Метод максимального правдоподобия.

Этот метод состоит в том, что в качестве точечной оценки параметра принимается то значение параметра , при котором функция правдоподобия достигает своего максимума.

Для случайной наработки до отказа с плотностью вероятности f(t, ) функция правдоподобия определяется формулой 12.11: , т.е. представляет из себя совместную плотность вероятности независимых измерений случайной величины τ с плотностью вероятности f(t, ).

Если случайная величина дискретна и принимает значения Z 1 ,Z 2 …, соответственно с вероятностями P 1 (α),P 2 (α)…, , то функция правдоподобия берётся в ином виде, а именно: , где индексы у вероятностей показывают, что наблюдались значения .

Оценки максимального правдоподобия параметра определяются из уравнения правдоподобия (12.12).

Значение метода максимального правдоподобия выясняется следующими двумя предположениями:

Если для параметра существует эффективная оценка , то уравнение правдоподобия (12.12) имеет единственное решение .

При некоторых общих условиях аналитического характера, наложенных на функции f(t, ) решение уравнения правдоподобия сходится при к истинному значению параметра .

Рассмотрим пример использования метода максимального правдоподобия для параметров нормального распределения.

Пример:

Имеем: , , t i (i=1..N) выборка из совокупности с плотностью распределения .

Требуется найти оценку максимального подобия.

Функция правдоподобия: ;

.

Уравнения правдоподобия: ;

;

Решение этих уравнений имеет вид: - статистическое среднее; - статистическая дисперсия. Оценка является смещённой. Не смещённой оценкой будет оценка: .

Основным недостатком метода максимального правдоподобия являются вычислительные трудности, возникающие при решение уравнений правдоподобия, которые, как правило, являются трансцендентными.

Метод моментов.

Этот метод предложен К.Пирсоном и является самым первым общим методом точечной оценки неизвестных параметров. Он до сих пор широко используется в практической статистике, поскольку нередко приводит к сравнительно несложной вычислительной процедуре. Идея этого метода состоит в том, что моменты распределения зависящие от неизвестных параметров, приравниваются к эмпирическим моментам. Взяв число моментов, равное числу неизвестных параметров, и составив соответствующие уравнения, мы получим необходимое число уравнений. Чаще всего вычисляются первые два статистических момента: выборочное среднее ; и выборочная дисперсия . Оценки, получаемые с помощью метода моментов, не являются наилучшими с точки зрения их эффективности. Однако очень часто они используются в качестве первых приближений.

Рассмотрим пример использования метода моментов.

Пример: Рассмотрим экспоненциальное распределение:

t>0; λ<0; t i (i=1..N) – выборка из совокупности с плотностью распределения . Требуется найти оценку для параметра λ.

Составляем уравнение: . Таким образом, иначе .

Метод квантилей.

Это такой же эмпирический метод, как и метод моментов. Он состоит в том, что квантиль теоретического распределения приравниваются к эмпирической квантили. Если оценке подлежат несколько параметров, то соответствующие равенства пишутся для нескольких квантилей.

Рассмотрим случай, когда закон распределения F(t,α,β) с двумя неизвестными параметрами α, β . Пусть функция F(t,α,β ) имеет непрерывно дифференцируемую плотность , принимающую положительные значения для любых возможных значений параметров α, β. Если испытания проводить по плану , r>>1 , то момент появления - го отказа можно рассматривать как эмпирическую квантиль уровня , i=1,2 … , - эмпирическая функция распределения. Если бы t l и t r – моменты появления l-го и r-го отказов известны точно, значения параметров α и β можно было бы найти из уравнений

Сущность задачи точечного оценивания параметров

ТОЧЕЧНАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ

Точечная оценка предполагает нахождение единственной числовой величины, которая и принимается за значение параметра. Такую оценку целесообразно определять в тех случаях, когда объем ЭД достаточно велик. Причем не существует единого понятия о достаточном объеме ЭД, его значение зависит от вида оцениваемого параметра (к этому вопросу предстоит вернуться при изучении методов интервальной оценки параметров, а предварительно будем считать достаточной выборку, содержащую не менее чем 10 значений). При малом объеме ЭД точечные оценки могут значительно отличаться от истинных значений параметров, что делает их непригодными для использования.

