Принципиально важным свойством генетической информации является ее способность к переносу (передаче) как в пределах одной клетки, так и от родительской клетки к дочерним либо между клетками разных индивидуумов в процессах клеточного деления и размножения организмов. Что касается направлений внутриклеточного переноса генетической информации, то в случае ДНК-содержащих организмов они связаны с процессами репликации молекул ДНК, т.е. с копированием информации (см. подразд. 1.2), либо с синтезом молекул РНК (транскрипцией) и образованием полипептидов (трансляцией) (рис. 1.14). Как известно, каждый из указанных процессов осуществляется на основе принципов матричности и комплементарности.

Сложившиеся представления о переносе генетической информации по схеме ДНК → РНК → белок принято называть «центральной догмой» молекулярной биологии. Наряду с этим (наиболее распространенным) направлением переноса, который иногда обозначают как «общий перенос», известна и другая форма реализации генетической информации («специализированный перенос»), обнаруженная у РНК-содержащих вирусов. В этом случае наблюдается процесс, получивший название обратной транскрипции, при котором первичный генетический материал (вирусная РНК), проникший в клетку-хозяина, служит матрицей для синтеза комплементарной ДНК с помощью фермента обратной транскриптазы (ревертазы), кодируемой вирусным геномом. В дальнейшем возможна реализация информации синтезированной вирусной ДНК в обычном направлении. Следовательно,

Рис. 1.14. Основные направления внутриклеточного переноса генетической информации

специализированный перенос генетической информации осуществляется по схеме РНК → ДНК → РНК → белок.

Транскрипция является первым этапом общего переноса генетической информации и представляет собой процесс биосинтеза молекул РНК по программе ДНК. Принципиальный смысл этого процесса состоит в том, что информация структурного гена (либо нескольких расположенных рядом генов), записанная в форме нуклеотидной последовательности кодирующей нити ДНК в ориентации 3"→ 5", переписывается (транскрибируется) в нуклеотидную последовательность молекулы РНК, синтезируемой в направлении 5" → 3" на основе комплементарного соответствия дезоксирибонуклеотидов матричной нити ДНК рибонуклеотидам РНК (А-У, Г-Ц, Т-А, Ц-Г) (рис. 1.15). В качестве продуктов транскрипции (транскриптов) можно рассматривать все типы молекул РНК, участвующих в биосинтезе белков в клетке, - матричные (информационные) РНК (мРНК, или иРНК), рибосомные РНК (рРНК), транспортные РНК (тРНК), малые ядерные РНК (мяРНК).

Процесс транскрипции обеспечивается комплексным действием ряда ферментов, к числу которых относится РНК-полимераза, представляющая собой сложный белок, состоящий из нескольких субъединиц и способный выполнять несколько функций. В отличие от прокариот (бактерий), в клетках которых имеется РНК-полимераза лишь одного типа, обеспечивающая синтез разных молекул РНК, у эукариот установлено наличие ядерных РНК-полимераз трех типов (I, II, III), а также РНК-полимераз клеточных органелл, содержащих ДНК (митохондрий, пластид). РНК-полимераза I находится в ядрышке и участвует в синтезе большинства молекул рРНК, РНК-полимераза II обеспечивает синтез мРНК и мяРНК, а РНК-полимераза III осуществляет синтез тРНК и одного варианта молекул рРНК.

Транскрипция подразделяется на три основные стадии - инициацию (начало синтеза РНК), элонгацию (удлинение полинуклеотидной цепочки) и терминацию (окончание процесса).

Рис. 1.15. Синтез молекулы РНК на матричной нити ДНК. Стрелкой показано направление, в котором идет рост цепи РНК

Инициация транскрипции зависит от предварительного специфического связывания РНК-полимеразы с узнаваемой ею короткой нуклеотидной последовательностью в участке молекулы ДНК (промоторе), расположенном перед стартовой точкой структурного гена, с которой начинается синтез РНК. Промоторы разных структурных генов могут быть идентичными либо содержат отличающиеся друг от друга последовательности нуклеотидов, что, вероятно, определяет эффективность транскрибирования отдельных генов и возможности регуляции самого процесса транскрипции (см. также подразд. 1.6). Промоторы многих генов прокариот имеют в своем составе универсальную последовательность 5"-ТАТААТ-3" (блок Прибнова), которая располагается перед стартовой точкой на расстоянии порядка 10 нуклеотидов и распознается РНК-полимеразой. Другая относительно часто встречающаяся узнаваемая последовательность этих организмов (5"-ТТГАЦА-3") обычно обнаруживается на расстоянии примерно 35 нуклеотидов от стартовой точки. В геномах эукариот функцию узнавания для РНК-полимеразы II могут выполнять универсальные последовательности ТАТА (блок Хогнесса), ЦААТ и состоящие из повторяющихся нуклеотидов Г и Ц (ГЦ-мотивы). При этом та или иная промоторная область может содержать либо одну из указанных последовательностей либо комбинацию двух или трех таких последовательностей.

Специфическое прочное связывание РНК-полимеразы с тем или иным узнаваемым ею участком промоторной области позволяет ей начать процесс расплетания молекулы ДНК вплоть до стартовой точки, с которой она начинает осуществлять полимеризацию рибонуклеотидов с использованием в качестве матрицы однонитевого 3"-5"-фрагмента ДНК.

Дальнейшее расплетание ДНК структурного гена сопровождается удлинением синтезируемого полирибонуклеотида (элонгацией нити РНК), продолжающимся вплоть до достижения РНК-полимеразой области терминатора. Последний представляет собой нуклеотидную последовательность ДНК, которая узнается РНК-полимеразой при участии других белковых факторов терминации, что приводит к окончанию синтеза транскрипта и его отсоединению от матрицы. В большинстве случаев терминатор находится в конце структурного гена, обеспечивая синтез одной моногенной молекулы мРНК. При этом у прокариот возможен синтез полигенной молекулы мРНК, кодирующей синтез двух и большего числа полипептидных цепочек. Происходит непрерывное транскрибирование нескольких расположенных рядом друг с другом структурных генов, имеющих один общий терминатор. Полигенная мРНК может содержать в своем составе нетранслируемые межгенные области (спейсеры), разделяющие кодирующие участки для отдельных полипептидов, что, вероятно, обеспечивает последующее разделение и самих синтезируемых полипептидов.

Поскольку структурные гены эукариот имеют прерывистое (мозаичное) строение, то их транскрипция имеет специфические особенности, отличающие ее от транскрипции у прокариот. В случае эукариотического гена, кодирующего синтез полипептида, этот процесс начинается с транскрибирования всей нуклеотидной последовательности, содержащей как экзонные, так и интронные участки ДНК. Образовавшаяся при этом молекула мРНК, отражающая структуру всего мозаичного гена, которую называют гетерогенной ядерной РНК (гяРНК) либо проматричной РНК (про-мРНК), претерпевает затем процесс созревания (процессинг мРНК).

Процессинг состоит в ферментативном разрезании первичного транскрипта (гяРНК) с последующим удалением его интронных участков и воссоединением (сплайсингом) экзонных участков, формирующих непрерывную кодирующую последовательность зрелой мРНК, которая в дальнейшем участвует в трансляции генетической информации. В качестве примера можно рассмотреть схему процессинга мРНК, синтезируемой при транскрипции гена β-глобиновой цепочки (рис. 1.16), структура которого обсуждалась ранее (см. рис. 1.13).

В процессинге принимают участие и короткие молекулы мяРНК, состоящие примерно из 100 нуклеотидов, которые представляют собой последовательности, являющиеся комплементарными последовательностям на концах интронных участков гяРНК. Спаривание комплементарных нуклеотидов мяРНК и гяРНК способствует сворачиванию в петлю интронных участков и сближению соответствующих экзонных участков гяРНК, что, в свою очередь, делает их доступными разрезающему действию ферментов (нуклеаз). Следовательно, молекулы мяРНК обеспечивают правильность вырезания интронов из гяРНК.

