В настоящее время изучение геномов не ограничивается только картированием генов, стало возможным изучать последовательность расположения нуклеотидов в составе любого гена. Решающим шагом на пути к решению этой проблемы явилось применение особых ферментов рестрикционных эндонуклеаз и разработка метода клонирования генов.

Рестрикционные эндонуклеазы (рестриктазы) ферменты, расщепляющие ДНК в специфических участках нуклеотидных последовательностей, которые они распознают. Эти ферменты обнаружены у многих бактерий. Они определяют и разрушают чужеродные молекулы ДНК, попадающие в клетку, в том числе при инфицировании их фагами или при трансформации. Таких ферментов обнаружено более 100, и каждый из них распознает в ДНК специфическую последовательность из 4 6 нуклеотидов. Каждая рестриктаза способна разрезать двойную спираль ДНК любой длины. При этом образуется серия фрагментов, называемых рестрикционными фрагментами. Сравнение размеров этих фрагментов, полученных при обработке бактериальных или плазмидных геномов (а также ДНК хромосом эукариот), позволяет создавать рестрикционные карты, в которых отмечается локализация каждого разреза участка относительно соседних участков других таких разрезов (рестрикций).

Существенно, что многие рестриктазы вносят разрывы в обе цепи ДНК со смещением на несколько нуклеотидов. Вследствие этого на конце нити одного фрагмента образуется участок, нуклеотидные последовательности которого оказываются комплементарными нуклеотидным последовательностям другой нити с другого конца фрагмента. Такие концевые последовательности, комплементарные друг другу, получили название липких концов. С их помощью образовавшиеся рестрикционные фрагменты будут вновь образовывать кольца в результате спаривания липких концов. Способность рестрикционных нуклеаз разрезать ДНК с образованием липких концов широко используется в технологии создания рекомбинантных ДНК, так как при помощи таких концов можно соединить два любых фрагмента ДНК, если они получены с помощью одной и той же рестриктазы и, следовательно, имеют комплементарные липкие концы. После замыкания последних путем образования комплементарных пар оснований образовавшееся кольцо из фрагментов разных ДНК можно сшить ковалентными фосфодиэфирными связями между противоположными концами каждой нити ДНК с помощью ДНК-лигазы. В этом заключается суть технологии получения рекомбинантных молекул ДНК.

Ранее всего был изучен геном бактериального вируса ФХ174. Е го ДНК состоит из 5400 нуклеотидов и содержит 9 генов. Вирус ФХ174 можно увидеть только с помощью электронного микроскопа, а запись его генетической информации, содержащейся в 9 генах, в виде линейной последовательности через буквы (А, Т, Г, Ц) занимает целую страницу текста. Запись в таком же виде информации, имеющейся в хромосоме животной клетки, составит книгу объемом более 500000 страниц!

Изучение генома человека началось в 80-х гг. XX в. В последующем была создана Международная организация по изучению генома человека HUGO (от англ. Human Genome Organization организация генома человека). Изучением генома человека занимаются ученые США, Японии, ряда стран Европы, России и др.

Основная задача определить последовательное расположение всех нуклеотидов (а их 3,5 109 пар) во всех 23 парах хромосом человека. Предстоит выяснить молекулярные основы наследственных болезней и определить пути их лечения рано или поздно генотерапия станет вполне реальной. Уже сейчас осуществляется ДНК-диагностика более 100 наследственных болезней. После открытия структуры ДНК, гена и расшифровки генетического кода осуществление программы «Геном человека» будет означать самую фундаментальную революцию в биологии и медицине.

Генетика человека – наука, объединяющая в себе генетику и медицину. Она посвящена закономерностям наследования, изменения, эволюции человека. Генетика расс...

От Masterweb

03.04.2018 20:00

Генетика человека – наука, объединяющая в себе генетику и медицину. Она посвящена закономерностям наследования, изменения, эволюции человека. Данная наука рассматривает как индивидуумов, состояние которых полностью соответствует норме, так и имеющих различные индивидуальные признаки физиологии, психологии, доставшиеся с рождения, а также патологические состояния. Генетика рассматривает и поведенческие аспекты. Основная задача ученых – определить, что формируется под влиянием среды, а что представляет собой проявления генотипа.

Общее представление

Генетика человека основана на общих закономерностях – таковые универсальны, их можно применять к самым разным видам и особям, и человек не является исключением. В настоящее время выявлено более 3 000 признаков, присущих человеку. Они затрагивают морфологию, биохимию, физиологию. 120 из них имеют связь с половой принадлежностью. Ученые смогли выявить и исследовать 23 типа генетического сцепления. Удалось составить карту хромосом, на которой зафиксированы многие гены.

Особенного внимания заслуживают исследования, проведенные в рамках уточнения генетики человека, посвященные малочисленным популяциям, то есть таким социумам, в которых не более полутора тысяч человек. Ученые установили, что для подобной группы людей частота заключения браков внутри превышает 90 %, следовательно, всего лишь за один век все участники становятся друг другу троюродными родственниками. Исследования показали, что в таких условиях повышается риск рецессивных мутаций. Порядка восьми процентов из них летальны, некоторые связаны со строением глаз или скелета. Мутации зачастую наблюдаются уже на этапе формирования плода, что приводит к его преждевременной гибели – еще до родов или сразу после появления на свет.

Особенности и цифры

Исследуя генетику человека, удалось выявить, что гаплоидный набор представляет собой комбинацию генов в количестве не менее 100000, но у некоторых это число достигает миллиона. Один геном – источник мутаций от одной до десятка. Рост вероятности мутаций на 0,001 % для конкретного индивидуума не значит практически ничего, но при оценке здоровья популяции картина меняется – количество больных измеряется сотнями и тысячами. Анализируя полученную информацию, ученые смогли оценить, насколько важно мутагенное влияние мира вокруг нас. Именно исследуя его в масштабах популяции, можно осознать величину проблемы.

Изучая геном человека в генетике, удалось установить, что человеку присущи некоторые специфические особенности, из-за которых научный прогресс замедляется. В частности, кариотип обладает огромным количеством хромосом, кроме того, в браке обычно рождается мало детей. А во время беременности преимущественно женщина вынашивает только одного ребенка. Исключения возможны, но встречаются редко. Сложность исследования генетики человека связана с продолжительностью взросления и медленной сменой поколений, а также невозможностью сформировать брачную базу, организовать подопытное скрещивание, применять искусственные технологии для активизации мутаций.

Исследование генетики человека – это не только вынужденная борьба со сложностями и проблемами, но и ряд специфических достоинств. Для человека свойственны мутации, в настоящее время их разнообразие только растет. Кроме того, подробно изучены физиология, анатомия вида. Популяция в целом многочисленная, а значит, ученые могут подобрать среди существующих такие брачные схемы, которые максимально соответствуют целям проводимой научной работы.

Не стоять на месте

Задачи генетики человека – изучить, как происходит наследование, в каких формах проявляются генетические признаки у различных особей. В настоящее время ученые точно знают, что от человека к человеку набор признаков меняется достаточно существенно. Это объясняется актуальностью всех типов наследования: по доминанте, рецессивному гену, аутосомно, кодоминантно, в сцеплении с половой хромосомой. Чтобы добиться максимальной точности исследований, необходимо использовать специфические методы – таковые разработаны специально для изучения человека. Не останавливается работа над новыми методами и способами, которые позволят получить больше информации по этой теме.

Вот уже не первое десятилетие ученые не только лишь собирают новые сведения. В генетике человека используют аналитические подходы, предполагающие анализ уже известных данных с учетом новой полученной информации. Такой непрекращающийся аналитический процесс позволяет расширять каталог человеческих признаков, передающихся между поколениями.


Человек и наука

Изучение генетики человека предполагает исследование механизмов наследования и особенностей изменчивости, присущей человеку как виду. Альтернативный термин, которым обозначают науку – антропогенетика. Наука посвящена различиям и общностям людей, объясняемым наследственным фактором. В настоящее время принято в отдельную категорию выносить медицинскую генетику. Эта область посвящена передающимся по наследству болезням, методам их лечения и предупреждения. Актуальность исследований тесно связана с большой наработанной базой информации по этому вопросу. Удалось получить довольно четкие сведения о морфологии и физиологии, биохимии человека. Вся эта информация актуальна при изучении генетической специфики представителей популяции.

Особенности изучения наследственности, генетика человека – наука, тесно связанная с особенностями социума, этики, биологии человека. При этом учитывают, что человек имеет возможность мыслить абстрактно, воспринимать данные. Эти черты считаются неоспоримыми преимуществами, которые не присущи иным объектам, исследуемым генетикой.

Исследования: как организованы?