Задача точечной оценки параметров в типовом варианте постановки состоит в следующем.

Имеется: выборка наблюдений (x 1 , x 2 , …, x n ) за случайной величиной Х . Объем выборки n фиксирован.

Известен вид закона распределения величины Х , например, в форме плотности распределения f(Θ , x), где Θ – неизвестный (в общем случае векторный) параметр распределения. Параметр является неслучайной величиной.

Требуется найти оценку Θ* параметра Θ закона распределения.

Ограничения: выборка представительная.

Существует несколько методов решения задачи точечной оценки параметров, наиболее употребительными из них являются методы максимального (наибольшего) правдоподобия, моментов и квантилей.

Метод предложен Р. Фишером в 1912 г. Метод основан на исследовании вероятности получения выборки наблюдений (x 1 , x 2, …, x n) . Эта вероятность равна

f(х 1 , Θ) f(х 2 , Θ) … f(х п, Θ) dx 1 dx 2 … dx n .

Совместная плотность вероятности

L(х 1 , х 2 …, х n ; Θ) = f(х 1 , Θ) f(х 2 , Θ) … f(х n , Θ), (2.7)

рассматриваемая как функция параметра Θ , называется функцией правдоподобия .

В качестве оценки Θ* параметра Θ следует взять то значение, которое обращает функцию правдоподобия в максимум. Для нахождения оценки необходимо заменить в функции правдоподобия Т на q и решить уравнение

dL/d Θ* = 0.

Для упрощения вычислений переходят от функции правдоподобия к ее логарифму lnL . Такое преобразование допустимо, так как функция правдоподобия – положительная функция, и она достигает максимума в той же точке, что и ее логарифм. Если параметр распределения векторная величина

Θ* =(q 1 , q 2 , …, q n),

то оценки максимального правдоподобия находят из системы уравнений


d ln L(q 1 , q 2 , …, q n) /d q 1 = 0;

d ln L(q 1 , q 2 , …, q n) /d q 2 = 0;

. . . . . . . . .



d ln L(q 1 , q 2 , …, q n) /d q n = 0.

Для проверки того, что точка оптимума соответствует максимуму функции правдоподобия, необходимо найти вторую производную от этой функции. И если вторая производная в точке оптимума отрицательна, то найденные значения параметров максимизируют функцию.

Итак, нахождение оценок максимального правдоподобия включает следующие этапы: построение функции правдоподобия (ее натурального логарифма); дифференцирование функции по искомым параметрам и составление системы уравнений; решение системы уравнений для нахождения оценок; определение второй производной функции, проверку ее знака в точке оптимума первой производной и формирование выводов.

Решение. Функция правдоподобия для выборки ЭД объемом n

Логарифм функции правдоподобия

Система уравнений для нахождения оценок параметров

Из первого уравнения следует:

или окончательно

Таким образом, среднее арифметическое является оценкой максимального правдоподобия для математического ожидания.

Из второго уравнения можно найти

.

Эмпирическая дисперсия является смещенной. После устранения смещения

Фактические значения оценок параметров: m =27,51, s 2 = 0,91.

Для проверки того, что полученные оценки максимизируют значение функции правдоподобия, возьмем вторые производные

Вторые производные от функции ln(L(m,S )) независимо от значений параметров меньше нуля, следовательно, найденные значения параметров являются оценками максимального правдоподобия.

Метод максимального правдоподобия позволяет получить состоятельные, эффективные (если таковые существуют, то полученное решение даст эффективные оценки), достаточные, асимптотически нормально распределенные оценки. Этот метод может давать как смещенные, так и несмещенные оценки. Смещение удается устранить введением поправок. Метод особенно полезен при малых выборках.