Во время процессинга происходит также модификация 5"-и 3"-концов формирующейся зрелой молекулы мРНК. Принципиальный смысл этого процесса можно рассмотреть на схемах

Рис. 1.16. Процессинг мРНК -глобинового гена человека

процессинга гена β-глобина человека (см. рис. 1.16) и полной нуклеотидной последовательности зрелой мРНК, образующейся в результате этого процесса. Как видно из рис. 1.17, на 5"-конце последовательности имеется короткий нетранслируемый (лидирующий) участок, состоящий из 17 триплетов, которые маркированы цифрами со знаком «минус». Этот участок кодируется транскрибируемой (но нетранслируемой) областью первого экзона β-гена (заштрихована на рис. 1.16). Модификация этого участка состоит в образовании 5"-концевого кэпа (от англ, cap - колпачок, шапочка), представляющего собой остаток 7-метилгуанозина, присоединенный к соседнему нуклеотиду необычным способом (с помощью три-фосфатной связи). Предполагается, что основная функция кэпа связана с узнаванием специфической последовательности молекулы рРНК, входящей в состав рибосомы, что обеспечивает точное прикрепление всего лидирующего участка молекулы мРНК к определенному участку этой рибосомы и инициацию процесса трансляции. Возможно также, что кэп предохраняет зрелую мРНК от преждевременного ферментативного разрушения во время ее транспортировки из ядра в цитоплазму клетки.

Модификация 3 "-конца мРНК β-глобина, также имеющего короткую нетранслируемую последовательность, кодируемую соответствующей областью третьего экзона β-гена (см. рис. 1.16), связана с образованием полиаденилового (поли А) «хвоста» молекулы, состоящего из 100 - 200 последовательно соединенных остатков адениловой кислоты. Для действия фермента, осуществляющего полиаденилирование, не нужна матрица, но требуется присутствие на 3"-конце мРНК сигнальной последовательности ААУААА (см. рис. 1.17). Предполагается, что полиадениловый «хвост» обеспечивает транспорт зрелой мРНК к рибосоме, защищая ее от ферментативного разрушения, но сам постепенно разрушается ферментами цитоплазмы, отщепляющими один за другим концевые нуклеотиды.

Трансляция как очередной этап реализации генетической информации заключается в синтезе полипептида на рибосоме, при котором в качестве матрицы используется молекула мРНК (считывание информации в направлении 5" → 3"). Следует заметить, что в клетках прокариот, не имеющих настоящего ядра с оболочкой, хромосомный генетический материал (ДНК) практически находится в цитоплазме, что определяет непрерывный характер взаимосвязи процессов транскрипции и трансляции. Иными словами, образовавшийся лидирующий 5"-конец молекулы мРНК, синтез которой еще не завершен, уже способен вступать в контакт с рибосомой, инициируя синтез полипептида, т.е. транскрипция и трансляция идут одновременно. Что касается эукариот, то процессы транскрипции их ядерной генетической информации и ее трансляции должны быть разделены во времени в связи с процессингом молекул РНК и необходимостью их последующей упаковки и

Рис. 1.17. Нуклеотидная последовательность зрелой мРНК -глобинового гена человека. Последовательность начинается с 7-метилгуанозина на 5"-конце (кэп-сайт), за которым следует короткий нетранслируемый участок РНК. Первый транслируемый кодон (АУГ) выделен шрифтом и помечен цифрой 0, поскольку кодируемая им аминокислота (метионин) в дальнейшем выщепляется из полипептида (первой аминокислотой зрелого белка будет валин, кодируемый ГУГ). Выделены также стоп-кодон УАА (кодон 147), на котором заканчивается трансляция (полипептид состоит из 146 аминокислот), и сигнальная последовательность для полиаденилирования (ААУААА) на 3"-конце транспортировки из кариоплазмы в цитоплазму с участием специальных транспортных белков.

Как и в случае транскрипции, процесс трансляции можно условно подразделить на три основные стадии - инициацию, элонгацию и терминацию.

Для инициации трансляции принципиально важное значение имеет специфичность структурной организации группы идентичных рибосом (полирибосомы, или полисомы), которая может участвовать в синтезе первичной структуры определенной белковой молекулы (полипептида), кодируемой соответствующей мРНК. Как известно, отдельная рибосома представляет собой клеточную органеллу, состоящую из молекул рРНК, которые определяют ее специфичность, и из белков. В составе рибосомы имеются 2 структурные субъединицы (большая и малая), которые можно дифференцировать на основании их способности по-разному осаждаться при ультрацентрифугировании препаратов очищенных рибосом из разрушенных клеток, т. е. по коэффициенту седиментации (величине 5). При определенных условиях в клетке может происходить разделение (диссоциация) этих двух субъединиц либо их объединение (ассоциация).

Рибосомы прокариот, а также митохондрий и хлоропластов состоят из большой и малой субъединиц с величинами 505 и 305 соответственно, тогда как у эукариот эти субъединицы имеют другие размеры (605 и 405). Поскольку процесс трансляции более детально был исследован у бактерий, то чаще всего его рассматривают в связи со структурой рибосом этих организмов. Как видно из рис. 1.18, рибосома содержит 2 участка, имеющих прямое отношение к инициации трансляции, обозначенные как P-участок (аминоацильный) и Р- участок (пептидильный), специфичность которых определяется сочетанием соответствующих областей субъединиц 505 и 305. При диссоциации субъединиц рибосомы эти участки становятся «недостроенными», что приводит к изменению их функциональной специфичности.

В процессе трансляции участвуют также молекулы тРНК, функции которых состоят в транспортировке аминокислот из цитозоля (цитоплазматического раствора) к рибосомам. Молекула тРНК, имеющая вторичную структуру в форме «клеверного листа», содержит в своем составе тройку нуклеотидов (антикодон), которая обеспечивает ее комплементарное соединение с соответствующим кодоном (триплетом) молекулы мРНК, кодирующей синтез полипептида на рибосоме, и акцепторный участок (на 3"-конце молекулы), к которому присоединяется определенная аминокислота (см. рис. 1.7). Процесс присоединения каждой из 20 аминокислот к акцепторному концу соответствующей тРНК связан с ее активацией определенным вариантом фермента аминоацил-тРНК-

Рис. 1.18. Строение бактериальной рибосомы: Р пептидильный участок, А аминоацильный участок


Рис. 1.19. Начальные этапы трансляции: а инициирующий комплекс; б элонгация

синтетазы с использованием энергии аденозинтрифосфатов (молекул АТФ). Образовавшийся при этом специфический комплекс тРНК и аминокислоты, который получил название аминоацил-тРНК, перемещается затем к рибосоме и участвует в синтезе полипептида.

Инициация трансляции обеспечивается точным соединением лидирующего 5"-конца молекулы мРНК с определенной областью малой субъединицы диссоциированной рибосомы таким образом, что в «недостроенном» Р-участке оказывается стартовый (инициирующий) кодон АУГ этой молекулы (рис. 1.19). Функциональная особенность такого Р-участка состоит в том, что он может быть занят только инициирующей аминоацил-тРНК с антикодоном УАЦ, которая у эукариот несет аминокислоту метионин, а у бактерий - формилметионин. Поскольку синтез пояипептида всегда начинается с N-конца и нарастает в направлении к С-концу, то все белковые молекулы, синтезируемые в клетках прокариот, должны начинаться с N-формилметионина, а у эукариот - с N-метионина. Однако, в дальнейшем эти аминокислоты ферментативно выщепляются во время процессинга белковой молекулы (см. рис. 1.17).

После образования инициирующего комплекса в «недостроенном» Р-участке (см. рис. 1.19) становится возможным воссоединение малой и большой субъединиц рибосомы, что приводит к «достраиванию» Р-участка и A-участка. Лишь после этого следующая аминоацил-тРНК может занимать A-участок на основе принципа

комплементарности ее антикодона соответствующему кодону мРНК, находящемуся в этом участке (см. рис. 1.19).