В генетике человека используют методы: цитогенетика, статистика, исследование популяций, онтогенетика, генеалогия, моделирование. Распространен близнецовый подход к изучению человека. Интересный и дающий немало полезной информации способ – дерматоглифика. В генетике человека используют метод гибридизации, в качестве материала для работы применяя соматические клетки. Актуальны также подходы, позволяющие работать на уровне молекул.

Кроме основных используют вспомогательные методики – они предназначены для получения дополнительной информации. Таковые предполагают применение методов микробиологии, биохимии, иммунологии и других смежных дисциплин.


Генеалогия

Этот метод генетики человека основан на исследовании признаков, свойств, передающихся от человека к человеку по наследству. Для изучения необходимо иметь доступ к родословной индивидуума. Впервые такой подход разработан Гальтоном, а для упрощения его применения впоследствии Юст предложил применять условную символику. Генеалогия предполагает формирование родословной и последующий анализ информации.

В рамках такого метода генетики человека необходимо сперва собрать исчерпывающе данные о семье. Далее информацию фиксируют графически, применяя стандартную символику. В рамках аналитического исследования собранной базы данных оценивают, можно ли конкретный признак назвать семейным, а также определяют, по какому механизму он передается. Ученые исследуют, каковы генотипы близких родственников, вычисляют риски появления анализируемого признака в будущих поколениях. Для разных механизмов наследования свойственны индивидуальные особенности, и их черты видны при анализе родословной.

О деталях

Для аналитической работы в этом методе изучения генетики человека необходимо сперва сформировать представление о правилах моногенной передачи свойств по наследству. Менделирующие признаки, исследуемые таким образом, дискретны, детерминированы, расщепляемы. Для оценки дискретности необходимо проанализировать морфологию, физиологию, биохимию, иммунологию, клинические критерии.

Особенно подробную информацию о систематизации признаков можно найти в работах Кьюсика, опубликовавшего каталог менделирующих человеческих признаков. Генеалогия как способ исследования сравнима с гибридологическим методом, а отличия объясняются социальными особенностями и человеческой биологией. В настоящее время такой подход широко применяется в исследованиях мутаций, наследования, сцепленного с полом, а также в рамках медицинского генетического консультирования.


Близнецовый способ

Такой метод изучения генетики человека предполагает наличие пар близнецов. Объекты исследуются, ученые выявляют, каковы сходства между ними, в чем заключаются различия. Близнецами считают только таких детей, которые были выношены и одновременно появились на свет у одной матери. Различают моно- и дизиготные формы. В первом случае исходный материал – одна зигота, при этом генотипы совпадают, пол – тоже. При двух зиготах генотипы близнецов отличны, а пол может совпадать или нет.

Когда для изучения генетики человека используют метод близнецов, сперва выявляют зиготность полисимптомным подходом. Оценивают людей на сходство по признакам, для которых установлено наследование, а влияние среды на них минимально. Когда удается определить точно зиготность, производят сопоставление индивидуумов по конкретному признаку.

Конкордантная пара выявляется, если некоторый признак присутствует у обоих близнецов. При его отсутствии у одного из близнецов говорят о дискордантной паре. Если для изучения генетики человека используют метод близнецов, учитывают, что полученная информация наиболее точно позволяет оценить, какова роль наследования, насколько сильно влияет среда на коррекцию определенного признака. Ученые могут установить, какие признаки передаются по наследству, почему гены отличаются по пенетрантности. В рамках изучения можно оценить, насколько эффективно влияют на особь внешние факторы – от медикаментозных до подходов к воспитанию.

Цитогенетика

Медицинская генетика человека предполагает изучение клеточных структур под микроскопом. В рамках такого исследования внимание уделяется хромосомам. Основная задача специалиста – выявить половой хроматин, провести кариотипирование. Этот процесс необходим, чтобы выявить метафазные хромосомы.

Кариотипом называется диплоидный хромосомный набор, свойственный конкретному виду. Идиограмма – кариотип, зафиксированный в форме диаграммы. Кариотипирование эффективно проводить, если есть лимфоциты особи. Сперва извлекают определенное число способных к делению клеток, получают метафазные пластинки, гипотонический раствор. Систематизация производится одним из двух методов – Парижский либо Денверский.

Денверский вариант предполагает учитывать форму, размер хромосомы, а в работе применяют метод сплошного окрашивания. Существует семь категорий хромосом. Сложность применения подхода в том, что непросто идентифицировать внутри группы отдельные хромосомы.

Парижский метод классификации предполагает окрашивание метафазных хромосом. Каждая из них отличается уникальным рисунком, а диски позволяют провести четкую дифференциацию.


Пренатальная диагностика

Тесно связаны между собой генетика и здоровье человека. Чтобы предупредить рождение страдающего патологическими отклонениями ребенка, применяется пренатальная диагностика. Эта мера считается первичным способом предупреждения заболеваний, передающихся по наследству. Подходов к диагностике известно несколько, выбор в пользу конкретного зависит от специфики семьи и состояния будущей матери.

Непрямой метод исследования генетики человека с основами медицинской генетики предполагает изучение беременных для определения групп риска. Кровь проверяют на альфа-фетопротеин, выявляют параметры ХГЧ, эстриола. Известно, к примеру, что болезнь Дауна нередко наблюдается при повышенном ХГЧ и пониженном эстриоле. Из показателей альфа-фетопротеина можно заключить, насколько высока вероятность патологий нервной трубки, кожных покровов, риски хромосомных заболеваний.

Альтернативный вариант

В рамках основ генетики человека были разработаны прямые подходы к пренатальной диагностике. Таковыми бывают инвазивные и не предполагающие хирургических операций. Неинвазивные – изучение состояния плода с помощью ультразвука. Так можно определить многоплодную беременность, некоторые заболевания и дефекты.

К прямым инвазивным способам относятся хорионбиопсия, плацентобиопсия, амниоцентез, кордоцентез, фетоскопия. Для изучения состояния могут взять образцы кожных покровов плода. Материалы и образцы, полученные для последующей работы, изучают посредством подходов цитогенетики, биохимии, проверяют молекулярный состав и генетические особенности. Полученные выводы используют, консультируя будущих родителей по вопросам наследственности. Генетика человека на этапе дородовой диагностики позволяет выявить риск хромосомных заболеваний и молекулярных отклонений. Кроме того, именно эти методы применяются, чтобы выявить пол будущего ребенка и оценить вероятность пороков развития плода.


Моделирование и генетика

Если генеалогический метод изучения генетики человека позволяет оценить вероятность наследования признаков исходя из наблюдения их у предыдущих поколений, то моделирование – это такой подход, в рамках которого наследственная изменчивость используется для формирования модели объекта. Применяют законы Вавилова, указывающие, что близкие генетически виды, роды имеют подобные ряды изменчивости, передающейся по наследству. Филогенетически близкие индивидуумы дают однозначный ответ на внешние факторы, в том числе провоцирующие мутации.

Прибегая к мутантным линиям, свойственным животным, можно сформировать модели передачи по наследству ряда болезней, свойственных и животным, и человеку. Ученые получают новые методы исследования путей формирования заболеваний, методов их передачи по наследству. В настоящее время появляются новые походы к диагностированию, основанные на достижениях генетики. Данные, получаемые при изучении животных, к человеку применяются после внесения определенных поправок.

Биохимия и статистика

Онтогенетический метод, актуальный для исследования генетики человека, предполагает изучение с применением подходов биохимии для выявления проблем метаболизма и сбоев, индивидуальных для конкретного объекта, если таковые объясняются мутацией. В организме объекта можно наблюдать промежуточные продукты обменных реакций, и их выявление в органических жидкостях получило широкое применение в подходах к диагностике патологических состояний.

Статистика и исследование популяций – это такой подход в современной генетике, который предполагает изучение генетического популяционного состава. Собрав достаточно объемную базу данных, можно оценить, насколько высок шанс появления особи, имеющей заданный фенотип, в изучаемой группе людей. Можно вычислить частоту генных аллелей, генотипов.

Еще один подход, применимый в наши дни – молекулярная генетика. Это та самая генная инженерия, о которой слышали многие, хотя далеко не всякий человек представляет себе, в чем заключается суть работы ученых. Инженерия заключается в выделении генов и создании их клонов, формировании рекомбинантных молекул и помещении их в живую клетку. Матрицы, полученные при синтезировании новых нуклеиновых кислотных цепей, используются для репликации. Молекулярная генетика активно использует подход секвенирования и некоторые другие высокотехнологичные способы.