непрерывная случайная величина с плотностью Вид плотности известен, но неизвестны значения параметров Функцией правдоподобия называется функция (здесь - выборка объема п из распределения случайной величины £). Легко видеть, что функции правдоподобия можно придать вероятностный смысл, а именно: рассмотрим случайный вектор компоненты которого независимые в совокупности одинаково распределенные случайные величины с законом Д(ж). Тогда элемент вероятности вектора Е имеет вид т.е. функция правдоподобия связана с вероятностью получения фиксированной выборки в последовательности экспериментов П. Основная идея метода правдоподобия состоит в том, что в качестве оценок параметров А предлагается взять такие значения (3), которые доставляют максимум функции правдоподобия при данной фиксированной выборке, т. е. предлагается считать выборку, полученную в эксперименте, наиболее вероятной. Нахождение оценок параметров pj сводится к решению системы к уравнений (к - число неизвестных параметров): Поскольку функция log L имеет максимум в той же точке, что и функция правдоподобия, то часто систему уравнений правдоподобия (19) записывают в виде В качестве оценок неизвестных параметров Д следует брать решения системы (19) или (20), действительно зависящие от выборки и не являющиеся постоянными. Вслучае, когда £ дискретна с рядом распределения, функцией правдоподобия называют функцию и оценки ищут как решения системы Метод максимального правдоподобия или эквивалентной ей Можно показать, что оценки максимального правдоподобия обладают свойством состоятельности. Следует отмстить, что метод максимального правдоподобия приводит к более сложным вычислениям, нежели метод моментов, но теоретически он более эффективен, так как оценки максимального правдоподобия меньше уклоняются от истинных значений оцениваемых параметров, чем оценки, полученные по методу моментов. Для наиболее часто встречающихся в приложениях распределений оценки параметров, полученные по методу моментов и по методу максимального правдоподобия, в большинстве случаев совпадают. Пршир 1. Отклонение (размера детали от номинала является нормально распределенной случайной личиной. Требуется по выборке определить систематическую ошибку и дисперсию отклонения. М По условию (- нормально распределенная случайная величина с математическим ожиданием (систематическая ошибка) и дисперсией, подлежащими оценке по выборке объема п: Х\>...уХп. В этом случае Функция правдоподобия Система (19) имеет вид Отсюда, исключай решения, не зависящие от Хх, получаем т е. оценки максимального правдоподобия в этом случае совпадают с уже известными нам эмпирическими средним и дисперсией > Пример 2. Оценить по выборке параметр /i экспоненциально распределенной случайной величины. 4 Функция правдоподобия имеет вид Уравнение правдоподобия приводит нас к решению совпадающему с оценкой этого же параметра, полученной по методу моментов, см. (17). ^ Пример 3. Пользуясь методом максимального правдоподобия, оценить вероятность появления герба, если при десяти бросаниях монеты герб появился 8 раз. -4 Пусть подлежащая оценке вероятность равна р. Рассмотрим случайную величину (с рядом распределения. Функция правдоподобия (21) имеет вид Метод максимального Уравнение правдоподобия дает в качестве оценки неизвестной вероятности р частоту появления герба в эксперименте Заканчивая обсуждение методов нахождения оценок, подчеркнем, что, даже имея очень большой объем экспериментальных данных, мы все равно не можем указать точного значения оцениваемого параметра, более того, как уже неоднократно отмечалось, получаемые нами оценки близки к истинным значениям оцениваемых параметров только «в среднем» или «в большинстве случаев». Поэтому важной статистической задачей, которую мы рассмотрим далее, является задача определения точности и достоверности проводимого нами оценивания.

Метод максимального правдоподобия (ММП) является одним из наиболее широко используемых методов в статистике и эконометрике. Для его применения необходимо знание закона распределения исследуемой случайной величины.

Пусть имеется некоторая случайная величина У с заданным законом распределения ДУ). Параметры этого закона неизвестны и их нужно найти. В общем случае величину Y рассматривают как многомерную, т.е. состоящую из нескольких одномерных величин У1, У2, У3 ..., У.

Предположим, что У – одномерная случайная величина и ее отдельные значения являются числами. Каждое из них (У],у 2, у3, ...,у„) рассматривается как реализация не одной случайной величины У, а η случайных величин У1; У2, У3 ..., У„. То есть:

уj – реализация случайной величины У];

у2 – реализация случайной величины У2;

уз – реализация случайной величины У3;

у„ – реализация случайной величины У„.

