной поверхностью. Фигура, образованная указанной поверхностью и одной из двух частей пространства, ею ограниченных, называется многогранным углом. Общая вершина S называется вершиной многогранного угла. Лучи SA 1, …, SAn называются ребрами многогранного угла, а сами плоские углы A 1 SA 2, A 2 SA 3, …, An-1 SAn, An. SA 1 – гранями многогранного угла. Многогранный угол обозначается буквами SA 1…An, указывающими вершину и точки на его ребрах.

Виды многогранных углов В зависимости от числа граней многогранные углы бывают трехгранными, четырехгранными, пятигранными и т. д.

Упражнение 1 Приведите примеры многогранников, у которых грани, пересекаясь в вершинах, образуют только: а) трехгранные углы; б) четырехгранные углы; в) пятигранные углы. Ответ: а) Тетраэдр, куб, додекаэдр; б) октаэдр; в) икосаэдр.

Упражнение 2 Приведите примеры многогранников, у которых грани, пересекаясь в вершинах, образуют только: а) трехгранные и четырехгранные углы; б) трехгранные и пятигранные углы; в) четырехгранные и пятигранные углы. Ответ: а) четырехугольная пирамида, треугольная бипирамида; б) пятиугольная пирамида; в) пятиугольная бипирамида.

Неравенство треугольника Для треугольника имеет место следующая теорема. Теорема (Неравенство треугольника). Каждая сторона треугольника меньше суммы двух других сторон. Докажем, что для трехгранного угла имеет место следующий пространственный аналог этой теоремы. Теорема. Всякий плоский угол трехгранного угла меньше суммы двух других его плоских углов.

Доказательство Рассмотрим трехгранный угол SABC. Пусть наибольший из его плоских углов есть угол ASC. Тогда выполняются неравенства ASB ASC

Точка пересечения биссектрис Для треугольника имеет место следующая теорема. Теорема. Биссектрисы треугольника пересекаются в одной точке – центре вписанной окружности. Докажем, что для трехгранного угла имеет место следующий пространственный аналог этой теоремы. Теорема. Биссектральные плоскости двугранных углов трехгранного угла пересекаются по одной прямой.

Доказательство Рассмотрим трехгранный угол SABC. Биссектральная плоскость SAD двугранного угла SA является геометрическим местом точек этого угла, равноудаленных от его граней SAB и SAC. Аналогично, биссектральная плоскость SBE двугранного угла SB является геометрическим местом точек этого угла, равноудаленных от его граней SAB и SBC. Линия их пересечения SO будет состоять из точек, равноудаленных от всех граней трехгранного угла. Следовательно, через нее будет проходить биссектральная плоскость двугранного угла SC.

Точка пересечения серединных перпендикуляров Для треугольника имеет место следующая теорема. Теорема. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке – центре описанной окружности. Докажем, что для трехгранного угла имеет место следующий пространственный аналог этой теоремы. Теорема. Плоскости, проходящие через биссектрисы граней трехгранного угла и перпендикулярные этим граням, пересекаются по одной прямой.

Доказательство Рассмотрим трехгранный угол SABC. Плоскость, проходящая через биссектрису SD угла BSC и перпендикулярная его плоскости, состоит из точек равноудаленных от ребер SB и SC трехгранного угла SABC. Аналогично, плоскость, проходящая через биссектрису SE угла ASC и перпендикулярная его плоскости, состоит из точек равноудаленных от ребер SA и SC трехгранного угла SABC. Линия их пересечения SO будет состоять из точек, равноудаленных от всех ребер трехгранного угла. Следовательно, ее будет содержать плоскость, проходящая через биссектрису угла ASB и перпендикулярная его плоскости.

Точка пересечения медиан Для треугольника имеет место следующая теорема. Теорема. Медианы треугольника пересекаются в одной точке – центре вписанной окружности. Докажем, что для трехгранного угла имеет место следующий пространственный аналог этой теоремы. Теорема. Плоскости, проходящие через ребра трехгранного угла и биссектрисы противоположных граней, пересекаются по одной прямой.

Доказательство Рассмотрим трехгранный угол SABC. На его ребрах отложим равные отрезки SA = SB = CS. Биссектрисы SD, SE, SF плоских углов трехгранного угла являются медианами треугольников соответственно SBC, SAB. Следовательно, AD, BE, CF – медианы треугольника ABC. Пусть O – точка пересечения медиан. Тогда прямая SO будет линией пересечения рассматриваемых плоскостей.

Точка пересечения высот Для треугольника имеет место следующая теорема. Теорема. Высоты треугольника или их продолжения пересекаются в одной точке. Докажем, что для трехгранного угла имеет место следующий пространственный аналог этой теоремы. Теорема. Плоскости, проходящие через ребра трехгранного угла и перпендикулярные плоскостям противоположных граней, пересекаются по одной прямой.

Доказательство Рассмотрим трехгранный угол Sabc. Пусть d, e, f – линии пересечения плоскостей граней трехгранного угла с плоскостями, проходящими через ребра a, b, c этого угла и перпендикулярные соответствующим плоскостям граней. Выберем какую-нибудь точку C на ребре с. Опустим из нее перпендикуляры CD и CE на прямые d и e соответственно. Обозначим A и B точки пересечения прямых CD и CE с прямыми SB и SA соответственно. Прямая d является ортогональной проекцией прямой AD на плоскость BSC. Так как BC перпендикулярна прямой d, то она перпендикулярна и прямой AD. Аналогично, прямая AC перпендикулярна прямой BE. Пусть O – точка пересечения прямых AD и BE. Прямая BC перпендикулярна плоскости SAD, следовательно, она перпендикулярна прямой SO. Аналогично, Прямая AC перпендикулярна плоскости SBE, следовательно, она перпендикулярна прямой SO. Таким образом, прямая SO перпендикулярна прямым BC и AC, следовательно, перпендикулярна плоскости ABC, значит, перпендикулярна и прямой AB. С другой стороны, прямая CO перпендикулярна прямой AB. Таким образом, прямая AB перпендикулярна плоскости SOC. Плоскость SAB проходит через прямую AB, перпендикулярную плоскости SOC, следовательно, сама перпендикулярна этой плоскости. Значит, все три рассматриваемые плоскости пересекаются по прямой SO.

Сумма плоских углов Теорема. Сумма плоских углов трехгранного угла меньше 360°. Доказательство. Пусть SABC – данный трехгранный угол. Рассмотрим трехгранный угол с вершиной A, образованный гранями ABS, ACS и углом BAC. В силу неравенства треугольника, имеет место неравенство BAС

Выпуклые многогранные углы Многогранный угол называется выпуклым, если он является выпуклой фигурой, т. е. вместе с любыми двумя своими точками целиком содержит и соединяющий их отрезок. На рисунке приведены примеры выпуклого и невыпуклого многогранных углов. Свойство. Сумма всех плоских углов выпуклого многогранного угла меньше 360°. Доказательство аналогично доказательству соответствующего свойства для трехгранного угла.
Упражнение 5 Два плоских угла трехгранного угла равны 70° и 80°. В каких границах находится третий плоский угол? Ответ: 10 о

Упражнение 6 Плоские углы трехгранного угла равны 45°, 45° и 60°. Найдите величину угла между плоскостями плоских углов в 45°. Ответ: 90 о.

Упражнение 7 В трехгранном угле два плоских угла равны по 45°; двугранный угол между ними прямой. Найдите третий плоский угол. Ответ: 60 о.

Упражнение 8 Плоские углы трехгранного угла равны 60°, 60° и 90°. На его ребрах от вершины отложены равные отрезки OA, OB, OC. Найдите двугранный угол между плоскостью угла в 90° и плоскостью ABC. Ответ: 90 о.

Упражнение 9 Каждый плоский угол трехгранного угла равен 60°. На одном из его ребер отложен от вершины отрезок, равный 3 см, и из его конца опущен перпендикуляр на противоположную грань. Найдите длину этого перпендикуляра. Ответ: см.

Фигура, образованная тремя лучами, исходящими из одной точки О и не лежащими в одной плоскости, и тремя частями плоскостей, заключенных между этими лучами, называется трехгранным углом (рис. 352).

Точка О называется вершиной угла, лучи а, b, с - его ребрами, части плоскостей . Грани суть плоские углы, называемые также плоскими углами данного трехгранного угла. Углы между плоскими гранями называются двугранными углами данного трехгранного угла.

Теорема 1. В трехгранном угле каждый плоский угол меньше суммы двух других.

Доказательство. Достаточно доказать теорему для наибольшего из плоских углов. Пусть наибольший плоский угол трехгранного угла на рис. 353. Построим в плоскости угол , равный углу его сторона b пройдет внутри угла угол наибольший из плоских углов!).

Отложим на прямых с и b какие-либо равные отрезки Проведем через точки произвольную плоскость, пересекающую лучи а и b в точках N и М соответственно.

Треугольники равны, как имеющие равные углы, заключенные между равными сторонами. Покажем, что угол с вершиной О в больше угла с той же вершиной в . Действительно, эти углы заключены между парами равных сторон, третья же сторона больше в треугольнике

Отсюда видно, что сумма двух плоских углов больше третьего плоского угла что и требовалось доказать.

Теорема 2. Сумма плоских углов трехгранного угла меньше четыре прямых.

Доказательство. Возьмем три точки А, В и С на ребрах трехгранного угла и проведем через них секущую плоскость, как показано на рис. 354. Сумма углов треугольника ABC равна Следовательно, сумма шести углов ОАС, ОАВ, ОСА, ОСВ, ОВС, ОВА больше, чем как по предыдуще теореме . Но сумма углов трех треугольников ОАВ, ОВС, ОСА в гранях трехгранного угла равна . Таким образом, на долю плоских углов трехгранного угла остается меньше четырех прямых: . Эта сумма может быть сколь угодно малой («трехгранный шпиль») или сколь угодно близкой к если уменьшать высоту пирамиды SABC на рис. 355, сохраняя ее основание, то сумма плоских углов при вершине S будет стремиться к

Сумма двугранных углов трехгранного угла также имеет границы. Ясно, что каждый из двугранных углов и потому сумма их менее . Для той же пирамиды на рис. 355 эта сумма по мере уменьшения высоты пирамиды приближается к своей границе Можно также показать, что сумма эта всегда хотя может отличаться от сколь угодно мало.

Таким образом, для плоских и двугранных углов трехгранного угла имеют место неравенства

Имеется существенное сходство между геометрией треугольника на плоскости и геометрией трехгранного угла. При этом можно проводить аналогию между углами треугольника и двугранными углами трехгранного угла, с одной стороны, и между сторонами треугольника и плоскими углами трехгранного угла - с другой. Например, при указанной замене понятий сохраняют силу теоремы о равенстве треугольников. Приведем соответствующие формулировки параллельно:

Однако два трехгранных угла, у которых равны соответственные двугранные углы, равны между собой. Между тем два треугольника, углы которых соответственно равны, подобны, но не обязательно равны. Для трехгранных углов, как и для треугольников, ставится задача решения трехгранного угла, т. е. задача отыскания одних его элементов по другим заданным. Приведем пример подобной задачи.

Задача. Даны плоские углы трехгранного угла. Найти его двугранные углы.

Решение. Отложим на ребре а отрезок и проведем нормальное сечение ABC двугранного угла а. Из прямоугольного треугольника ОАВ находим Также имеем

Для ВС находим по теореме косинусов примененной к треугольнику ВАС (для краткости плоские углы обозначаем просто ab, ас, bс, двугранные - а, b, с)

Теперь применим теорему косинусов к треугольнику ВОС:

Отсюда находим

и аналогично

По этим формулам можно найти двугранные углы, зная плоские углы. Отметим еще без доказательства замечательное соотношение

называемое теоремой синусов.

Объяснение глубокой аналогии между геометрией трехгранного угла и геометрией треугольника нетрудно получить, если провести следующее построение. Поместим в вершину трехгранного угла О центр сферы единичного радиуса (рис. 357).

Тогда ребра пересекут поверхность сферы втрехточках А, В, С, грани угла высекут на сфере дуги больших кругов АС, АВ, ВС. На сфере образуется фигура ABC, называемая сферическим треугольником. Дуги («стороны» треугольника) измеряются плоскими углами трехгранного угла, углы при вершинах суть плоские углы двугранных углов. Поэтому решение трехгранных углов есть не что иное, как решение сферических треугольников, которое составляет предмет сферической тригонометрии. Соотношения (243.1) и (243.2) относятся к числу основных соотношений сферической тригонометрии. Сферическая тригонометрия имеет важное значение для астрономии. Таким образом, теория трехгранных углов есть теория сферических треугольников и потому во многом сходна с теорией треугольника на плоскости. Различие этих теорий состоит в том, что: 1) у сферического треугольника и углы и стороны измеряются в угловой мере, поэтому, напрнмер, в теореме синусов фигурируют не стороны, а синусы сторон АВ, АС, ВС;