Генетика и особенности человека

Наследственность обеспечивается наличием генов, чьи носители – хромосомы. Объект получает набор генов от матери, отца. Между поколениями передача реализована через половые клетки. В организме ген представлен дважды, переданный матерью и отцом. Гены могут быть тождественными, могут разниться. В первом случае говорят о гомозиготности, во втором – гетерозиготности. Вероятность первого варианта исключительно низка, поскольку генов слишком много. При наличии общей линии предков шанс гомозиготности выше, поскольку отец и мать передают ребенку идентичные гены. На практике такое встречается нечасто в силу института брачных отношений и действующих законов. Филологический фундамент уникальности личности, ее неповторимости объясняется разнообразием генетического набора в каждом конкретном случае.

Популяционная человеческая генетика – один из важнейших разделов науки. Человеческая популяция существенно отличается от прочих видов, так как это продукт истории, естественного отбора, развития общества. Генетическое воспроизводство – это и биологический процесс, и социальный, связанный с демографией и неотделимый от него и воспроизводства населения. Передача данных между поколениями и распределение генетических наборов, миграции и взаимные связи со средой, окружающей человека, обеспечивают движение генетического материала. Можно с уверенностью говорить, что генетика и демография – тесно связанные между собой аспекты; популяционная генетика фактически представляет собой демографическую, а ученые, занимающиеся ею, изучают результаты процессов, свойственных демографии.


Нюансы и особенности

Продолжительное исследование генетики и демографических изменений позволяет с уверенностью заключить, что генофонд во времени постоянен, хотя и представлен в каждом конкретном поколении обилием уникальных генотипов. Постоянство обеспечивается рождаемостью и смертностью, перемещением носителей генетической информации. Популяционный генофонд может меняться, поскольку разные носители материала участвуют в процессе воспроизводства с разной степенью активности. Эта особенность – элемент естественного отбора, под влиянием которого структура фонда генов меняется, а общность в большей степени соответствует условиям среды, в которой обитает человек.

В человеческой популяции изменение генофонда в некоторой степени обусловлено мутациями, дрейфом генов и миграцией. Естественные мутации – процесс, скорость которого считается соответствующей нормальному изменению генофонда. Генотипы, формирующиеся в таком процессе, могут быть совершенно новыми, несвойственными ранее сообществу. Регулярная генная миграция сглаживает различия между популяциями, приводит к утере своеобразия, уникальности, объясняющейся локальной спецификой среды.

Генная миграция обусловлена миграцией носителей генетического материала. В настоящее время нет возможности однозначно оценить и описать роль миграции в развитии человечества. Ряд последствий миграции очевиден, основной процент населения мира – продукт смешанной популяции.

Стабильность и прогресс

Шанс на то, что мутаций, миграций, генетического отбора не будет, крайне мал, но даже если представить, что такое возможно, все равно остается возможность изменения генофонда. Это объясняется дрейфом генов, то есть процессом генетической корректировки на популяционном уровне. В частности, к дрейфу может привести малочисленность популяции. Как правило, дрейф свойственен эндогамным социумам, чья отличительная особенность – небольшое количество носителей генотипов, в то время как потенциальное разнообразие наборов признаков исключительно велико.

Малочисленность популяции позволяет в каждом новом поколении реализовываться только небольшому проценту возможных наборов особенностей. Следовательно, генофонд каждого нового поколения появляется как продукт случайного выбора некоторого числа генов, переданных от родителей.

В рамках демографической генетики дрейф генов считается независимым от среды процессом. Исследуя малочисленные человеческие популяции, можно заметить, как уровень развития культуры, общества, экономики влияет на численность населения, как это сказывается на характере взаимодействия с окружающей средой. Дрейф генов, определяемый количеством людей в социуме, зависит от специфики общества и среды, в которой оно существует.

Улица Киевян, 16 0016 Армения, Ереван +374 11 233 255

Геном человека

Расшифровка генома человека – событие столь же важное в истории человечества, как открытие электричества, изобретение радио или создание компьютеров.

Немного истории. В 1988 году Национальный институт здоровья США начал проект «Геном человека» , возглавил который нобелевский лауреат Джеймс Уотсон . Основная цель проекта – выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и установить локализацию, т.е. полностью картировать все гены человека.

Планировалось, что работа но определению нуклеотидной последовательности ДНК человека (секвенирование ДНК ) должна окончиться в 2005-м году . Однако после первого года работы стало ясно, что скорости секвениронания ДНК очень низкие и для полного завершения работы такими темпами потребуется около 100 лет .

Стало очевидно, что необходим поиск новых технологий секвенирования, создание новой вычислительной техники и оригинальных компьютерных программ. Это было невыполнимо в рамках отдельно взятого государства , и к программе подключились другие страны.

Широкомасштабные координированные исследования стали проводиться под эгидой международной организации ^ Human Genom Organisation (HUGO). С 1989 г. в проект включилась и Россия. Все хромосомы человека были поделены между странами-участницами, и России для исследования достались 3-, 13- и 19-я хромосомы . В проекте оказались задействованы несколько тысяч ученых из 20 стран .

В 1996 были созданы всемирные банки данных по ДНК человека. Любая вновь определенная последовательность нуклеотидов размером более 1 тыс. оснований должна была быть обнародована через Интернет в течение суток после ее расшифровки, в противном случае статьи с этими данными в научные журналы не принимались. Любой специалист в мире мог воспользоваться этой информацией.

К началу 1998 г. было секвенировано всего около ^ 3% генома . В это время к работе неожиданно подключилась частная американская компания из штата Мериленд «Celera Genomics» под руководством Крега Вентера , которая объявила, что закончит свою работу на 4 года раньше международного консорциума.

Началась беспримерная в науке гонка. Два коллектива работали независимо, не жалея сил, чтобы придти к финишу первыми. В ходе выполнения проекта «Геном человека» было разработано много новых методов исследования, большинство из которых значительно ускоряет и удешевляет работу по расшифровке ДНК. Эти методы анализа сейчас используются в медицине, криминалистике и т.д.

В июне 2000 года два конкурирующих коллектива объединили свои данные, официально объявив о завершении работ. А в феврале 2001 года появились научные публикации чернового варианта структуры генома человека. Качество секвенирования достаточно высокое и предполагает всего 1 ошибку на 50 тыс.п.н .

«Геном человека» вошел в историю как один из самых трудоемких и дорогостоящих проектов. На него было потрачено в сумме более ^ 6 миллиардов долларов.

Возникает естественный вопрос: геном какого же человека определен в результате этих титанических усилий, кто этот конкретный человек? Согласно имеющимся данным, фирма Celera в основном ориентировалась на геном одного человека, о котором известно лишь, что это белый мужчина среднего возраста. Скорее всего, это был сам глава корпорации Крег Вентер. Международный консорциум использовал в своей работе материал не менее семи различных людей.

Геном человека состоит из 24 хромосом и 3,2 млрд. п.н. Хромосомы человека были пронумерованы согласно размеру : наибольший - у хромосомы 1, наименьший - у хромосомы 22. Со временем выяснилось, что хромосома 22 содержит больше ДНК, чем хромосома 21, но порядок нумерации не стали менять, чтобы не вносить путаницу. Отдельно идут две половые хромосомы: X и Y (условно их можно назвать томами № 23 и № 24 Энциклопедии человеческого генома).

^ В геноме женщин содержится лишь 23 хромосомы из 24-х , и все они представлены в соматических клетках двумя экземплярами. У мужчин в клетках содержится полная Энциклопедия человека, все 24 хромосомы, но две из них (хромосомы X и Y) существуют в единичных экземплярах.

Разные хромосомы сильно отличаются друг от друга по числу и свойствам генов (в первой, самой большой, хромосоме содержится 263 млн. п.н., составляющих 2237 гена, а в 21 хромосоме – 50 млн.п.н. и 82 гена). www . ensembl . org

Также отличаются хромосомы и по важности записанной в них информации. Число генов, ассоциируемых с различными болезнями больше всего в Х хромосоме – 208; в 1 хмс – 157; и в 11 хмс – 135. Меньше всего таких генов в Y хмс – всего 3. Тем не менее, только совокупность всех хромосом обеспечивает клетки полной информацией, позволяющей человеку нормально развиваться и жить. В отсутствие любой из пар хромосом жизнь конкретного индивидуума становится невозможной.

При потере по каким-либо причинам только одной из пары хромосом состояние человека сильно отличается от нормы. Например, частичная моносомия 5-ой хромосомы приводит к синдрому кошачьего крика . У детей с этой аномалией отмечается необычный плач, что обусловлено изменением гортани, а также черепа и лица.

В клетках человека также имеется ДНК , расположенная не в хромосомах, а в митохонд-риях. Это тоже часть генома человека, называемая М-хромосомой . В отличие от ядерного генома митохондриальные гены располагаются компактно, как в геноме бактерий, и имеют свой собственный генетический код (своеобразный «генетический жаргон»). МитДНК ответственна в клетке за синтез всего лишь нескольких белков. Но эти белки очень важны для клетки, поскольку участвуют в обеспечении клетки энергией.

Предполагают, что митохондрии появились в клетках эукариот в результате симбиоза высших организмов с аэробными бактериями.

МитДНК передается из поколения в поколение только по женской линии . При оплодотворении в яйцо проникает сперматозоид с набором отцовских хромосом, но без отцовских митохондрий. Только яйцеклетка предоставляет зароды-шу свою митДНК. Поэтому митДНК удобно использовать для определения степени родства как внутри вида, так и между различными таксонами.

Одной из целей исследования генома человека являлось построение точной и подробной карты всех хромосом. Генетическая карта представляет собой схему, описывающую порядок расположения на хромосоме генов и других генетических элементов. (снипсы-повторы-гены ).

В кодировании белков принимает участие не более 1,5 % хромосомной ДНК человека (т.е. генетические инструкции по формированию человеческого индивидуума занимают лишь 3 см на двухметровой молекуле ДНК человека ).

Анализ генома человека позволил выявить у него порядка ^ 40 тыс . генов (на сегодня). Самые короткие гены содержат всего 20 п.н. (гены эндорфинов , вызывающих ощущение удовольствия). Самый длинный ген, кодирующий один из белков мышц (миодистрофин), содержит порядка 2,5 млн. п.н.

^ Плотность расположения генов в хромосомах сильно различается. Средняя плотности составляет около 10 генов на 1 млн.п.н. Однако в хромосоме 19 плотность составляет 20 генов , а в Y-хромосоме - всего 1,5 гена на млн. Если сравнить плотность генов с плотностью расселения людей, то Y-хромосома напоминает нашу Сибирь, а хромосома 19 - Европейскую часть России. Плотность расположения генов падает по мере эволюционного усложнения организмов. Для сравнения: в геноме бактерий содержится свыше 1000 генов на 1,0 млн. и. н., у дрожжей около 450 генов на 1,0 млн. п. н., а у червя С. elegans - около 200 .

Как у людей имеются семьи, так и гены объединяют в семейства по их схожести. В геноме человека присутствуют около 1,5 тыс. таких семейств. Причем только около сотни из них специфичны для человека и позвоночных животных. Основная же масса генных семейств имеется как у человека, так и у дождевого червя.

Разные гены одного семейства возникали в ходе эволюции из одного гена-предшественника как следствие мутаций. «Родственные» гены чаще всего выполняют сходную функцию. Например, геном человека имеет около 1 000 генов-рецепторов обоняния.

В семействах генов иногда встречаются псевдогены . Это гены, утратившие способность к экспрессии. Перед их названием ставят греческую букву . He совсем ясно, зачем геному нужны такие гены, почему он сохранил их в эволюции и не избавился от них. В геноме человека имеется около 20 000 таких псевдогенов . В частности, в огромной семействе генов обоняния около 60% являются псевдогенами. Считается, что массивная потеря функциональных генов произошла за последние 10 млн. лет в связи со снижением роли обоняния у человека по сравнению с другими млекопитающими.

Около 20 % генов человека функционируют во всех типах клеток человека. Остальные же гены работают только в определенных тканях и органах. Например, глобиновые гены экспрессируются только в клетках крови, поскольку основная их функция – обеспечивать перенос кислорода.

Примером высочайшей специализации генов служат обонятельные гены . В каждой клетке органа обоняния человека – обонятельной луковице - работает только 1 ген из 1000 возможных. Сильнейшее недоумение ученых вызвал тот факт, что некоторые из этих генов, кроме обонятельной луковицы, активизируются еще в одном типе клеток – сперматозоидах . Как это связано с восприятием запаха, пока не совсем ясно.

Картирование хромосом также позволило выявить локализацию участков, отвечающих за некоторые болезни человека.

Например, в первой хромосоме гены связанны с раком протоков молочной железы. Во второй – с ожирением. В третьей – с шизофренией. В четвертой хромосоме обнаружен ген, мутации которого приводят к развитию алкоголизма. Мутации в концевом участке Х -хромосомы вызывают предрасположенность к гомосекесуализму.

Внимание специалистов также привлекли гены, связанные с некоторыми особенностями поведения человека . Эти гены кодируют белки, участвующие в передаче сигналов между нервными клетками (например, белок серотонин). Ген, кодирующий рецептор серотонина, ученые назвали «геном самоубийства». Мутации по этому гену вызывают у людей склонностью к отрицательным эмоциям и суицидные наклонности.

Другой передатчик сигналов в нервной системе - дофамин – вещество, играющего ключевую роль в работе центров удовольствия мозга. Избыток дофамина вызывает у животных исследовательскую гиперактивность.. Было обнаружено, что один из генов, кодирующих белки-рецепторы дофамина, может существовать в разных аллельных формах (длинной и короткой). Люди с длинной аллелью больше склонны к поиску новых впечатлений, поэтому обнаруженный ген так и назвали «геном поиска новизны». У американцев длинная аллель гена рецептора дофамина встречается в 25 раз чаще, чем, скажем, у жителей Южной и Восточной Азии. Из истории мы знаем, как заселялась Америка европейцами. В первую очередь, это были энергичные люди, склонные к авантюризму, любопытные и импульсивные. Вот они то и внесли длинную аллель «гена поиска новизны» в современную американскую популяцию.

Недавно обнаружены два гена, которые отвечают за материнские инстинкты (эти гены так и были названы генами «материнского инстинкта» ). При этом, ко всеобщему удивлению, выяснилось, что оба гена дочки получают от отцов. Животные, у которых гены «материнского инстинкта» отсутствовали, не заботились о новорожденных.

Необходимо подчеркнуть, что, в отличие от генов, ответственных за физические параметры, наличие «больных» генов, формирующих психику и поведение, еще не означает стопроцентную обреченность человека па определенные отрицательные проявления. Во-первых, как правило, не один, а совокупность генов отвечает за душевные характеристики. Между ними существует очень сложное и порой весьма неоднозначное взаимодействие, эффект которого зависит от множества различных факторов. Во-вторых, как считает большинство ученых, психика и поведение человека лишь процентов на 50 определяются генами .

Одним из методов изучения влияния окружающей среды на проявление генотипа является наблюдение за однояйцовыми близнецами. Такой подход в генетике получил название «близнецовый метод ».

Однояйцовые близнецы образуются в результате деления одной и той же зиготы и содержат идентичные геномы. Хотя появление близнецов - довольно редкое явление (считается, что у человека одна двойня приходится па 80-85 родов), тем не менее, имеющихся случаев достаточно для проведения соответствующих исследований.

Одним из наиболее четких способов идентификации человека являются отпечатки пальцев . Характерные «узоры» закладываются у зародыша уже на третьем месяце развития и сохраняются без изменения в течение всей жизни. При сравнении кожных «узоров» у близнецов было выявлено, что они очень похожи, но, что удивительно, не всегда полностью идентичны.

При исследовании ряда других признаков также наблюдали их небольшие вариации у близнецов: цвет глаз и волос, форма уха.

Крупномасштабное сравнение однояйцовых близнецов друг с другом показало, что возникновение таких инфекционных заболеваний , как корь, коклюш, ветряная оспа практически полностью зависит от возбудителя заболевания, а вот полиомиелит и туберкулез определяются кроме того наследственными свойствами человека. В частности, заболеваемость туберкулезом обоих однояйцовых близнецов более чем в 3 раза выше, чем у двух разнояйцовых близнецов.

Исследование близнецов, проведенное в Каролинском институте в Стокгольме, убедительно показало существенное воздействие факторов окружающей среды (курения, загрязнений, питания, образа жизни) на развитие некоторых форм злокачественных заболеваний. Вместе с тем отмечено влияние генетических факторов на возникновение рака простаты, рака прямой кишки и рака груди.

При анализе близнецов удалось выяснить, что умственное развитие также могут объясняться генетически. Если один из пары однояйцовых близнецов слабоумен, то второй оказывается таким же почти всегда.

Российскими учеными было проведено исследование детей-близнецов в возрасте от 7 до 12 месяцев на предмет того, в какой мере генетика и среда влияют на агрессивность, раздражительность, активность и общительность . Оказалось, что первые три черты темперамента находятся под жестким генетическим контролем: агрессивность поведения младенца:на 94 процента определяется его генотипом, активность - па 89 процентов, раздражительность - па 85 процентов. А общительность почти на 90% формируется под влиянием среды, которую создают родители.

Благодаря методу близнецового анализа на генетический уровень вышла и широко обсуждаемая проблема гомосексуализма . Уже имеются достоверные данные, что около 57% однояйцовых близнецов, братьев мужчин-гомосексуалов также являются гомосексуалами. Для женщин-лесбиянок эта цифра составляет приблизительно 50%.

Осознание гомосексуализма как наследственной болезни возможно поможет решить как проблему гомофобии (плохо ненавидеть больных людей), так и проблему агрессивного гомосексуализма (эти люди требуют признания их здоровыми и полноценными, порой даже гордятся своей особенностью). Однако, если рассматривать гомосексуализм как болезнь, как патологию, ситуация кардинально меняется. Трудно представить себе человека, гордо стоящего с плакатом: «Я страдаю шизофренией, поэтому требую к себе уважения, как к полноценному члену общества!».

Согласно современным оценкам, продолжительность жизни человека, также связана с генетическими факторами, роль которых оценивается на уровне 65-70%.

Многочисленные и разнообразные данные позволяют утверждать, что геном определяет многое в нас, но и окружающая среда весьма заметно вмешивается в нашу сущность. Взаимосвязь между генами и окружающей средой ученые иногда сравнивают с заряженным пистолетом и курком. Пистолет не выстрелит, пока не будет нажат курок. Также обстоит ситуация и в клетке, где в качестве заряженного пистолета служит ген, а функцию курка выполняют всевозможные факторы окружающей среды. Имеется и другое сравнение - с карточной игрой: хороший игрок может выиграть и с плохими картами.

Чтобы разобраться в тех многочисленных взаимосвязях, которые существуют между проявлением отдельных вариантов генов и влиянием па этот процесс различных факторов окружающей среды, был создан специальный международный проект - The Environmental Genome Project. Среди множества задач данного проекта главной является, конечно же, изучение влияния окружающей среды па продолжительность жизни, а также на возникновение и развитие различных заболевании человека. В конечном итоге этот проект может оказаться не менее важным и сложным, чем знаменитый и очень дорогостоящий проект по секвенированию генома человека. А в том, что он будет продолжаться по времени значительно дольше, чем геномный проект, нет никакого сомнения.

1. Геном, клонирование, происхождение человека. – Под ред. Л.И. Корочкина. – Фрязино: «Век 2», 2004. – 224 с.

2. Вымершие звери и птицы, которых проще всего клонировать. – Электронный ресурс. – 2013.

3. Андреева, Л.Е., В.З. Тарантул. Трансгенные животные: фундаментальные и прикладные аспекты / Л.Е. Андреева, В.З. Тарантул // Проблемы и перспективы молекулярной генетики. Том 1 / Отв. ред. Е.Д.Свердлов. – М.: Наука, 2003. – С. 184 – 217.

4. Клонирование человека. Вопросы этики. – Париж, Изд-во ЮНЕСКО, 2004. – 21 с.

Тема № 4. Современные методы исследования генома

Краткое содержание:

1. Классический подход к расшифровке последовательностей ДНК

2. Принцип высокопроизводительного пиросеквенирования ДНК

3. Достижения и перспективы секвенирования

4. Использование методов биоинформатики в секвенировании

5. История прочтения генома человека

Невозможно представить себе современную биологию (не только молекулярную биологию и биохимию, но и систематику, теорию эволюции, антропологию, медицину) без мегабайтов прочитанных последовательностей ДНК, этой плоти и крови биоинформатики , самой динамично развивающейся области биологической науки. Успех в этой области был достигнут в конце ХХ в. благодаря прорыву в создании технических устройств и технологий расшифровки геномов. Определение последовательностей нуклеотидов в молекуле ДНК получило название секвенирования (от англ. sequence – последовательность), а приборы, предназначенные для этой цели, именуются секвенаторами .

1. Классический подход к расшифровке последовательностей днк

Самый распространенный на сегодняшний день способ секвенирования ДНК - «метод терминации цепи », или «дидезокси метод », разработанный в 70-х гг. прошлого века Фредериком Сэнгером (дважды лауреат Нобелевской премии по химии: за определение аминокислотной последовательности инсулина (1955 г.) и за разработку метода секвенирования ДНК (1980 г.)). Дешевизна, точность, а также сравнительная простота автоматизации делает этот метод своеобразным «золотым стандартом » среди всех существующих способов определения последовательности нуклеотидных остатков ДНК. Так был расшифрован весь геном человека, и именно метод Сэнгера до сих пор является рутинным в повседневной лабораторной практике.

амплифицируются

Вначале фрагменты ДНК, последовательность которых предстоит определить, многократно копируются (амплифицируются ), затем нарезаются на короткие куски, которые служат матрицей для синтеза комплементарных цепей ДНК. Синтез в общих чертах напоминает процесс копирования ДНК в живой клетке.

Особенность метода заключается в использовании химически модифицированных разновидностей четырех дезоксирибонуклеотидов , составляющих цепи ДНК. Каждая разновидность «помечена» флуоресцентной молекулой-маркером, на жаргоне «краской». Короткий фрагмент ДНК, называемый затравкой, или праймером , инициирует синтез ДНК в определённой точке цепи ДНК-матрицы. Синтезирует комплементарную цепь особый фермент - ДНК-полимераза . При этом флуоресцентно меченные разновидности нуклеотидов, которые присутствуют в реакционной смеси в значительно меньших количествах, чем обычные нуклеотиды, обрывают синтез, когда один из них оказывается на конце растущей ДНК-цепи. (Все дело в том, что видоизмененные нуклеотиды не имеют той самой химической группы, к которой должен присоединяться следующий нуклеотид для продолжения цепи.) В результате получается смесь, содержащая полный набор ново-синтезированных фрагментов ДНК, каждый из которых начинается в одном и том же месте, но заканчивается во всех возможных положениях вдоль цепи ДНК-матрицы.

Современные автоматизированные секвенаторы разделяют эти фрагменты, пропуская всю смесь через тончайшие капилляры, наполненные гелем. Чем короче фрагмент, тем быстрее он движется в геле по капилляру под действием электрического поля. (Фрагменты ДНК - по сути, ионы, движущиеся в электрическом поле от «минуса» к «плюсу».) Процесс, называемый капиллярным электрофорезом , настолько эффективен, что фрагмент, только что вышедший из капилляра, оказывается ровно на один нуклеотид длиннее, чем предшествующий ему. По мере того как фрагмент появляется, он освещается лазером, что заставляет светиться меченый нуклеотид на его конце. Компьютер определяет разновидность этих нуклеотидов по цвету вспышки и регистрирует последовательность их появления, складывая «буквы» (нуклеотиды) в «текст» (последовательность ДНК). В случае расшифровки целого генома так нарабатываются миллиарды коротких «текстов», которые поступают в специальную программу, запускаемую на суперкомпьютерах. Программа находит места перекрывания «текстов» и, располагая их в нужном порядке, выстраивает полную последовательность генома.

Большинство новых технологических разработок направлено на миниатюризацию , мультиплексирование (в данном случае, параллельное соединение низкопроизводительных блоков системы для повышения общей производительности) и автоматизацию процесса секвенирования. Все они могут быть разделены на два класса. Первый объединяет методы «секвенирования синтезом», в которых основания определяются по мере того, как они встраиваются в растущую цепь ДНК.

Ко второму классу относятся технологии расшифровки последовательности оснований единичной молекулы ДНК. Некоторые из них достаточно экзотичны - как, например, чтение нуклеотидных остатков ДНК электронным или оптическим способом по мере того, как молекула «протискивается» через нанопору . Длинный перечень улучшений системы капиллярного электрофореза в сочетании с возрастающей автоматизацией и усовершенствованием программного обеспечения позволили снизить стоимость секвенирования в 13 раз с тех пор, как первые автоматические секвенаторы появились в 90-е годы.

Но все это выглядит несколько бледно на фоне возможностей нового метода секвенирования синтезом - изощрённого варианта пиросеквенирования, разрабатываемого и внедряемого компанией 454 Life Sciences.

2. Принцип высокопроизводительного пиросеквенирования ДНК

Технология, разработанная компанией 454 Life Sciences, называется пирофосфатным секвенированием, или пиросеквенированием . Сама идея пиросеквенирования, надо сказать, не нова: она возникла ещё в начале 90-х годов прошлого века, но опубликованный тогда метод не сумел вытеснить традиционный дидезокси метод Сэнгера. Однако разработчики из 454 Life Sciences дополнили его возможностями современных нанотехнологий, и количество перешло в качество. Поэтому, точнее будет назвать метод «пиросеквенированием ДНК в плотно упакованных пиколитровых реакторах».

Скорость является одним из главных преимуществ нового метода секвенирования. Название метода заимствовано у знаменитого на Западе автомобиля Chevrolet Chevelle SS 454 1970-го года с двигателем мощностью 360 лошадиных сил.

Весь геном, все его молекулы ДНК, случайным образом фрагментируются на кусочки по 300–500 пар оснований. Затем комплементарные цепи фрагмента разделяются, к каждой цепи фрагментов пришивается одинаковый для всех олигонуклеотид-«адаптер », который позволяет отдельным цепям налипать на пластиковые бусинки . (Последовательность этого олигонуклеотида позволяет позднее в процессе секвенирования распознавать ДНК-матрицу.) При этом смесь разъединённых на комплементарные цепи фрагментов разбавляют таким образом, что каждая бусинка получает лишь по одной (!) индивидуальной цепи.

Каждая бусинка оказывается заключённой в капельку, окруженную маслом и содержащую смесь для осуществления полимеразной цепной реакции (ПЦР), которая и проходит отдельно в каждой капельке эмульсии (так называемая эмульсионная ПЦР , эПЦР). Это приводит к «клональной амплификации» цепей ДНК, а говоря по-русски, к тому, что на поверхности бусинки удерживается уже не одна, а около 10 млн копий («клонов») уникальной ДНК-матрицы.

Далее эмульсия разрушается, вновь двуцепочечные фрагменты ДНК (образовавшиеся в ходе ПЦР) разделяются, и бусинки, несущие одноцепочечные копии ДНК-матрицы, помещаются в лунки «предметного стекла » - слайда особой конструкции. Каждая лунка такого слайда образует отдельный пиколитровый «реактор» , в котором и будет происходить реакция секвенирования.

Слайд представляет собой срез блока , полученного путём нескольких циклов вытягивания и сплавления оптических волокон. В результате каждого цикла диаметр индивидуальных волокон уменьшается по мере того, как волокна формируют пучки шестигранной упаковки увеличивающегося поперечного диаметра. Каждое волокно имеет сердечник диаметром 44 мкм, окружённый 2–3 мкм слоем оболочки. Затем сердечники вытравливаются, и в результате получаются лунки ≈55 мкм глубиной, с расстоянием ≈50 мкм между центрами соседних лунок. Объём таких «реакторов» - 75 пиколитров; плотность размещения на поверхности слайда - 480 лунок на квадратный миллиметр. Каждый слайд несёт около 1,6 миллионов лунок, в каждую из которых попадает одна (!) бусинка с ДНК-матрицей. Слайд помещается в проточную камеру таким образом, что над отверстиями лунок создаётся канал высотой 300 мкм, по которому в лунки поступают необходимые реактивы.

Доставляемые в проточную камеру реактивы текут в слое, перпендикулярном оси лунок. Такая конфигурация позволяет одновременно осуществлять реакции на бусинках, несущих ДНК-матрицы, внутри отдельных лунок. Добавление и удаление реагентов и продуктов реакции происходит за счёт конвекционного и диффузионного переноса. Время диффузии между потоком и лунками составляет около 10 секунд и зависит от высоты проточной камеры и глубины лунок. Глубина лунок тщательным образом рассчитана исходя из следующих соображений:

1. Лунки должны быть достаточно глубокими, чтобы бусинки, несущие ДНК-матрицу, не выскакивали из них под действием конвекции.

2. Они должны быть достаточно глубокими, чтобы исключить диффузию продуктов реакции из лунок, где имело место включение нуклеотида, в лунки, где включения не произошло.

3. Лунки должны быть мелкими настолько, сколько требуется для осуществления быстрой диффузии нуклеотидов в лунку и быстрого вымывания оставшихся нуклеотидов и продуктов реакции в конце каждого цикла, что, в свою очередь, необходимо для обеспечения высокой продуктивности секвенирования и снижения расходов реактивов.

Помимо бусинок с ДНК-матрицей, в каждую лунку «насыпают» ещё бусинок помельче - каждая с «сидящими» на её поверхности (иммобилизованными ) ферментами , необходимыми для пирофосфатного секвенирования. Нуклеотиды (одного вида за раз) и другие реактивы, необходимые для реакции секвенирования, подаются последовательно в проточную камеру, куда помещается слайд.

Каждый раз, когда определённый нуклеотид встраивается в растущую цепь ДНК в какой-нибудь из лунок, в ней высвобождается молекула пирофосфата , которая, в свою очередь, является необходимым предшественником компонента другой ферментативной реакции. Её катализирует особый фермент, люцифераза светлячка Photinus pyralis. Но для её осуществления необходим аденозинтрифосфат (АТФ). Новообразованный пирофосфат превращается в лунке в АТФ под действием ещё одного фермента - АТФ-сульфурилазы . И тогда люцифераза окисляет люциферин до оксилюциферина, а эта реакция сопровождается хемилюминесценцией - по-простому, маленькой вспышкой света. Дно слайда находится в оптическом контакте с оптико-волоконным световодом, подключённым к прибору с зарядовой связью (CCD-сенсор, charge coupled device ). Это позволяет регистрировать излучаемые фотоны со дна каждой индивидуальной лунки, в которой произошло встраивание известного нуклеотида. Общая схема пиросеквенирования дана на рис. 1.

Связывая зарегистрированные от каждой лунки вспышки с типом нуклеотида, присутствующего в проточной камере в данный момент времени, компьютер последовательно отслеживает рост цепочек ДНК в сотнях тысяч лунок одновременно. Время, необходимое для протекания ферментативной реакции, производящей детектируемую «вспышку», составляет порядка 0,02–1,5 секунд. Таким образом, скорость реакции определяется скоростью массопереноса, что оставляет место для улучшений за счёт ускорения доставки реактивов. После поступления в проточную камеру каждого нуклеотида, она промывается раствором, содержащим фермент апиразу . Таким образом, перед тем как «запустить» в камеру следующий нуклеотид, из всех лунок удаляются любые нуклеотиды, остававшиеся там от предыдущего раунда.

Включение того или иного нуклеотида детектируется в результате высвобождения неорганического пирофосфата и последующего излучения света. Определить лунки, содержащие бусинки с матричной цепью ДНК, можно, прочитав «последовательность - ключ» адаптерного олигонуклеотида, пришитого к началу каждой ДНК-матрицы. Из регистрируемого сигнала вычитается уровень фона, затем сигнал нормализуется и корректируется.

Интенсивность нормализованного сигнала для каждой конкретной лунки во время поступления в проточную камеру определённого нуклеотида пропорциональна числу встроенных нуклеотидов. Линейность зависимости сохраняется для гомополимеров длиной как минимум в восемь нуклеотидов. При таком секвенировании синтезом очень небольшое число ДНК-матриц на каждой бусинке теряет синхронизм , т. е. вырываются вперёд или начинают отставать от других матриц. Исправление таких сдвигов необходимо, поскольку потеря синхронизма создаёт кумулятивный эффект , сильно снижающий качество прочтения при увеличении его длины. С учетом этого, сотрудники компании 454 разработали особый алгоритм, позволяющий оценивать и вносить поправки на «перелёт» и неполную достройку цепи, происходящие в отдельных лунках. Высокая точность расшифровки последовательности достигается тем, что система осуществляет многочисленное прочтение одного и того же фрагмента, что позволяет построить единую обобщённую (так называемую консенсусную ) последовательность.

Отдельные прочтения (риды – от англ. reаd, читать) одного и того же участка ДНК выравниваются относительно друг друга исходя из интенсивности сигналов в момент протекания через камеру того или иного нуклеотида, а не на основе последовательности этих прочтений. Затем соответствующие сигналы усредняют, и только тогда записывают полученную последовательность. Такой подход значительно улучшает качество расшифровки последовательности и предоставляет возможность оценки её качества.

В 2005 г. учёные из 454 Life Sciences, используя свою технологию, сумели расшифровать состоящий из 600 тысяч нуклеотидов геном бактерии Mycoplasma genitalium с точностью 99,4%, а также состоящий из 2,1 млн нуклеотидов геном Streptococcus pneumoniae .

Рисунок 1 - Схема пиросеквенирования. А - ДНК фрагментируется, к фрагментам пришиваются олигонуклеотиды-«адаптеры»; полученные двуцепочечные молекулы ДНК разделяются на две комплементарные цепи. Б - Одноцепочечные молекулы ДНК прикрепляются к бусинкам в условиях, стимулирующих попадание лишь одной молекулы на бусинку. Отдельные бусинки заключаются в капли реакционной смеси, окруженные маслом. Количество молекул на бусинке увеличивается в миллионы раз в результате эмульсионной полимеразной цепной реакции (эПЦР). В - Эмульсия разбивается, и цепи ДНК-фрагментов, образовавшиеся в результате эПЦР, разделяются. Бусинки, несущие на своей поверхности миллионы одноцепочечных копий первоначального фрагмента ДНК, помещаются в лунки оптико-волоконного слайда, по одной в каждую лунку. Г - В каждую лунку добавляются бусинки поменьше, несущие на своей поверхности ферменты, необходимые для пиросеквенирования. Д - Микрофотография эмульсии, изображающая «пустые» капли и капли, содержащие бусинки с ДНК-матрицей. Толстая стрелка указывает на 100-мкм каплю, тонкая - на 28-мкм бусинку. Е - Микрофотография фрагмента оптико-волоконного слайда, полученная при помощи сканирующего электронного микроскопа. Видны оболочки оптических волокон и пустые лунки

В статье, в которой впервые был представлен и опробован новый метод, сообщается, что весь геном Mycoplasma genitalium был прочтён за один раз! Сначала весь геном был фрагментирован и превращён в библиотеку кусочков ДНК, как описано выше (труд одного человека на протяжении 4-х часов). После проведения эмульсионной ПЦР и помещения полученных бусинок с ДНК-матрицами на 60 мм 2 слайд (на что одному сотруднику потребовалось 6 часов), процесс завершился 4-х часовой автоматической работой инструмента, состоящей из 42 циклов.

В результате сборки прочитанных последовательностей (каждый около 108 пар оснований) было получено 25 отдельных непрерывных фрагментов, так называемых контигов (от англ. contigious –соприкасающийся), средней длиной в 22,4 тысяч пар оснований. Эти фрагменты покрыли около 96,54% всего генома микоплазмы. Из оставшихся непрочтёнными 4,6% генома, 3% приходились на неразрешимые повторы . Таким образом, за один раз было отсеквенировано 99,5% уникальной последовательности генома.

3. Достижения и перспективы секвенирования

Хотя первая версия инструмента от компании 454 Life Sciences легко могла заменить более 50 капиллярных секвенаторов Applied Biosystem 3730XL по цене в шесть раз меньшей, реакция научного сообщества была на удивление прохладной. Вместо того чтобы принять новую технологию и начать использовать её неисчерпаемый потенциал, многие учёные, привыкшие к использованию метода Сэнгера, заговорили о таких проблемах, как точность расшифровки, длина отдельных прочтений, стоимость инфраструктуры... А кто-то просто восставал против необходимости работать с большими массивами информации, производимыми с использованием новой технологии.

Большинство критиков, однако, не заметили, что множество препятствий, стоящих на пути метода секвенирования следующего поколения, преграждали на первых порах путь и методу Сэнгера. Тогда длина прочтений составляла всего 25 пар оснований, и достигла 80 только после появления терминирующих дидезокси-нуклеотидов Фреда Сэнгера. Технология «секвенирования синтезом», основанная на выделении пирофосфата, изначально позволяла прочитывать отрезки длиной не более 100 нуклеотидов. Спустя 16 месяцев на биотехнологическом рынке, этот показатель был улучшен до 250 пар оснований. Последние разработки позволяют считывать уже около 500 пар оснований, приближая новый метод к методу Сэнгера с его ≈1000 нуклеотидами.

Другим важным фактором, помимо длины отдельных прочтений, является число прочтений , производимое в результате одного «прогона » секвенатора, нормированное на стоимость такого «прогона». Этот вопрос хорошо решается конкурентами 454 Life Sciences, системы которых производят в десять раз больше прочтений, платя за это укорочением их длины, составляющей всего 35 (или меньше) нуклеотидов. Сегодня на рынке существует три коммерческих системы нового поколения для секвенирования ДНК:

Roche (454) GS FLX Genome Analyzer, распространяемый Roche Applied Sciences. (Компания 454 LIfe Sciences выкуплена гигантом Roche Diagnostics в марте 2007 г. за 154,9 млн. долларов, но продолжает оставаться независимым подразделением);

Секвенатор Illumina Solexa 1G и

Наиболее свежая система SOLiD от Applied Biosystems.

Другие системы для расшифровки ДНК, которые уже появились на рынке, относятся к «третьему поколению » и основываются на анализе одиночных молекул. Они разрабатывались компаниями VisiGen и Helicos.

И хотя прочтение бактериального генома за раз было впечатляющим достижением, поначалу не было ясно, какие биологические задачи , недоступные старому доброму методу Сэнгера, можно будет решать, взяв на вооружение новый метод пиросеквенирования. И действительно, первые проекты с участием инструмента Roche 454 GS20 заключались лишь в «перечитывании» уже расшифрованных бактериальных геномов и подкреплении дополнительными данными уже идущих больших «Сэнгеровских проектов». В то же время исследования в области метагеномики , помимо работы с огромными массивами данных, порою бóльшими, чем геном человека, страдали от искажений, вносимых на стадиях конструирования библиотек и клонирования фрагментов для секвенирования.

В этом смысле технология 454, сочетающая эПЦР и пиросеквенирование, обладает неоспоримым преимуществом перед методом Сэнгера. Эмульсионная ПЦР позволяет амплифицировать без всяких предпочтений единичные молекулы ДНК, заключая их в капельку эмульсии и устраняя конкуренцию со стороны других ДНК-матриц за ограниченное число ДНК-полимераз. Пиросеквенирование, в свою очередь, осуществляет параллельное прочтение этих матриц со световым сигналом на выходе, который может считываться компьютером. Первые подобные исследования, опубликованные в 2006 году, показали необыкновенную гибкость метода нового поколения, использованного при изучении микробного многообразия подземных экосистем глубокой шахты, глубоководных морских экосистем, морских вирусных «сообществ» («виромов ») в нескольких океанах.

Интересное исследование, сочетающее в себе метагеномный анализ и «ДНК-палеонтологию », было проведено в конце 2005 г. Одного запуска инструмента Roche (454) GS20 было достаточно для анализа 13 млн. пар оснований последовательности генома 28 000-летнего мамонта . Эта работа проложила дорогу для технически более трудного проекта расшифровки генома неандертальца . Трудность такого проекта состоит в том, что количество выделяемой из образцов костей древней ДНК неандертальца составляет всего лишь 5% от количества, получаемого из «свежего материала». Следовательно, секвенировать приходится в 20 раз дольше, чем это необходимо для генома современного человека. Кроме того, вклад разрушения ДНК в образцах, сохраняемых при умеренных температурах, в сочетании с ошибками, присущими новому методу пиросеквенирования, часто превосходит уровень различия, установленный для геномов неандертальца и современного человека. Поэтому утверждать, что полученная последовательность действительно древняя, а не случайно попавшая в препарат современная ДНК, значительно легче в случае с мамонтом - современные слоны, в отличие от людей, не часто встречаются в лабораториях. Для того чтобы получить настоящую последовательность древнего генома млекопитающего, необходимо провести множество раундов прочтения каждого участка генома, а также удостовериться в происхождении прочитанных участков.

Вместе с прорывом в области секвенирования сложных смесей ДНК, такие проекты сделают возможным изучение любой экосистемы на планете на уровне последовательностей ДНК. Это откроет доступ к флоре и фауне 100-тысячелетней давности - возможности, превосходящие самые смелые ожидания совсем недалекого прошлого.

На клеточном уровне секвенирование нового поколения (здесь и далее речь идёт не только о пиросеквенировании, но и о других новых методах секвенирования синтезом) впервые позволяет учёным идентифицировать мутации в любом организме для всего генома. Так были найдены аллели, отвечающие за устойчивость к антибиотику у Mycobacterium tuberculosis , а также идентифицированы все мутации в геноме размером в 9 млн пар оснований у штамма бактерии, эволюционировавшей на протяжении 1000 поколений. Эти ранние попытки не только продемонстрировали способность новой технологии обнаруживать мутации и ошибки в опубликованных научных статьях, но и связанные с её использованием трудности, такие как ошибки прочтения гомополимерных последовательностей при пиросеквенировании (454) или быстрое уменьшение качества прочтения ближе к 3’-концу последовательности в системах с короткой длиной индивидуальных прочтений (Solexa или SOLiD от Applied Biosystem).

Раньше для преодоления этих трудностей данные, полученные пиросеквенированием, дополняли информацией, полученной классическим сэнгеровским путём. Но поскольку стоимость и затраты, требуемые сэнгеровской составляющей эксперимента, остаются отталкивающе высокими, многие лаборатории сегодня полагаются только на методы нового поколения, обычно сочетая относительно длинные прочтения пиросеквенирования с короткими, но дешевыми (а значит, и многочисленными) прочтениями, осуществляемыми системами Solexa и SOLiD. Такое сочетание различных платформ позволяет производить независимую оценку качества их работы, а также проверять эталонные последовательности, хранящиеся в общественных базах данных.

Получение большого количества последовательностей ДНК из различных близкородственных организмов движет вперед и развивает подход, названный повторным секвенированием (resequencing), в котором работа с последовательностями ведётся иначе, чем при сборке свежесеквенированного генома. При повторном секвенировании сборка направляется уже имеющейся под рукой эталонной последовательностью, и поэтому требует значительно меньшего покрытия (8–12-ти кратного), чем при сборке генома de novo (25–70-ти кратного). Этот подход был применён в работе по расшифровке 10 митохондриальных геномов млекопитающих, которая сделала возможными исследования в области генетики популяций, основанные не на коротких отрезках последовательности, а на полных геномах митохондрий. В настоящий момент многочисленные проекты по расшифровке микробных геномов ведутся не только для расширения списка доступных геномов, но и для проведения будущих сравнительных исследований, сопоставляющих генотип и фенотип организма на геномном уровне.

Далеко может продвинуться также и работа по изучению организмов, которые не стоят в планах по геномному секвенированию - благодаря возможностям новых методов секвенирования напрямую расшифровывать последовательности транскриптов (точнее, кДНК - ДНК-копий матричных РНК) в клетке. Изучение транскриптов посредством прямого секвенирования обладает рядом преимуществ перед методом гибридизации на ДНК-микрочипах. Главное здесь то, что секвенирование не требует никаких знаний о геномной последовательности организма a priori , поскольку последовательность транскрипта может быть немедленно сравнена с эталонной последовательностью близкородственного вида из базы данных, используя стандартные алгоритмы биоинформатики. Знание последовательностей транскриптов может в корне изменить исследования организмов, геномы которых сегодня не стоят в очереди на расшифровку, а в некоторых случаях никогда там и не окажутся. Первые работы в этой области показали, что существует возможность сопоставлять последовательности (кДНК и геномные, соответственно) двух таких далёких друг от друга видов, как бобовое Meticago truncatula и растение-эталон Arabidopsis thaliana . Также было обнаружено множество не описанных ранее транскриптов кукурузы Zea mays .

Прямой анализ транскриптов поможет обойти проблему, которую ставят перед учёными организмы с непомерно большими геномами. Несмотря на успешно проведённые проекты по расшифровке вирусных, бактериальных и больших геномов млекопитающих, метод Сэнгера оставил задачу по расшифровке геномов полиплоидных растений своим преемникам. Эти гигантские геномы, частенько принадлежащие важным хозяйственным растениям (например, геном пшеницы составляет 16 млрд пар оснований), делали все предыдущие попытки по расшифровке бесплодными. Однако перспектива дешёвого секвенирования экспрессируемых участков генома (то есть транскриптов) позволяет надеяться на успешное изучение геномов таких растений хотя бы на функциональном уровне.

И наконец, новые методы секвенирования имеют практическое применение и в медицине. Например, в генетике раковых заболеваний, специфические раковые аллели могут быть отслежены в тканях посредством высокопроизводительного секвенирования геномной ДНК в тех случаях, когда метод Сэнгера терпит поражение. И здесь большим преимуществом нового метода оборачивается многократное прочтение последовательности.

Несмотря на то, что новые методы секвенирования ДНК уже стимулировали большое количество всевозможных исследований, осуществление которых было невозможно ещё в недалёком прошлом, учёным и инженерам, занимающимися разработкой этих технологий - а равно как и компаниям, продвигающим эти технологии на рынке, - предстоит многое сделать для её улучшения. Прежде всего, снизить стоимость . Уменьшение цены на один-два порядка необходимо для осуществления надежд на персональную геномику , цель которой - повторное секвенирование индивидуальных геномов по цене, не превышающей 1000 долларов. В дополнение к этому, снижение процента ошибок будет также горячо приветствоваться - не только для методов следующего поколения, но и для метода Сэнгера, который будет продолжать вносить вклад и в обозримом будущем. Возможно, появятся искусственно изменённые специализированные ДНК -полимеразы , предоставляющие информацию о последовательности ДНК в виде испускаемого светового сигнала. По мере того, как стоимость технологий будет снижаться, количество накапливаемой информации будет расти лавинообразно, что может создать «узкое место» в исследованиях. Поэтому часть усилий по разработке новых технологий секвенирования необходимо направить на развитие биоинформатики .

Медицинская генетика – направление, посвященное наследственности, наследственным патологиям и здоровью, лечению и профилактике генетических заболеваний, а также проблемам наследственной передачи предрасположенности к болезням.

Что таке генетика?

Важной частью медицинской генетики является клиническая генетика, чьей задачей является обнаружение, и профилактика наследственной патологии.

Трудно переоценить роль генетики в современной медицине. Как выяснилось, она огромна, и даже те немалые знания, которые накоплены в этой области к настоящему времени, представляют собой, по мнению ученых, лишь вершину айсберга.

Так, врачами, проводящими , было установлено, что многие виды рака наследственно обусловлены, в частности:

  • лейкоз;
  • большинство онкологических заболеваний детского возраста;
  • и др.

Новые технологии, дары научно-технического прогресса, открыли новые возможности для генетики, и из преимущественно теоретической дисциплины она стала прикладной. Расшифровка генома человека открыла возможность вмешательства в геном, исключения одних генов и активации других – вот то направление, в котором развивается медицинская генетика.

Одно из важных направлений, которым занимается генетика – репродукция. Столь популярный метод лечения бесплодия, как ЭКО, который прочно вошел в медицинскую практику, тоже стал возможным благодаря развитию медицинской генетики. Кроме того, при всегда проводится генетическая диагностика при наличии показаний у пациента.

Методы зарубжной генетики

Существуют следующие методы генетики человека:

  • Генеалогический. Метод состоит в отслеживании и изучении родословных, позволяет определять закономерности, по которым наследуются те или иные признаки, в том числе и те, что отвечают за наследственно-обусловленные болезни.
  • Близнецовый. Метод изучает влияние среды на генотип человека при помощи сравнения однояйцевых близнецов, проживающих в разных условиях.
  • Цитогенетический. Метод, состоящий в микроскопическом исследовании хромосом. С его помощью определяются хромосомные заболевания (например, один из вариантов синдрома Дауна).
  • Секвестрирование. Метод, состоящий в изучении ДНК человека на молекулярном уровне.
  • Дерматоглифический. Метод основывается на изучении рельефа кожи пальцев, ладоней и стоп. С его помощью диагностируется ряд наследственных патологий.
  • Биохимический. Используется для исследования наследственно-обусловленных заболеваний обмена веществ, в основе которых лежат ферментные нарушения.
  • Популяционно-статистический метод – изучение закономерностей наследственных признаков в больших группах населения.

Генетическая диагностика за рубежом

Консультация генетика включает в себя генетическую диагностику. Генетический анализ позволяет определить не только возможность появления наследственных болезней, но и предрасположенности к целому ряду распространенных заболеваний.

Для проведения генетического анализа берется кровь (5 мл), кроме того, проводится тщательное изучение анамнеза пациента – это нужно для того, чтобы правильно интерпретировать полученные результаты.

Чаще всего люди обращаются в генетический центр или или любой другой стране при наличии определенных подозрений на возможную наследственную патологию, при наличии такой патологии у одного из членов семьи (в том числе и рожденного ребенка) и во время беременности, при наличии определенных показаний.

Генетическая диагностика у беременных, при обоснованных подозрениях на возможность наследственно-обусловленной патологии, проводится в том числе и инвазивными методами:

Лечение генетических заболеваний за границей

Генетика за рубежом, благодаря наличию ультрасовременного оборудования и подготовленных специалистов, имеет большие возможности в диагностике наследственной патологии всех видов. В отделение генетики пациенты обращаются как по направлению врача при наличии определенных показаний (например, семьи, планирующие ребенка, при наличии подтвержденной генетической патологии у уже рожденных детей) или по собственному желанию.

Независимо от того, будет ли это крупный институт генетики, центр генетики или отделение генетики, пациент получит квалифицированную помощь в полном объеме.

Каждый медико-диагностический центр, занимающийся ЭКО, также располагает возможностью генетической диагностики по современным стандартам – вот почему среди детей, рожденных при помощи искусственного оплодотворения, практически нет тех, кто страдал бы наследственными заболеваниями.

Стоимость лечения в центрах генетики за границей

Если вам нужна консультационная помощь по вопросам генетики, сайт UNIMED предлагает заполнить вам контактную форму и связаться с нами. Мы предоставим Вам исчерпывающую информацию, в том числе и касательно возможной стоимости генетической диагностики и лечения. Также на этом портале вы можеет узнать официальные и других странах.