Параметры закона распределения вектора У, состоящего из случайных величин Y b Y 2, У3,У„, представляют как вектор Θ, состоящий из к параметров: θχ, θ2,в к. Величины Υ ν Υ 2, У3,..., Υ η могут быть распределены как с одинаковыми параметрами, так и с различными; некоторые параметры могут совпадать, а другие различаться. Конкретный ответ на этот вопрос зависит от той задачи, которую решает исследователь.

Например, если стоит задача определения параметров закона распределения случайной величины У, реализацией которой являются величины У1; У2, У3, У,„ то предполагают, что каждая из этих величин распределена так же, как величина У. Иначе говоря, любая величина У, описывается одним и тем же законом распределения/(У, ), причем с одними и теми же параметрами Θ: θχ, θ2,..., д к.

Другой пример – нахождение параметров уравнения регрессии. В этом случае каждая величина У, рассматривается как случайная величина, имеющая "собственные" параметры распределения, которые могут частично совпадать с параметрами распределения других случайных величин, а могут и полностью различаться. Более подробно применение ММП для нахождения параметров уравнения регрессии будет рассмотрено ниже.

В рамках метода максимального правдоподобия совокупность имеющихся значений У], у2, у3, ...,у„ рассматривается как некоторая фиксированная, неизменная. То есть закон /(У;) есть функция от заданной величиныу, и неизвестных параметров Θ. Следовательно, для п наблюдений случайной величины У имеется п законов /(У;).

Неизвестные параметры этих законов распределения рассматриваются как случайные величины. Они могут меняться, однако приданном наборе значений Уі,у2,у3, ...,у„ наиболее вероятны конкретные значения параметров. Иначе говоря, вопрос ставится таким образом: каковы должны быть параметры Θ, чтобы значения уj, у2, у3, ...,у„ были наиболее вероятны?

Для ответа на него нужно найти закон совместного распределения случайных величин У1; У2, У3,..., Уп –КУі, У 2, Уз, У„). Если предположить, что наблюдаемые нами величиныу^ у2,у3, ...,у„ независимы, то он равен произведению п законов/

(У;) (произведению вероятностей появления данных значений для дискретных случайных величин или произведению плотностей распределения для непрерывных случайных величин):

Чтобы подчеркнуть тот факт, что в качестве переменных рассматриваются искомые параметры Θ, введем в обозначение закона распределения еще один аргумент – вектор параметров Θ:

С учетом введенных обозначений закон совместного распределения независимых величин с параметрами будет записан в виде

(2.51)

Полученную функцию (2.51) называют функцией максимального правдоподобия и обозначают :

Еще раз подчеркнем тот факт, что в функции максимального правдоподобия значения У считаются фиксированными, а переменными являются параметры вектора (в частном случае – один параметр). Часто для упрощения процесса нахождения неизвестных параметров функцию правдоподобия логарифмируют, получая логарифмическую функцию правдоподобия

Дальнейшее решение по ММП предполагает нахождение таких значений Θ, при которых функция правдоподобия (или ее логарифм) достигает максимума. Найденные значения Θ; называют оценкой максимального правдоподобия.

Методы нахождения оценки максимального правдоподобия достаточно разнообразны. В простейшем случае функция правдоподобия является непрерывно дифференцируемой и имеет максимум в точке, для которой

В более сложных случаях максимум функции максимального правдоподобия не может быть найден путем дифференцирования и решения уравнения правдоподобия, что требует поиска других алгоритмов его нахождения, в том числе итеративных.

Оценки параметров, полученные с использованием ММП, являются:

  • состоятельными , т.е. с увеличением объема наблюдений разница между оценкой и фактическим значением параметра приближается к нулю;
  • инвариантными : если получена оценка параметра Θ, равная 0L, и имеется непрерывная функция q(0), то оценкой значения этой функции будет величина q(0L). В частности, если с помощью ММП мы оценили величину дисперсии какого-либо показателя (af ), то корень из полученной оценки будет оценкой среднего квадратического отклонения (σ,), полученной по ММП.
  • асимптотически эффективными ;
  • асимптотически нормально распределенными.