Процесс элонгации начинается с образования пептидной связи между инициирующей (первой в цепочке) и последующей (второй) аминокислотами. Затем происходит перемещение рибосомы на один триплет мРНК в направлении 5"→ 3", что сопровождается отсоединением инициирующей тРНК от матрицы (мРНК), от инициирующей аминокислоты и выходом ее в цитоплазму. При этом вторая по счету аминоацил-тРНК передвигается из A-участка в Р-участок, а освободившийся А -участок занимается следующей (третьей по счету) аминоацил-тРНК. Процесс последовательного передвижения рибосомы «триплетными шагами» по нити мРНК повторяется, сопровождаясь освобождением тРНК, поступающих в Р-участок, и наращиванием аминокислотной последовательности синтезируемого полипептида.

Терминация трансляции связана с вхождением одного из трех известных стоп-триплетов мРНК в Л-участок рибосомы. Поскольку такой триплет не несет информации о какой-либо аминокислоте, но узнается соответствующими белками терминации, то процесс синтеза полипептида прекращается и он отсоединяется от матрицы (мРНК).

После выхода из функционирующей рибосомы свободный 5"-конец мРНК может вступать в контакт со следующей рибосомой полисомной группы, инициируя синтез еще одного (идентичного) полипептида. Следовательно, рассмотренный рибосомный цикл последовательно повторяется с участием нескольких рибосом одной и той же полисомы, в результате чего синтезируется группа идентичных полипептидов.

Посттрансляционная модификация полипептида представляет собой завершающий этап реализации генетической информации в клетке, приводящий к превращению синтезированного полипептида в функционально активную молекулу белка. При этом первичный полипептид может претерпевать процессинг, состоящий в ферментативном удалении инициирующих аминокислот, отщеплении других (ненужных) аминокислотных остатков и в химической модификации отдельных аминокислот. Затем происходит процесс сворачивания линейной структуры полипептида за счет образования дополнительных связей между отдельными аминокислотами и формирование вторичной структуры белковой молекулы (рис. 1.20). На этой основе формируется еще более сложная третичная структура молекулы.

В случае белковых молекул, состоящих более чем из одного полипептида, происходит образование комплексной четвертичной структуры, в которой объединяются третичные структуры отдельных полипептидов. В качестве примера можно рассмотреть модель молекулы гемоглобина человека (рис. 1.21), состоящей из


Рис. 1.20. Вторичная структура молекулы фермента рибонуклеазы

Рис. 1.21. Четвертичная структура молекулы гемоглобина человека

двух α-цепочек и двух β-цепочек, которые формируют стабильную тетрамерную структуру с помощью водородных связей. Каждая из глобиновых цепочек содержит также молекулу тема, который в комплексе с железом способен связывать молекулы кислорода, обеспечивая их транспортировку эритроцитами крови.

Базисные термины и понятия: акцепторный конец тРНК; аминоацил-тРНК; антикодон; гяРНК (про-РНК); инициация транскрипции и трансляции; инициирующая аминоацил-тРНК и аминокислота; инициирующий кодон мРНК; комплементарность; кэп; лидирующий 5"-конец мРНК; матричность; модификация концов молекулы мРНК; моногенная молекула мРНК; мРНК (иРНК); мяРНК; обратная транскриптаза (ревертаза); обратная транскрипция; общий перенос; перенос (передача) информации; полигенная молекула мРНК; полипептид; полирибосома (полисома); посттрансляционная модификация полипептида; промотор; процессинг РНК и полипептида; рибосома; РНК-полимераза; рРНК; специализированный перенос; сплайсинг; стартовая точка транскрипции; терминатор; терминация транскрипции и трансляции; транскрипт; транскрипция генетической информации; трансляция генетической информации; тРНК; элонгация транскрипции и трансляции; A-участок рибосомы; Р-участок рибосомы.

Этапы реализации генетической информации в клетке. Как лечить болезнь?
Этапы реализации генетической информации в клетке. Народные способы лечения и исцеления.
Уникальные исцеляющие видео-сеансы.

Сложившиеся представления о внутриклеточном переносе генетической информации по схеме ДНК->РНК->белок, предложенной Ф. Криком, принято называть «центральной догмой » молекулярной биологии. Наряду с этим (наиболее распространенным) направлением переноса, который иногда обозначают как общий перенос, известна и другая форма реализации генетической информации (специализированный перенос), обнаруженная при инфицировании клетки РНК-co держащими вирусами. В этом случае наблюдается процесс, получивший название обратной транскрипции, при котором первичный генетический материал (вирусная РНК), проникший в клетку хозяина, служит матрицей для синтеза комплементарной ДНК с помощью фермента обратной транскриптазы, кодируемой вирусным геномом. В дальнейшем возможна реализация информации синтезированной вирусной ДНК в обычном направлении. Следовательно, специализированный перенос генетической информации осуществляется по схеме РНК-»ДНК-»РНК-»белок.

Транскрипция является первым этапом общего переноса генетической информации и представляет собой процесс биосинтеза молекул РНК на матрице ДНК. Принципиальный смысл этого процесса состоит в том, что информация структурного гена (либо нескольких расположенных рядом генов), записанная в форме нуклеотидной последовательности матричной нити ДНК (5’, переписывается (транскрибируется) в нуклеотидную последовательность молекулы РНК, синтезируемой в направлении 5’->3’ на основе комплементарного соответствия дезоксирибонуклеотидов цепи ДНК рибонуклеотидам РНК (А - У, Г - Ц, Т - А, Ц - Г). Вторая цепь ДНК, комплементарная матричной, называется кодирующей («-»-цепь).

В качестве продуктов транскрипции (транскриптов) можно рассматривать все типы клеточной РНК. Единица транскрипции получила название «транскриптон». На рисунке 1.4 представлена структура прокариотического транскриптона.

Рис. 1.4.

Процесс транскрипции катализируется РНК-полимеразой, представляющей собой сложный белок, состоящий из нескольких субъединиц и способный выполнять несколько функций.

Транскрипцию принято подразделять на три основных стадии: инициацию (начало синтеза РНК), элонгацию (удлинение полинуклеотидной цепочки) и терминацию (окончание процесса). Рассмотрим данный процесс на примере прокариотической клетки.

Инициация транскрипции осуществляется РНК-полимеразой в состоянии холофермента, т.е. в присутствии всех субъединиц (двух а, формирующих каркас РНК-полимеразы; р, катализирующей полимеризацию РНК; Р’, обеспечивающей неспецифическое связывание с ДНК; со, участвующей в сборке фермента и защищающей его от разрушения; о, распознающей промотор и связывающейся с промотором). Фермент связывается с участком ДНК, называемым промотором (рис. 1.5) и расположенным перед стартовой точкой, с которой начинается синтез РНК. Промоторы разных структурных генов могут быть идентичными либо содержат отличающиеся друг от друга последовательности нуклеотидов, что, вероятно, определяет эффективность транскрибирования отдельных генов и возможности регуляции самого процесса транскрипции. Промоторы большинства генов прокариот имеют в своем составе универсальную последовательность 5’-ТАТААТ-3’ (блок Прибнова), которая располагается перед стартовой точкой на расстоянии порядка десяти нуклеотидов и распознается РНК-полимеразой. Другая относительно часто встречающаяся узнаваемая последовательность этих организмов (5’-ТТГАЦА-3’) обычно обнаруживается на расстоянии примерно 35 нуклеотидов от стартовой точки. Специфическое прочное связывание РНК-полимеразы с тем или иным узнаваемым ею участком промоторной области позволяет ей начать процесс расплетания молекулы ДНК вплоть до стартовой точки, с которой она начинает осуществлять полимеризацию рибонуклеотидов с использованием в качестве матрицы одно- нитевого 3’-5’-фрагмента ДНК. После синтеза короткого (длиной до десяти нуклеотидов) фрагмента РНК, G-субъединица отсоединяется, и РНК-полимераза переходит в состояние кор-фермента.


Рис. 1.5.

На этапе элонгации кор-фермент продвигается по ДНК-матрице, расплетая ее и наращивая цепь РНК в направлении 5’->3’. Вслед за продвижением РНК-полимеразы восстанавливается исходная вторичная структура ДНК. Процесс продолжается вплоть до достижения РНК-полимеразой области терминатора. Последний представляет собой нуклеотидную последовательность ДНК, на которой оканчивается синтез транскрипта, и он отсоединяется от матрицы. Существуют два основных способа терминации. При р-независимой терминации на синтезируемой РНК формируется шпилька, препятствующая дальнейшей работе РНК-полимеразы, и транскрипция прекращается, p-зависимая терминация осуществляется с участием р-белка, который присоединяется к определенным участкам синтезируемой РНК и с затратой энергии АТФ способствует диссоциации гибрида РНК с матричной нитью ДНК. В большинстве случаев терминатор находится в конце структурного гена, обеспечивая синтез одной моногенной молекулы мРНК. Вместе с тем у прокариот возможен синтез полигенной молекулы мРНК, которая кодирует синтез не одного, а двух и большего числа полипептидных цепочек. В этом случае происходит непрерывное транскрибирование нескольких расположенных рядом друг с другом структурных генов, имеющих один общий терминатор. Однако полигенная мРНК может содержать в своем составе нетранслируемые межгенные области (спейсеры), разделяющие кодирующие участки для отдельных полипептидов, что, вероятно, обеспечивает последующее разделение и самих синтезируемых полипептидов.

В отличие от прокариот, в клетках которых имеется РНК-поли- мераза лишь одного типа, обеспечивающая синтез разных молекул РНК, у эукариот обнаружены ядерные РНК-полимеразы трех типов (I, II, III), а также РНК-полимеразы клеточных органелл, содержащих ДНК (митохондрий, пластид). РНК-полимераза I находится в ядрышке и участвует в синтезе большинства молекул рРНК (5,8S, 18S, 28S), РНК-полимераза II обеспечивает синтез мРНК, мяРНК и микроРНК, а РНК-полимераза III осуществляет синтез тРНК и 5S рРНК.

Разные типы РНК-полимераз инициируют транскрипцию с разных промоторов. Так, промотор для РНК-полимеразы II (рис. 1.6) содержит универсальные последовательности ТАТА (блок Хогнесса), ЦААТ и состоящие из повторяющихся нуклеотидов Г и Ц (ГЦ-моти- вы). При этом та или иная промоторная область может включать либо одну из указанных последовательностей, либо комбинацию двух или трех таких последовательностей. Также для инициации транскрипции эукариотические РНК-полимеразы нуждаются в белках - факторах транскрипции.


Рис. 1.6.

Поскольку структурные гены эукариот имеют прерывистое (мозаичное) строение, то их транскрипция имеет специфические особенности, отличающие ее от транскрипции у прокариот. На рисунке 1.7 представлена структура эукариотического транскриптона. В случае эукариотического гена, кодирующего синтез полипептида, этот процесс начинается с транскрибирования всей нуклеотидной последовательности, содержащей как экзонные, так и интронные участки ДНК. Образовавшаяся при этом молекула РНК, отражающая структуру всего мозаичного гена, которую называют гетерогенной ядерной РНК (гяРНК) либо проматричной РНК (про-мРНК), претерпевает затем процесс созревания (процессинг мРНК).


Рис. 1.7.

Процессинг мРНК у эукариот включает три этапа: кэпирование, полиаденилирование и сплайсинг. Модификация 5’-конца, называемая копированием, представляет собой присоединение к 5’-концу транскрипта гуанозинтрифосфата (ГТФ) необычной 5’-5’- связью. Реакция катализируется ферментом гуанилилтрансферазой. Затем происходит метилирование присоединенного гуанина и первых нуклеотидов транскрипта. Функциями «кэпа» (от англ, cap - колпачок, шапочка), вероятно, являются защита 5’-конца мРНК от ферментативной деградации, взаимодействие с рибосомой при инициации трансляции и транспорт мРНК из ядра. Модификация З’-конца (по- лиаденилирование) - это присоединение к З’-концу РНК-транскрип- та от 100 до 300 остатков адениловой кислоты. Процесс катализируется ферментом polyA-полимеразой. Для действия фермента, осуществляющего полиаденилирование, не нужна матрица, но требуется присутствие на З’-конце мРНК сигнальной последовательности ААУААА. Предполагается, что полиадениловый «хвост» обеспечивает транспорт зрелой мРНК к рибосоме, защищая ее от ферментативного разрушения, но сам постепенно разрушается ферментами цитоплазмы, отщепляющими один за другим концевые нуклеотиды. Третий этап процессинга - сплайсинг состоит в ферментативном разрезании первичного транскрипта с последующим удалением его интронных участков и воссоединением экзонных участков, формирующих непрерывную кодирующую последовательность зрелой мРНК, которая в дальнейшем участвует в трансляции генетической информации. В сплайсинге принимают участие короткие молекулы мяРНК, состоящие примерно из 100 нуклеотидов, которые представляют собой последовательности, являющиеся комплементарными последовательностям на концах интронных участков гяРНК. Спаривание комплементарных нуклеотидов мяРНК и первичного транскрипта способствует сворачиванию в петлю интронных участков и сближению соответствующих экзонных участков гяРНК, что, в свою очередь, делает их доступными разрезающему действию ферментов (нуклеаз). Следовательно, молекулы мяРНК обеспечивают правильность вырезания нитронов из гяРНК.

Следует отметить, что у эукариот процессингу подвергается большинство типов РНК, в то время как у прокариот мРНК процессингу не подвергается, и трансляция синтезируемой молекулы мРНК может начаться до завершения транскрипции.

Трансляция как очередной этап реализации генетической информации заключается в синтезе полипептида на рибосоме, при котором в качестве матрицы используется молекула мРНК (считывание информации в направлении 5’ -> 3’). В клетках прокариот генетический материал (ДНК) находится в цитоплазме, что определяет сопряженность процессов транскрипции и трансляции. Иными словами, образовавшийся лидирующий 5’-конец молекулы мРНК, синтез которой еще не завершен, уже способен вступать в контакт с рибосомой, инициируя синтез полипептида, т.е. транскрипция и трансляция идут одновременно. Что касается эукариот, то процессы транскрипции и трансляции разделены в пространстве и во времени в связи с процессингом молекул РНК и необходимостью их последующей транспортировки из ядра в цитоплазму, где будет осуществляться синтез полипептида.

Как и в случае транскрипции, процесс трансляции можно условно подразделить на три основных стадии: инициацию, элонгацию и терминацию.

Как известно, отдельная рибосома представляет собой клеточную органеллу, состоящую из молекул рРНК и белков (рис. 1.8). В составе рибосомы имеются две структурные субъединицы (большая и малая), которые можно дифференцировать на основании их способности по-разному осаждаться при ультрацентрифугировании препаратов очищенных рибосом из разрушенных клеток, т.е. по коэффициенту седиментации (величине S). При определенных условиях в клетке может происходить разделение (диссоциация) этих двух субъединиц либо их объединение (ассоциация).


Рис. 1.8.

Рибосомы прокариот состоят из большой и малой субъединиц с величинами 50S и 30S соответственно, тогда как у эукариот эти субъединицы крупнее (60S и 40S). Поскольку процесс трансляции более детально был исследован у бактерий, то и здесь мы его рассмотрим на примере прокариот. Как видно из рис. 1.8, в рибосоме содержатся несколько активных центров: A-участок (аминоацильный), P-участок (пептидильный), Е-участок (для выхода пустой тРНК) и участок связывания мРНК.

В процесс трансляции вовлечены также молекулы тРНК, функции которых состоят в участии в транспорте аминокислот из цитозоля к рибосомам и в распознавании кодона мРНК. Молекула тРНК, имеющая вторичную структуру в форме «клеверного листа», содержит в своем составе тройку нуклеотидов (антикодон), которая обеспечивает ее комплементарное соединение с соответствующим кодоном молекулы мРНК, и акцепторный участок (на З’-конце молекулы), к которому присоединяется определенная аминокислота (см. рис. 1.3). Каждая аминокислота, участвующая в процессе трансляции, прежде чем переместиться к рибосоме, должна присоединиться к определенной тРНК с помощью соответствующего варианта фермента аминоацил-тРНК-синтетазы с использованием энергии молекул АТФ. Образование комплекса аминоацил-тРНК проходит в два этапа.

  • 1. Активация аминокислоты: Аминокислота + АТФ -> аминоа- цил-АМФ + РР.
  • 2. Присоединение аминокислоты к тРНК: Аминоацил-АМФ + + тРНК -> аминоацил-тРНК + АМФ.

Инициация трансляции у прокариот сопровождается диссоциацией рибосомы на две субъединицы. Затем 5-8 нуклеотидная последовательность, расположенная на 5’-конце молекулы мРНК (последовательность Шайна - Далъгарно) связывается с определенной областью малой субъединицы рибосомы таким образом, что в P-участке оказывается стартовый (инициирующий) кодон АУГ этой молекулы. Функциональная особенность такого P-участка во время инициации состоит в том, что он может быть занят только инициирующей аминоацил-тРНК с антикодоном УАЦ, которая у эукариот несет аминокислоту метионин, а у бактерий - формилметионин. Поскольку синтез полипептида всегда начинается с N-конца и идет в направлении к С-концу, то все белковые молекулы, синтезируемые в клетках прокариот, должны начинаться с N-формилметионина, а у эукариот - с N-метионина. Однако в дальнейшем эти аминокислоты, как правило, ферментативно отщепляются во время процессинга белковой молекулы. После образования инициирующего комплекса в «недостроенном» P-участке становится возможным воссоединение малой и большой субъединиц рибосомы, что приводит к «достраиванию» Р-участка и А-участка.

Процесс элонгации начинается с доставки следующей аминоацил-тРНК в A-участок рибосомы и присоединения на основе принципа комплементарности ее антикодона к соответствующему кодону мРНК, находящемуся в этом участке. Затем образуется пептидная связь между инициирующей (первой в цепочке) и последующей (второй) аминокислотами, после чего происходит перемещение рибосомы на один кодон мРНК в направлении 5’ -» 3’, что сопровождается отсоединением инициирующей тРНК от матрицы (мРНК) и от инициирующей аминокислоты и выходом ее в цитоплазму через Е-участок.

При этом вторая по счету аминоацил-тРНК передвигается из А-участ- ка в P-участок, а освободившийся A-участок занимается следующей (третьей по счету) аминоацил-тРНК. Процесс последовательного передвижения рибосомы «триплетными шагами» по нити мРНК повторяется, сопровождаясь освобождением тРНК, поступающих в Р-участок, и наращиванием аминокислотной последовательности синтезируемого полипептида.

И инициация, и элонгация трансляции осуществляются с участием вспомогательных белковых факторов. На сегодняшний день у прокариот описано по три таких фактора для каждого из этапов синтеза белка.

Терминация трансляции связана с вхождением одного из трех известных стоп-кодонов мРНК (УАА, УАГ, УГА) в A-участок рибосомы. Поскольку эти кодоны не несут информации о какой-либо аминокислоте, но узнаются соответствующими факторами терминации, процесс синтеза полипептида прекращается, и он отсоединяется от матрицы (мРНК).

После выхода из функционирующей рибосомы свободный 5’-ко- нец мРНК может вступать в контакт со следующей рибосомой, инициируя синтез еще одного (идентичного) полипептида. Следовательно, рассмотренный рибосомный цикл последовательно повторяется с участием нескольких рибосом, в результате чего формируется структура, называемая полисомой и представляющая собой несколько рибосом, одновременно транслирующих одну молекулу мРНК.

Механизм синтеза полипептида в эукариотической клетке принципиально схож с таковым у прокариот. Однако отличаются вовлеченные в процесс белковые факторы.

Посттрансляционная модификация полипептида представляет собой завершающий этап реализации генетической информации в клетке, приводящий к превращению синтезированного полипептида в функционально активную молекулу белка. При этом первичный полипептид может претерпевать процессинг, состоящий в ферментативном удалении инициирующих аминокислот, отщеплении других (ненужных) аминокислотных остатков и в химической модификации отдельных аминокислот. Затем происходит процесс сворачивания линейной структуры полипептида за счет образования дополнительных связей между отдельными аминокислотами и формирование вторичной структуры белковой молекулы. На этой основе формируется еще более сложная третичная структура молекулы.

В случае белковых молекул, состоящих более чем из одного полипептида, происходит образование комплексной четвертичной струк- зв туры, в которой объединяются третичные структуры отдельных полипептидов. В качестве примера можно привести молекулу гемоглобина человека, состоящую из двух а-цепочек и двух (3-цепочек, которые формируют стабильную тетрамерную структуру. Каждая из глобино- вых цепочек содержит также молекулу гема, который в комплексе с железом способен связывать молекулы кислорода, обеспечивая их транспортировку эритроцитами крови.

ЗАДАНИЯ И ВОПРОСЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

1. Фрагмент кодирующей цепи ДНК имеет следующую нуклеотидную последовательность: 5’-ГАТТЦТГАЦТЦАТТГЦАГ-3’

Определите ориентацию и нуклеотидную последовательность мРНК, синтезируемой на указанном фрагменте ДНК, и аминокислотную последовательность кодируемого ею полипептида.

  • 2. Можно ли однозначно определить нуклеотидную последовательность мРНК и комплементарной ей нити ДНК, если известна аминокислотная последовательность кодируемого ими полипептида? Дайте обоснование своего ответа.
  • 3. Запишите все варианты фрагментов мРНК, которые могут кодировать следующий фрагмент полипептида: Фен - Мет - Цис.
  • 4. Какие аминокислоты могут транспортировать к рибосомам тРНК с антикодонами: АУГ, ААА, ГУЦ, ГЦУ, ЦГА, ЦУЦ, УАА, УУЦ?
  • 5. Как можно объяснить то обстоятельство, что размеры нуклеотидной последовательности структурного гена (3-глобина (1380 пар нуклеотидов) значительно превышают величину, необходимую для кодирования соответствующего полипептида, состоящего из 146 аминокислотных остатков?

Вопрос 1. Вспомните полное определение по­нятия «жизнь».

В середине XIX в. Фридрих Энгельс писал: «Жизнь есть способ существования белковых тел, существенным моментом которого явля­ется постоянный обмен веществ с окружаю­щей их внешней природой, причем с прекра­щением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». На современном уровне знаний это классиче­ское определение жизни дополнено представ­лением об исключительной значимости нукле­иновых кислот — молекул, которые содержат генетическую информацию, позволяющую ор­ганизмам самовозобновляться и самовоспроизводиться (размножаться).

Приведем одно из современных определе­ний: «Живые тела, существующие на Земле, представляют собой открытые, саморегули­рующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нук­леиновых кислот». При этом понятие «откры­тая система» подразумевает отмеченный еще Ф. Энгельсом обмен веществами и энергией с окружающей средой (питание, дыхание, выде­ление); понятие «саморегуляция» — способ­ность к поддержанию постоянства химическо­го состава, структуры и свойств. Важным ус­ловием успешной саморегуляции является раздражимость — способность организма ре­агировать на информацию, поступающую из внешнего мира.

Вопрос 2. Назовите основные свойства генети­ческого кода и поясните их значение.

Можно выделить семь основных свойств ге­нетического кода.

Триплетность. Три стоящих подряд нук­леотида кодируют одну аминокислоту.

Однозначность. Один триплет не может кодировать более одной аминокислоты.

Избыточность. Одна аминокислота мо­жет быть кодирована более чем одним трипле­том.

Непрерывность. Между триплетами не существует «знаков препинания». Если «рам­ку считывания» сдвинуть на один нуклеотид, то весь код будет расшифрован неверно. В ка­честве примера приведем предложение, со­стоящее из трехбуквенных слов: жил был кот кот был сер. Теперь сдвинем «рамку считы­вания» на одну букву: илб ылк отк отб ылс ер.

Генетический код является неперекрывающимся. Любой нуклеотид может входить в состав только одного триплета.

Полярность. Существуют триплеты, оп­ределяющие начало и конец отдельных генов.

Универсальность. У всех живых организ­мов один и тот же триплет кодирует одну и ту же аминокислоту.

Вопрос 3. Какова сущность процесса передачи наследственной информации из поколения в поко­ление и из ядра в цитоплазму, к месту синтеза белка?

При передаче наследственной информации из поколения в поколение молекулы ДНК уд­ваиваются в процессе дупликации. Каждая до­черняя клетка получает одну из двух идентич­ных молекул ДНК. При бесполом размноже­нии генотип дочернего организма идентичен материнскому. При половом размножении ор­ганизм потомка получает собственный дипло­идный набор хромосом, собранный из гапло­идного материнского и гаплоидного отцовско­го наборов.

При передаче наследственной информации из ядра в цитоплазму ключевым процессом яв­ляется транскрипция — синтез РНК на ДНК. Синтезированная молекула иРНК является комплементарной копией определенного фраг­мента ДНК — гена и содержит информацию о строении определенного белка. Такая моле­кула иРНК является посредником между хра­нилищем генетической информации — ядром и цитоплазмой с рибосомами, где создаются белки. Рибосомы используют иРНК как мат­рицу («инструкцию») для синтеза белка в про­цессе трансляции.

Вопрос 4. Где синтезируются рибонуклеиновые кислоты?

Рибонуклеиновые кислоты синтезируются в ядре. Образование рРНК и сборка субъеди­ниц рибосом происходят в особых участках яд- pa — ядрышках. Небольшое количество РНК синтезируется в митохондриях и пластидах, где имеется собственная ДНК и собственные рибосомы.

Вопрос 5. Расскажите, где происходит синтез белка и как он осуществляется.

Синтез белка происходит в цитоплазме и осуществляется с помощью специализирован­ных органоидов — рибосом. Молекула иРНК соединяется с рибосомой тем концом, с кото­рого должен начаться синтез белка. Амино­кислоты, необходимые для синтеза белковой цепи, доставляются молекулами транспорт­ных РНК (тРНК). Каждая тРНК может пере­носить только одну из 20 аминокислот (напри­мер, только аланин). Какую конкретно амино­кислоту переносит тРНК, определяет триплет нуклеотидов, расположенный на верхушке центральной петли тРНК, — антикодон.

Если антикодон окажется комплементарен триплету нуклеотидов иРНК, находящемуся в данный момент в контакте с рибосомой, про­изойдет временное связывание тРНК с иРНК, и аминокислота будет включена в белковую цепь.

На следующем этапе освободившаяся тРНК уйдет в цитоплазму, а рибосома сделает «шаг» и сдвинется к следующему триплету иРНК. Затем к этому триплету подойдет тРНК с соответствующим антикодоном и доставит очеред­ную аминокислоту, которая будет присоедине­на к растущему белку.

Вопрос 1. Вспомните полное определение понятия «жизнь».
В середине XIX в. Фридрих Энгельс писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». На современном уровне знаний это классическое определение жизни дополнено представлением об исключительной значимости нуклеиновых кислот - молекул, которые содержат генетическую информацию, позволяющую организмам самовозобновляться и самовоспроизводиться (размножаться).

Приведем одно из современных определений,. данное советским учёным-биологом М.В.Волькенштейном 1965 г.), «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров - белков и нуклеиновых кислот». При этом понятие «открытая система» подразумевает отмеченный еще Ф. Энгельсом обмен веществами и энергией с окружающей средой (питание, дыхание, выделение); понятие «саморегуляция» - способность к поддержанию постоянства химического состава, структуры и свойств. Важным условием успешной саморегуляции является раздражимость - способность организма реагировать на информацию, поступающую из внешнего мира.

Вопрос 2. Назовите основные свойства генетического кода и поясните их значение.
Генетический код – это последовательность нуклеотидов в ДНК, контролирующая последовательность аминокислот в белковой молекуле.
Свойства кода
1. Триплетность. Одну аминокислоту кодирует три нуклеотида, которые называют триплетом или кодоном.
2. Вырожденность или избыточность. Каждая аминокислота зашифрована более чем одним кодоном. Для кодирования 20 аминокислот (в основном столько входит в состав белка) используется 61 комбинация нуклеотидов (4 3 = 64). Три кодона: УАА, УАГ, УГА - называют триплетами терминации, т.е. они несут информацию о прекращении синтеза белка.
3. Универсальность. У всех организмов на Земле одни и те же триплеты кодируют одинаковые аминокислоты.
4. Однозначность. Каждый триплет кодирует только одну аминокислоту.
5. Колинеарность или линейность. Нуклеотиды в ДНК и и-РНК располагаются линейно и так же линейно будут расположены аминокислоты в белковой молекуле.
6. Неперекрываемость. Информация считывается триплетами, т.е. каждый нуклеотид входит в состав только одного кодона.
7. Полярность. Существуют триплеты, определяющие начало и конец отдельных генов. т.д.

Вопрос 3. Какова сущность процесса передачи наследственной информации из поколения в поколение и из ядра в цитоплазму, к месту синтеза белка?
При передаче наследственной информации из поколения в поколение молекулы ДНК удваиваются в процессе дупликации. Каждая дочерняя клетка получает одну из двух идентичных молекул ДНК. При бесполом размножении генотип дочернего организма идентичен материнскому. При половом размножении организм потомка получает собственный диплоидный набор хромосом, собранный из гаплоидного материнского и гаплоидного отцовского наборов.
При передаче наследственной информации из ядра в цитоплазму ключевым процессом является транскрипция - синтез РНК на ДНК. Синтезированная молекула иРНК является комплементарной копией определенного фрагмента ДНК - гена и содержит информацию о строении определенного белка. Такая молекула иРНК является посредником между хранилищем генетической информации - ядром и цитоплазмой с рибосомами, где создаются белки. Рибосомы используют иРНК как матрицу («инструкцию») для синтеза белка в процессе трансляции.

Вопрос 4. Где синтезируются рибонуклеиновые кислоты?
Рибонуклеиновые кислоты синтезируются в ядре. Образование рРНК и сборка субъединиц рибосом происходят в особых участках ядра - ядрышках. Небольшое количество РНК синтезируется в митохондриях и пластидах, где имеется собственная ДНК и собственные рибосомы.

Вопрос 5. Расскажите, где происходит синтез белка и как он осуществляется.
Синтез белка происходит в цитоплазме и осуществляется с помощью специализированных органоидов - рибосом. Молекула иРНК соединяется с рибосомой тем концом, с которого должен начаться синтез белка. Аминокислоты, необходимые для синтеза белковой цепи, доставляются молекулами транспорт¬ных РНК (тРНК). Каждая тРНК может переносить только одну из 20 аминокислот (например, только цистеин). Какую конкретно аминокислоту переносит тРНК, определяет триплет нуклеотидов, расположенный на верхушке центральной петли тРНК, - антикодон. Если антикодон окажется комплементарен триплету нуклеотидов иРНК, находящемуся в данный момент в контакте с рибосомой, про¬изойдет временное связывание тРНК с иРНК, и аминокислота будет включена в белковую цепь.BR> На следующем этапе освободившаяся тРНК уйдет в цитоплазму, а рибосома сделает «шаг» и сдвинется к следующему триплету иРНК. Затем к этому триплету подойдет тРНК с соответствующим антикодоном и доставит очередную аминокислоту, которая будет присоединена к растущему белку.
Таким образом, включение аминокислот в белковую цепь происходит строго в соответствии с последовательностью расположения триплетов цепи иРНК.
Всю последовательность процессов, происходящих при синтезе белковых молекул, можно объединить в три этапа:
I Транскрипция - (лат. transcriptio -переписывание)- это переписывание информации по принципу комплементарности с ДНК на и-РНК.
II Процессинг - (лат. processing - обработка) – это созревание и-РНК.
В результате процессинга образуется короткая зрелая и-РНК или еще ее называют матричная (м-РНК). Эти два этапа идут в ядре. Через ядерные поры зрелая короткая и-РНК выходит в цитоплазму.
III Трансляция - (лат. translatio – перевод) - это синтез на рибосомах полипептидных цепей. На и-РНК может объединиться несколько рибосом и такая структура называется полирибосома или полисома. Аминокислоты, из которых синтезируются белки, доставляются к рибосомам с помощью т-РНК. К основанию т-РНК присоединяется аминокислота, которая кодируется антикодоном.
Специфичность белка определяется порядком, количеством и разнообразием аминокислот, входящих в его состав.

Геном эукариот организован сложнее, чем у прокариот. Для него характерен хромосомный уровень организации. В хромосомах ДНК находится в окружении белков. В геноме эукариот имеется много избыточной ДНК. В генетическом материале эукариот находятся неинформативные учас­тки – интроны , которые между между информативными - экзонами . Лнтроннс-экзонная организация генов у эукариот опреде­ляет необходимость преобразования первичного транскрилта (пре-информационной РНК"- продукта транскрипции) в зрелую и-РНК. Она долина быть освобождена от неинформативных участков и защи­щена против разрушающего воздействия ферментов цитоплазмы.

Кроме того, у эукариот появляется ядерная мембрана, кото­рая чространственно разобщаем место хранения генетической ин­формации (хромосомы, находящиеся в ядре) и место синтеза пеп­тидной цепи (рибосомы, находящиеся в цитоплазме). Иными словами, у эукариот процессе транскрипции и траслятши оказываются разоб­щенными как пространственно (ядерной обо.. 1кой), так и во време­ни (процессами созревания и-РНК).

Таким образом в ходе реализации наследственной информации" у эукариот могло выделить следующие этапы:

а) транскрипция

б) посттранскрипционные процессы (процесскнг)

в) трансляция

г) посттрансляционные процессы. <*

"а" и "б" протекают в ядре, "в" и "г" протекают в цитоплазме.

Транскрипция - процесс.переписывания информации, зашифрованной в молекуле дНК на молекулу и-РНК - осуществляется при участии фер­мента РНК-полимеразы. Этот фермент катализирует оборку И--РИК в направлении от 5" к 3* концу. Транскрипция осуществляется в со­ответствии с принципами комплементарности и антилараллеяькости. Вот почему она мо&ет происходить на одной из двух полпнуклеотидных цепей дНК, а именно, на той, которая начинается с З г конца, с"; а цепь называется кодогенной.

транскрипция иРНК

кодогенная (матричная)цепь ДНК

структурная часть гена

В участке у молекулу аНК, соответствущем отдельному гену, перед структурной часть©, в которой зашифрована последовательнооть "аминоквслот. в--пептиде, осязательно располагается последователь-:юсть нуклеотидов, узнаваемая РПК-полимеразой. Такая последова­тельность называется промотором .



РНК-пслимераза находит промотор, взаимодействует с ним и после зтого, двигаясь вдоль молекулы дКК, обеспечивает посте­пенную сборку молекулы и-РНК в соответствии с принципами комп-лементарности и антипараллельности. В конце структурной части гена расположен участок с особой последовательностью нуклео­тидов -»те-рмилатор » Он обязательно включает один из нонсенс-триплетов ^.нв кодирующих аминокислоты.

В результате транскрипции синтезируется молекула пре-ин-формационной РНК.

Посттраяскршплонные пропеосы (птюцессинг ) - это превращения, происходящие с первичным траыскриптом, направленные на образо­вание зрелой, стабилизированной и-РНК, способной выполнять функцию матрицы при тг^сяяции, и защищенной от рагрушащвго воздействия специфических ферментов цитоплазмы.

Основные стадии щхщессинта :

а) отщепление концевых участков первичного транскрипт^:

б) формирование на 5" конце колпачка, состоящего из особой пос­ледовательности нуклеотидов;

в) формирование на 3* конце полиадениловой последовательности нуклеотидов А А А А ;

г) метилирование некоторых внутренних азотистых оснований в транскрипте, стабилизирующее молекулу РНК;

д) вырезание неинформативных участков, соответствующих интронам дНК и сшивание (сплайсинг) участков, соответствующих экзокам

В результате процессинга у эук*>риот образуется зрелая и-РНК, ха­рактеризующаяся следующими особенностями строения:

Колпачок - особая последовательность нуклеотидов с метили­рованными основаниями, которая обеспечивает узнавание малых субъедгошц рибосом.

Лидер - вводная последовательность нуклеотидов, комплемен­тарная последовательности в молекуле р-РНК малой субъединиц:; рибосомы, которая обеопечивает прикрепление и-РЙК к малой субъединице.

Стартовый кодон - триплет нуклеотидов, кодирующий в боль­шинстве случаев аминокислоту формилметионин (АУЛ.

Кодирующая часть - последовательность кодонов, шифрутщих определенную последовательность аминокислот в соответствующей пептидной цепочке.

Трейлер - концевая часть молекулы и-РНК, включающая нок-сенс-кодон и поли-А последовательность.

Трансляция - процесс сборки пептидной цепи, происходящий в ци­топлазме на рибосомах на основании программы, содержащейся в и-РНК.

8 467k 27 *

Основные сазн тргнслятзгл : инициация

элонгация

терминация Инициация трансляции предполагает ел едущие события:

а) с помогая колпачка и-РНК находит в цитоплазме малую субъеда-

НЕПУ рибОСОМЫ,

б) с помощью лкдерной последовательности устанавливается связь „ с комплементарным участком определенно! 5 фракции р-РНК и

и-РНК прикрепляется к \:алой субъеднннце, ») к стартовому кодону (АУТ) присоединяется т-РНК, несущая

формилиетгокин, р) малая субъедикица ассоциируется с большой субъединицей,в «й

ноацильном центре (АЦ) которой располагается формилметшнин.

Таким образом фаза инициации завершается формированием комп­лекса и-РНК и рибосомы и подстановкой начальной для всех пеп­тидных цепей аминокислоты - формилметионина.

Раза элонгации , т.е. нарастание пептидной цепи, осуществляет­ся путем постепенной подстановки аминокислот в соответствии с очередным ко доном и-РНК, который встает против аминоацильного центра.

К этому кодону присоединяется соответствущая т-РНК, имещая комплементарный ему антикодон. Она несет определенную аминокислоту, которая располагается в аминоадкльном центре (АЦ), Т-РНК, соединенная с предыдущим ко доном, оказывается в пеп-тидильяом центре (ГЩ), где располагает свою аминокислоту (це­почку аминокислот). Между двумя аминокислотами, расположенны-ми в пептидильноы и аминоадкльном центре, при участии имею­щихся здесь ферментов возникает пептидная связь -с.-//- После установления пептидной

пептидная связь связи предыдущая т-РНК отделяет­ся от своей аминокислоты и своего кодона и уходит в цитоплаз­му» а последующая т-РНК, нагруженная цепочкой аминокислот, пе­реходит в ВД, заставляя и-РНК перемещаться вдоль рибосомы и ус­танавливать новый кодон против АЦ.

После прохождения через рибосому всей кодирующей части и-РНК на рибосоме собирается пептидная цепь с определенной последователь­ностью аминокислот.

Фаза термикацид наступает, когда в контакт с рибосомой приходит концевой участок и-РНК, который включает нонсенс-триплет, не ко-дируший никакой аминокислоты. На этом сборка пептидной цепи заканчивается.По мере освобождения 5» пептидная связь конца и-РЖ, колпачок может нахо­дить новые малые субъедини цы рибосом и пу f ,ecc трансляции мо­жет повторно осуществляться на новых рибосомах. Комплекс рибо­сом, находящихся в контакте с одной молекулой и-РНК и синтези­рующих одинаковые пептидные цепи, называется полирибосомой (по-лисомой).

Посттрансляционные процессы

В ходе предыдущих этапов реализации наследственной инфор­мации обеспечивается синтез пептидной цепа, котбрая в боль­шинстве случаев начинается с аминокислоты формияметЕон.;с; и со­ответствует первичной структуре белковой молекулы. Последую­щие события заключаются в отщеплении форыилметионинс. в неко­торых случаях осуществляется моди^Ецировакие пептида после трансляции, формируется вторичная и третичная структура белка. Иногда для некоторых белков, характеризующихся четвертичной структурой, осуществляется объединение одинаковых,либо различ­ных лептидных цепей с образованием активно функционгрущего белка.

В зависимости от того, каковы функции белка (фермент, строительной материал, антитело и т.д.), он принимает участие в обеспечении морфо--функциональ1шх особенностей клетки (ojv^

ганжзма), т.е. в формировании определенных сложных признаков.

Это является завершающим этапом процесса реализации гене­тической информации.

3.5. Регуляция генной активности

Реализация наследственной информации в живых системах - это сложный процесс, требующий очень тонкой регуляции #*я того, что-"бы обеспечить в определенных клетках в -определенное время син­тез определенных белков а необходимом количестве.

Все клетки организма, возникая путем митоза, получают пол­ноценный набор генетической информации, образуемый при оплодот­ворении родительских гамет. Нес- ыотря на это, они отличаются по своим морфологическим, биохимическим и функциональным свойствам друг от друга. В основе этих различий лежит активное функциони­рование в разных клетках разных частей генома.

Большая часть генома в клетках opi-анизма находится в неак­тивном состоянии - репрессивном состоянии, и только приблизи­тельно 1055 генов ^репрессированы . т.е. активно транскрибируют­ся. Спектр транскрибируемых генов зависит от тканевой принад­лежности клетки, от периода ее жизнедеятельности и периода ин­дивидуального развития организма.

Регуляция активности генов может осуществляться на всех этапах реализации генетической информации, но наиболее экономи­чески выгодной является регуляция на стадии транскрипции.

Основная масса генов, активно функциснирующих в большинст­ве клеток организма на протяжении онтогенеза, - это гены, кото­рые обеспечивают синтез белков общего назначения (белки рибосом, хромосом, мембран я т.д.), т-ГЯК и р-РНК. Транскрибирование этих с т р ук т ур ных генов обеспечивается соединением РНК-полимеразы с их промоторами и не подчиняется каким-либо другим регулирую­щим воздействиям. Такие гены называются конститутивными , другая группа структурных генов, обеспечивающих синтез некоторых бел­ков-ферментов, в своем функционировании зависит от различных регулирующих факторов и называете п регулируемыми генами. Их ак­тивное функционирование, скорость и продолжительность транскри­бирования могут регулироваться как генетическими факторами, так ж факторами негенетической природы. - . Генетическими факторами регуляции тг*шскридцни генов явля-

ются гены - регуляторы и операторя г Гены-регуляторы определяют синтез ^.яков-регуляторов, способных в активном состоянии соеди­няться с оператором, включающим или выключающим транскрипцию структурных генов. В зависимости от свойств белка-регулятора раз­личают негативный и позитивный контроль транскрипции со стороны гена-регулятора. При негативном контроле белок-регулятор, соеди­няясь с оператором, прекращает (выключает) транскрипцию. Такой белок называется репрессором . При позитивном контроле белок-регу­лятор, соединяясь с оператором, включает транскрипцию. В таком случае продукт гена-регулятора называется апоиндуктором .

Таким образом наряду со структурными генами в геноме имеются ге­ны-регуляторы, которые, обеспечивая репрессию или дерепрессию с трук т ур ных генов, регулируют процессы синтеза в клетке.

Наряду о генетическими факторами в регуляции экспрессии ге­нов важная роль принадлежит факторам негенетической природы - эф­фекторам . К ним относятся вещества небелковой природы, расщепляе­мые или синтезируемые в клетке при участии разд-^ых ферментов.

В аавксжмостн от того, как эффектор воздействует на активность генов, различают индукторы ,включапзие транскрипцию генов, и ко-репрессоры . выключающие ее. действие эффектора заключается в его взаимодействии с белком-регулятором, при котором он либо акти­вируется и может соединяться с оператором, либо инактиви 1: ? этся в теряет способность соединяться с оператором.

Таким образом экспрессия генов является результатом регу­лирующего воздействия на процессы транскрипции как со стороны самсго генома (гены - регу, тторы и операторы), так и со стороны факторов вегеяетической природы.

Регуляция транскрипции у прокариот

Езучениб регуляции экспрессии генов на стадии транскрипции у прокариот привело в созданию в 1961 г. модели оперона (1акоб и Моно).

Оперся - это тесно связанная последовательность ст рук т ур ных ге­нов, определяющих синтез группы ферментов д*." ,<акой-либо одной цепи биохимических реакций и регулирующаяся как едино„ целое.

Модель оперона структурные гены

Особенностью прокариот является транскрибирование и-РНК со всех структурных генов оперона. Такал полицистронная и-РНК в даль­нейшем разрезается на фрагменты, соответствующие матрицам для синтеза отдельных ферментов. Цепи структурных генов оперона всегда предшествует промотор, узнаваемый РНК-полимеразой. 7 конститутивных гонов этого достаточно для осуществления транс­крипции. У регулируемых генов между промотором и структурнши генами располагается оператор - последовательность нуклеотидов, которая узнается белком-регулятором, находящимся в активном состоянии. Пример функциовдрования, актозного оперона 6..Сое/

При отсутствии в среде лактозы активнг" репрессор, взаимо­действуя с оператором, репрессирует гены ABC - транскрипции нет. Появление в среде лактозы инактивирует репрессор, он не соеди­няется с оператором, и осуществляется транскрипция генов ABC,

отвечающих за синтез ферментов, которые расщепляют лактозу.

Пример негативного контроля функции лактозного оперона у E.coli

Уменьшение содержания лактозы в результате ее ферментативного расщепления приводит к соединению активного репрессора с опера­тором и выключению транскриЕции генов АЗС. Особенности регуляции транскрипции у эукариот

°У эукариот оперонная организация генов не установлена. Ге­ны, определяющие синтез "ферментов, кателизиружих разные звенья в цепи биохимических реакций, могут быть рассеяны в геноме, и, возможно, не имеют/как у прокариот, един^ регулирующей систе­мы (г? -^г.лятор, промотор, оператор). Ь настоящее время ме­ханизмы регуляции и координафя активности таких генов оконча­тельно не выяснены. Однако их функционирование несомненно под­чиняется регуляторным воздействиям как внутри клетки (гены-ре­гуляторы), так и на уровне организма (гормона).

Помимо регуляции экспрессии генов на стадии тралс:ср:гп::ии, она может осуществляться и при процессинге (обсуждается роль нитронов) и в ходе трансляции и поеттрасляционнылг модификаций белков.

Несмотря на то, что регуляция на поздних этапах реализа­ции наследственной информации экономически менее выгодна клет­кам, она обеспечивает наиболее быстрый ответ на воздействие регулирующих факторов. Например прекращение трансляки/ пептид­ной цепи сразу дает эффект по сравнению с прекращение".! транс­крипции соответствующего гена, так. как синтезированные молеку­лы и-РНК еще некоторое время после окончания транзхряппда обес­печивают в цитоплазме сборку пептидной цели. В совокупности все механизмы регуляции генной активности, обеспечивает произ­водство бглков в необходимом и достаточном в данный момент количестве.