Последние два утверждения означают, что оценки параметров, полученные по ММП, проявляют свойства эффективности и нормальности при бесконечно большом увеличении объема выборки.

Для нахождения параметров множественной линейной регрессии вида

необходимо знать законы распределения зависимых переменных 7; или случайных остатков ε,. Пусть переменная Y t распределена по нормальному закону с параметрами μ, , σ, . Каждое наблюдаемое значение у, имеет, в соответствии с определением регрессии, математическое ожидание μ, = МУ„ равное его теоретическому значению при условии, что известны значения параметров регрессии в генеральной совокупности

где xfl, ..., x ip – значения независимых переменных в і -м наблюдении. При выполнении предпосылок применения МНК (предпосылок построения классической нормальной линейной модели), случайные величины У, имеют одинаковую дисперсию

Дисперсия величины определяется по формуле

Преобразуем эту формулу:

При выполнении условий Гаусса – Маркова о равенстве нулю математического ожидания случайных остатков и постоянстве их дисперсий можно перейти от формулы (2.52) к формуле

Иначе говоря, дисперсии случайной величины У,- и соответствующих ей случайных остатков совпадают.

Выборочную оценку математического ожидания случайной величины Yj будем обозначать

а оценку ее дисперсии (постоянной для разных наблюдений) как Sy.

Если предположить независимость отдельных наблюдений y it то получим функцию максимального правдоподобия

(2.53)

В приведенной функции делитель является константой и не оказывает влияния на нахождение ее максимума. Поэтому для упрощения расчетов он может быть опущен. С учетом этого замечания и после логарифмирования функция (2.53) примет вид

В соответствии с ММП найдем производные логарифмической функции правдоподобия по неизвестным параметрам

Для нахождения экстремума приравняем полученные выражения к нулю. После преобразований получим систему

(2.54)

Эта система соответствует системе, полученной по методу наименьших квадратов. То есть ММП и МНК дают одинаковые результаты, если соблюдаются предпосылки МНК. Последнее выражение в системе (2.54) дает оценку дисперсии случайной переменной 7, или, что одно и то же, дисперсии случайных остатков. Как было отмечено выше (см. формулу (2.23)), несмещенная оценка дисперсии случайных остатков равна

Аналогичная оценка, полученная с применением ММП (как следует из системы (2.54)), вычисляется по формуле

т.е. является смещенной .

Мы рассмотрели случай применения ММП для нахождения параметров линейной множественной регрессии при условии, что величина У, нормально распределена. Другой подход к нахождению параметров той же регрессии заключается в построении функции максимального правдоподобия для случайных остатков ε,. Для них также предполагается нормальное распределение с параметрами (0, σε). Нетрудно убедиться, что результаты решения в этом случае совпадут с результатами, полученными выше.

Кроме метода моментов, который изложен в предыдущем параграфе, существуют и другие методы точечной оценки неизвестных параметров распределения. К ним относится метод наибольшего правдоподобия, предложенный Р. Фишером.

А. Дискретные случайные величины. Пусть X - дискретная случайная величина, которая в результате n испытаний приняла значения х 1 , х 2 , ..., х п . Допустим, что вид закона распределения величины X задан, но неизвестен параметр θ , которым определяется этот закон. Требуется найти его точечную оценку.

Обозначим вероятность того, что в результате испытания величина X примет значение х i (i = 1 , 2, . . . , n ), через p (х i ; θ ).

Функцией правдоподобия дискретной случайной вели чины X называют функцию аргумента θ :

L (х 1 , х 2 , ..., х п ; θ ) = p (х 1 ; θ ) р (х 2 ; θ ) . . . p (х n ; θ ),

где х 1 , х 2 , ..., х п - фиксированные числа.

В качестве точечной оценки параметра θ принимают такое его значение θ * = θ * (х 1 , х 2 , ..., х п ), при котором функция правдоподобия достигает максимума. Оценку θ * называют оценкой наибольшего правдоподобия.

Функции L и ln L достигают максимума при одном и том же значении θ , поэтому вместо отыскания максимума функции L ищут (что удобнее) максимум функции ln L .

Логарифмической функцией правдоподобия называют функцию ln L . Как известно, точку максимума функции ln L аргумента θ можно искать, например, так:

3) найти вторую производную ; если вторая производная приθ = θ * отрицательна, то θ * - точка максимума.

Найденную точку максимума θ * принимают в качестве оценки наибольшего правдоподобия параметра θ .

Метод наибольшего правдоподобия имеет ряд достоинств: оценки наибольшего правдоподобия, вообще говоря, состоятельны (но они могут быть смещенными), распределены асимптотически нормально (при больших значениях n приближенно нормальны) и имеют наименьшую дисперсию по сравнению с другими асимптотически нормальными оценками; если для оцениваемого параметра θ существует эффективная оценка θ *, то уравнение правдоподобия имеет единственное решение θ *; этот метод наиболее полно использует данные выборки об оцениваемом параметре, поэтому он особенно полезен в случае малых выборок.

Недостаток метода состоит в том, что он часто требует сложных вычислений.

Замечание 1. Функция правдоподобия - функция от аргумента θ ; оценка наибольшего правдоподобия - функция от независимых аргументов х 1 , х 2 , ..., х п .

Замечание 2. Оценка наибольшего правдоподобия не всегда совпадает с оценкой, найденной методом моментов.

Пример 1. λ распределения Пуассона

где m - число произведенных испытаний; x i - число появлений события в i -м (i =1, 2, ..., n ) опыте (опыт состоит из т испытаний).

Решение. Составим функцию правдоподобия, учитывая, что. θ= λ :

L = p (х 1 ; λ :) p (х 2 ; λ :) . . .p (х n ; λ :),=

.

Напишем уравнение правдоподобия, для чего приравняем первую производную нулю:

Найдем критическую точку, для чего решим полученное уравнение относительно λ:

Найдем вторую производную по λ:

Легко видеть, что при λ = вторая производная отрицательна; следовательно,λ = - точка максимума и, значит, в качестве оценки наибольшого правдоподобия параметра λ распределения Пуассона надо принять выборочную среднюю λ* = .

Пример 2. Найти методом наибольшего правдоподобия оценку параметра p биномиального распределения

если в n 1 независимых испытаниях событие А появилось х 1 = m 1 раз и в п 2 независимых испытаниях событие А появилось х 2 = т 2 раз.

Решение. Составим функцию правдоподобия, учитывая, что θ = p :

Найдем логарифмическую функцию правдоподобия:

Найдем первую производную по р:

.

.

Найдем критическую точку, для чего решим полученное уравнение относительно p :

Найдем вторую производную по p :

.

Легко убедиться, что при вторая производная отрицательна; следовательно, - точка максимума и, значит, ее надо принять в качестве оценки наибольшего правдоподобия неизвестной вероятности p биномиального распределения:

Б. Непрерывные случайные величины. Пусть X - непрерывная случайная величина, которая в результате n испытаний приняла значения х 1 , х 2 , ..., x п . Допустим, что вид плотности распределения f (x ) задан, но не известен параметр θ , которым определяется эта функция.

Функцией правдоподобия непрерывной случайной вели чины X называют функцию аргумента θ :

L (х 1 , х 2 , ..., х п ; θ ) = f (х 1 ; θ ) f (х 2 ; θ ) . . . f (x n ; θ ),

где х 1 , х 2 , ..., x п - фиксированные числа.

Оценку наибольшего правдоподобия неизвестного параметра распределения непрерывной случайной величины ищут так же, как в случае дискретной величины.

Пример 3. Найти методом наибольшего правдоподобия оценку параметра λ, показательного распределения

(0< х < ∞),

если в результате n испытаний случайная величина X , распределенная по показательному закону, приняла значения х 1 , х 2 , ..., х п .

Решение. Составим функцию правдоподобия, учитывая, что θ= λ:

L = f (х 1 ; λ ) f (х 2 ; λ ) . . . f (х n ; λ ) =.

Найдем логарифмическую функцию правдоподобия:

Найдем первую производную по λ:

Напишем уравнение правдоподобия, для чего приравняем первую производную нулю:

Найдем критическую точку, для чего решим полученное уравнение относительно λ:

Найдем вторую производную по λ: