И.М. ХАРЧЕВА

Учебно-методическое пособие
по органической химии

10 класс

Учебно-методическое пособие предназначено для учащихся 10-х классов, изучающих органическую химию на повышенном уровне. С его помощью можно заниматься самообразованием и самоконтролем, улучшить степень подготовки и качество знаний по предмету.

Пособие охватывает все темы курса органической химии 10-го класса. В каждой теме курса содержится система общих требований: указано, что ученик должен знать и уметь, перечислены основные понятия. С целью облегчения самоподготовки, большей эффективности процессов приобретения и закрепления знаний по предмету приведены обучающие задания с алгоритмами по изомерии и номенклатуре органических соединений, по реакциям в органической химии, а также алгоритмы расчетных задач разного уровня сложности. Контрольные вопросы в конце каждой темы способствуют лучшему изучению материала. Задания для самоконтроля включают разнообразные упражнения и задачи с ответами. Они расположены по принципу возрастания трудности, что позволит учащимся планомерно развивать свои умения и навыки.

Учебно-методическое пособие могут использовать учащиеся с целью самостоятельного изучения предмета, коррекции знаний, при повторении и подготовке к экзаменам, а также учителя химии для индивидуальной и групповой работы с учащимися.

План изучения органических веществ.

Тема 1. Теория химического строения органических соединений. Электронная природа химической связи.

Алгоритм 1.1. Составление полных и кратких структурных формул углеводородов.

Алгоритм 1.2. Составление формул изомеров.

Алгоритм 1.3. Составление формул гомологов.

Алгоритм 1.4. Типы органических реакций.

Контрольные вопросы.

Задания для самоконтроля.

Тема 2. Предельные углеводороды.

Циклопарафины.

Алгоритм 2.1. Номенклатура алканов.

Алгоритм 2.2. Гомологи и изомеры.

Алгоритм 2.3. Решение расчетных задач на вывод молекулярной формулы вещества по массовым долям элементов.

Алгоритм 2.4. Решение расчетных задач на вывод молекулярной формулы вещества по массе (объему) продуктов сгорания.

Контрольные вопросы.

Задания для самоконтроля.

Тема 3. Непредельные углеводороды.

Алгоритм 3.1. Номенклатура непредельных углеводородов.

Алгоритм 3.2. Использование правил Марковникова и Зайцева при составлении уравнений реакций.

Контрольные вопросы.

Задания для самоконтроля.

Тема 4. Ароматические углеводороды.

Алгоритм 4.1. Использование правила ориентации в бензольном кольце при составлении уравнений реакций.

Контрольные вопросы.

Задания для самоконтроля.

Тема 5. Природные источники углеводородов.

Алгоритм 5.1. Крекинг линейных алканов.

Алгоритм 5.2. Риформинг углеводородов.

Контрольные вопросы.

Задания для самоконтроля.

Тема 6. Спирты и фенолы.

Алгоритм 6.1. Изомерия и номенклатура предельных одноатомных спиртов.

Алгоритм 6.2. Химические свойства и получение спиртов.

Алгоритм 6.3. Решение расчетных задач по теме «Спирты и фенолы».

Контрольные вопросы.

Задания для самоконтроля.

Тема 7. Альдегиды. Карбоновые кислоты.

Алгоритм 7.1. Изомерия и номенклатура карбоновых кислот.

Алгоритм 7.2. Решение расчетных задач по теме «Альдегиды. Карбоновые кислоты».

Контрольные вопросы.

Задания для самоконтроля.

Тема 8. Сложные эфиры. Жиры.

Контрольные вопросы.

Задания для самоконтроля.

Тема 9. Углеводы.

Контрольные вопросы.

Задания для самоконтроля.

Тема 10. Азотсодержащие органические соединения.

Контрольные вопросы.

Задания для самоконтроля.

Тема 11. Аминокислоты. Белки. Нуклеиновые кислоты.

Контрольные вопросы.

План изучения органических веществ

1. Название класса.
2. Определение.
3. Общая формула класса.
4. Гомологический ряд.
5. Особенности номенклатуры.
6. Изомерия.
7. Физические свойства.
8. Строение.
9. Химические свойства.
10. Способы получения.
11. Применение.

Тема 1.
Теория химического строения
органических соединений.
Электронная природа химической связи

Знать: способы образования и разрыва ковалентной связи, типы и сущность гибридизации электронных орбиталей, характеристики ковалентной связи, классификацию ковалентной связи; классификацию органических соединений, классификацию реакций в органической химии; номенклатуру органических реакций; гомологический ряд алканов; виды формул, используемых в органической химии; основные положения теории химического строения органических соединений А.М.Бутлерова.

Уметь: составлять схемы образования и разрыва связи; объяснять четырехвалентность углерода в органических соединениях; составлять полные и краткие структурные формулы углеводородов; составлять формулы изомеров и гомологов для предложенного вещества; демонстрировать уравнениями основные типы реакций в органической химии.

Основные понятия: электронная орбиталь, валентный угол, свободный радикал, гибридизация, энергия связи, длина связи, полярность связи, сигма-связь, пи-связь, изомерия, химическое строение, гомология, изомерия, элиминирование, гидрирование (дегидрирование), галогенирование (дегалогенирование), хлорирование (дехлорирование), гидратация (дегидратация), гидрохлорирование (дегидрохлорирование), гидрогалогенирование (дегидрогалогенирование), гомолитический (свободнорадикальный) и гетеролитический (ионный) разрывы связи, радикальные реакции, ионные реакции.

Алгоритм 1.1. Составление полных и кратких структурных формул углеводородов

Задание. Составить полную и краткую структурные формулы пропана С 3 Н 8 .

Решение

1. Записать в строчку 3 атома углерода, соединить их связями:

2. Добавить черточки (связи) так, чтобы от каждого атома углерода отходило 4 связи:

4. Записать краткую структурную формулу:

СН 3 –СН 2 –СН 3 .

Алгоритм 1.2. Составление формул изомеров

Задание. Составить формулы изомеров пентана С 5 Н 12 .

1. Записать углеродные скелеты изомеров, уменьшая число атомов углерода в основной цепи, таким образом разветвляя углеродную цепь:

2. Расставить атомы водорода и представить структурные формулы в сокращенном виде:

Алгоритм 1.3. Составление формул гомологов

Задание. Составить формулы двух гомологов для вещества, имеющего строение:

Решение

1. Составляя формулы гомологов, увеличиваем или уменьшаем число групп СН 2 в основной цепи, сохраняя строение (разветвление).

Приведены два низших гомолога:

Алгоритм 1.4. Типы органических реакций

В органической химии все структурные изменения рассматривают относительно атома углерода (или двух атомов C), участвующего в реакции. При определении типа реакции учитывают только органические вещества.

К л а с с и ф и к а ц и я р е а к ц и й п о с т р у к т у р н ы м и з м е н е н и я м, происходящим с исходным веществом (по результату).

1) Присоединение:

RCH=CH 2 + XY RCHX–CH 2 Y;

CH 2 =CH 2 + HBr CH 3 –CH 2 Br.

2) Замещение:

RCH 2 X + Y RCH 2 Y + X;

CH 4 + Cl 2 CH 3 Cl + HCl,

CH 3 Cl + NaOH CH 3 OH + NaCl.

3) Элиминирование (отщепление):

RCHX–CH 2 Y RCH=CH 2 + XY;

а) дегидрирование:

С 3 Н 8 С 3 Н 6 +Н 2 ;

б) дегидратация:

СН 3 –СН 2 ОН СН 2 =СН 2 + H 2 O;

в) дехлорирование:

СН 2 Сl–CH 2 Cl + Zn ZnCl 2 + CH 2 =CH 2 ;

г) дегидрохлорирование:

СН 3 СН 2 Сl + KOH CH 2 =CH 2 + KCl + H 2 O.

5. Приведите примеры ациклических (предельных и непредельных), алициклических, ароматических соединений.

6. Приведите примеры соединений с различными типами гибридизации электронных орбиталей атомов.

7. Что называют функциональной группой?

8. Какие виды номенклатуры органических соединений используют в настоящее время?

9. Какие виды формул используют в органической химии?

10. Дайте определения следующим понятиям: химическое строение, свободный радикал, энергия связи, длина связи, полярность связи, гидрирование, дегидратация, гидрохлорирование, дегидрохлорирование, электронная орбиталь, ковалентная связь, валентный угол, сигма-связь, пи-связь, изомеризация, элиминирование, ионные реакции, радикальные реакции, первичный (вторичный, третичный, четвертичный) углеродный атом.

Задания для самоконтроля

1. Составить структурные формулы соединений, указать, к какому классу относится каждое из них:

C 2 H 6 , C 2 H 2 , CH 3 OH, C 2 H 5 Br, CH 3 COOH, C 6 H 6 .

2. Написать структурные формулы изомеров состава C 7 H 12 , содержащих один четвертичный атом углерода, назвать вещества.

3. Привести формулы пяти углеводородов, не имеющих изомеров.

Печатается с продолжением

5-е изд., перераб. и доп. - Спб.: 2002 - 624 с.

В учебнике систематически изложены основы современной органической химии. В доступной форме даются сведения о квантово-химической природе простых и кратных связей. Излагаются современные взгляды на механизмы важнейших реакций. Большое внимание уделено практическому использованию достижений органической химии. Пятое издание существенно переработано и дополнено новыми данными, полученными в органической химии за последнее время. Предназначается для студентов химико-технологических вузов и факультетов.

Формат: pdf

Размер: 26,5 Мб

Смотреть, скачать: drive.google

ОГЛАВЛЕНИЕ
Предисловие 3
Введение 5
1. Предмет и пути развития органической химии 5
2. Сырьевые источники органических соединений 9
3. Анализ и определение строения органических соединений 14
4. Общие вопросы теории химического строения 18
Основы теории ковалентной химической связи 19
Строение ионов и радикалов 32
Формулы и модели молекул органических соединений 36
5. Основы теории реакции органических соединений 41
6. Классификация органических соединений 50
Часть первая СОЕДИНЕНИЯ С ОТКРЫТОЙ ЦЕПЬЮ (АЛИФАТИЧЕСКИЙ, ЖИРНЫЙ РЯД)
I. Углеводороды и их производные с одной или несколькими одинаковыми функциональными группами
Глава 1. Углеводороды 52
1. Предельные (метановые) углеводороды (алканы, парафины) 52
Изомерия. Номенклатура 53
Способы получения 56
Физические свойства 58
Химические свойства 60
Отдельные представители. Применение 70
2. Этиленовые углеводороды (алкены, олефины) 72
Изомерия. Номенклатура 72
Способы получения 74
Физические свойства 76
Химические свойства 78
Отдельные представители. Применение 89
3. Диеновые углеводороды (алкадиены) 92
Способы получения 1,3-алкадиенов 93
Физические свойства 1,3-алкадиенов 94
Химические свойства 1,3-алкадиенов 95
Натуральный и синтетический каучуки! 101
4. Ацетиленовые углеводороды (алкины) 102
Изомерия. Номенклатура 103
Способы получения 103
Физические свойства 104
Химические свойства 105
Отдельные представители. Применение ПО
Глава 2. Моно-и полигалогенопронзводные углеводородов 113
1. Моногалогенопронзводные предельных углеводородов ИЗ
Изомерия. Номенклатура 113
Способы получения 113
Физические свойства 115
Химические свойства 115
Отдельные представители. Применение 121
2. Ди- и полнгалогенопроизводные предельных углеводородов 121
Изомерия. Номенклатура 121
Способы получения 122
Физические и химические свойства 122
Отдельные представители. Применение 123
3. Галогенопроизводные непредельных углеводородов 126
Глава 3. Одно-и многоатомные спирты 129
1. Предельные одноатомные спирты 129
Изомерия. Номенклатура 130
Способы получения 131
Физические свойства 134
Химические свойства 135
Отдельные представители. Применение 138
2. Непредельные одноатомные спирты 142
3. Двухатомные спирты (гликоли) 144
Изомерия. Номенклатура 145
Способы получения 145
Физические и химические свойства 146
Отдельные представители. Применение 148
4. Трехатомные спирты. Глицерин 150
Глава 4. Простые эфиры 153
1. Простые эфиры (окиси алкилов) 153
2. Циклические простые эфиры (эпоксисоединения) 156
3. Понятие об органических пероксидных соединениях 161
Глава 5. Альдегиды и кетоны 162
1. Предельные альдегиды и кетоны 163
Изомерия. Номенклатура 163
Способы получения 164
Физические свойства 166
Химические свойства 166
Отдельные представители. Применение 178
2. Непредельные альдегиды и кетоны 182
3. Кетены 184
4. Диальдегиды ндикетоны 185
Глава 6. Одно- и многоосновные карбоновые кислоты и их производные 189
1. Одноосновные предельные карбоновые кислоты 190
Изомерия. Номенклатура 190
Способы получения 191
Физические свойства 192
Химические свойства. . . 193
Отдельные представители. Применение 200
2. Галогенозамещенные одноосновные кислоты 203
Изомерия. Номенклатура 204
Способы получения 204
Физические и химические свойства 205
Отдельные представители. Применение 206
3. Непредельные одноосновные кислоты 207
4. Двухосновные предельные кислоты 212
Способы получения 212
Физические свойства и химические свойства 212
Отдельные представители. Применение 215
5. Двухосновные непредельные кислоты 216
Глава 7. Серосодержащие органические соединения 218
1. Тиоспирты (тиолы) и тиоэфиры (сульфиды) 218
2. Органические сульфокислоты 220
Глава 8. Азотсодержащие органические соединения 222
1. Нитросоединения 222
2. Амины 226
Изомерия. Номенклатура 226
Способы получения 227
Физические свойства 228
Химические свойства 228
Применение 231
Понятие о диаминах 232
3. Нитрилы и изоцианиды 233
Изомерия. Номенклатура 234
Способы получения 234
Физические свойства 235
Химические свойства 235
Отдельные представители. Применение 236
Глава 9. Элементорганические соединения 237
Строение. Номенклатура 237
Общие способы получения 239
Общие реакции металлорганических соединений 240
Биологические свойства элементорганических соединений 242
1. Органические соединения элементов I группы 242
2. Органические соединения элементов II группы 243
Магнийорганические соединения 243
Ртутьорганнческие соединения 244
3. Органические соединения элементов III группы 244
Соединения бора 245
Соединения алюминия 245
4. Органические соединения элементов IV группы 246
Кремнийорганические соединения 247
Соединения олова 251
Соединения свинца 251
5. Органические соединения элементов V группы 252
Соединения фосфора 252
6. Органические соединения элементов VI группы (главная подгруппа) 254
7. Органические соединения переходных элементов 254
II. Соединения со смешанными функциями
Глава 10. Гидроксикарбонильные и гидроксикарбоксильные соединения 255
А. Г идроке и альдегиды, гидр окснкетоны. 255
Б. Г и д р о к с и к и с л о т ы 257
1. Одноосновные двухатомные гидроксикислоты 257
Изомерия. Номенклатура 257
Способы получения 258
Физические и химические свойства 260
Отдельные представители 261
Оптическая изомерия 261
2. Двухосновные трехатомные гидроксикислоты 266
3. Двухосновные четырехатомные гидроксикислоты 267
4. Трехосновные четырехатомные гидроксикислоты 271
5. Гндроксимуравьнная, или угольная, кислота 271
Глава 11. Альдегндо- и кетокислоты 279
Глава 12. Аминоспирты 285
Глава 13. Аминокислоты 286
Изомерия. Номенклатура 287
Способы получения 288
Физические свойства 290
Химические свойства 290
Отдельные представители. Применение 292
Часть вторая КАРБОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
I. Алициклический ряд
Глава 14. Углеводороды алициклического ряда и их производные 294
Строение. Изомерия 295
Номенклатура 299
Способы получения 300
Физические свойства 303
Химические свойства 304
Отдельные представители. Применение 309
II. Ароматический ряд
Глава 15. Ароматические углеводороды с одним бензольным кольцом 314
Строение бензола 314
Изомерия. Номенклатура 320
Способы получения 321
Физические свойства 323
Химические свойства 324
Теория замещения в ароматическом ядре 326
Отдельные представители. Применение 331
Глава 16. Правила ориентации в бензольном кольце 334
Глава 17. Ароматические галогенопронзводные 344
Способы получения 345
Физические свойства 347
Химические свойства 347
Отдельные представители. Применение 351
Глава 18. Ароматические сульфокислоты 352
Способы получения 352
Физические и химические свойства 354
Применение 356
Глава 19. Ароматические нитросоедннения 356
1. Нитросоедннения с нитрогруппой в ядре 356
Способы получения 356
Физические свойства 358
Химические свойства 358
Отдельные представители. Применение 361
2. Нитросоедннения с нитрогруппой в боковой цепи 362
Глава 20. Ароматические гидроксисоединения 363
А. Ф е н о л ы 364
1. Одноатомные фенолы 364
Способы получения 364
Физические свойства 366
Химические свойства 366
Отдельные представители. Применение 373
2. Двухатомные фенолы 374
3. Трехатомные фенолы 376
4. Полигндрокснбензолы 378
Б. Замещенные фенолы 378
1. Галогенофенолы 378
2. Фенолсульфокислоты 380
3. Ннтрофенолы 380
В. Ароматические спирты 381
Глава 21. Ароматические амины 384
A. Амины с аминогруппой в ядре 384
Способы получения 384
Физические и химические свойства 386
Отдельные представители. Применение 391
Б. Замещенные амины с аминогруппой в ядре 392
1. Галогено-, нитро- и сульфозамещенные амины 392
2. Амннофенолы 393
B. Амины саминогруппойвбоковой цепи 395
Глава 22. Диазо-и азосоединения 396
Строение 396
Способы получения 397
Физические и химические свойства 399
Глава 23. Ароматические альдегиды и кетоны 404
1. Ароматические альдегиды 405
Способы получения 405
Физические и химические свойства 407
Отдельные представители. Применение 411
2. Замещенные ароматические альдегиды. Гидроксиальдегиды 411
3. Ароматические кетоны 412
Способы получения 412
Физические и химические свойства 413
Отдельные представители. Применение 416
4. Хиноны 417
Способы получения 417
Физические свойства 418
Химические свойства 418
Отдельные представители. Применение 420
Глава 24. Ароматические карбоновые кислоты 421
A. Одноосновные ароматические кислоты 421
Способы получения 421
Физические свойства 423
Химические свойства 423
Отдельные представители. Применение 425
Б.Замещенные одноосновные ароматические кислоты 426
1. Галогенобензойные кислоты 426
2. Ннтробензойные кислоты 426
3. Сульфобецзойные кислоты 427
4. Ароматические фенолокнслоты 427
5. Ароматические аминокислоты 430
B. Многоосновные ароматические кислоты 432
Глава 25. Ароматические соединения с несколькими неконденсированными бензольными ядрами и их производные 435
1. Группа днфенила 435
2. Ди- и полифенилметаны 437
Трнфемнлметановые красители 439
3. Ди- и полифенилэтаны 441
4. Ди- и полиарилэтилены и ацетилены 442
Глава 26. Ароматические соединения с конденсированными бензольными ядрами и их производные 444
1. Нафталин 444
Строение нафталина 444
Способы получения 446
Физические и химические свойства 446
Правила ориентации в нафталиновом ядре 449
Производные нафталина 451
2. Антрацен 457
Способы получения 457
Физические и химические свойства 458
Отдельные представители. Применение 459
3. Фенантрен 461
4. Высшие полициклические углеводороды 463
5. Ароматические углеводороды с конденсированными бензольными и пятичленными кольцами 465
Глава 27. Небензоидныекарбоциклические системы с ароматическими свойствами 466
1. Циклопропенильный катион 467
2. Циклопентадиенильный анион. Металлоцены 467
3. Циклогептатриенильный катион. Соли тропилия.Трополоны. Азулены 469
4. Ароматические системы с числом углеродных атомов более семи 474
Часть третья ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ
Глава 28. Пятичленные гетероциклические соединения с одним гетероатомом 477
Строение. Номенклатура 477
Общие методы получения 478
Общие физические и химические свойства 479
1. Фуран 485
2. Тиофен 488
3. Пиррол 489
4. Индол 493
5. Карбазол 499
Глава 29. Пятичленные гетероциклические соединения с несколькими гетероатомами 500
1. Пиразол 500
2. Имидазол 503
3. Тиазол 504
Глава 30. Шестичленныегетероциклнческиесоединениясоднимгетероатомом 505
1. Пиридин 505
Способы получения 505
Физические свойства 506
Химические свойства 506
Отдельные представители. Применение 511
2. Хинолин 517
3. Изохинолин 521
4. Акридин 521
Глава 31. Шестичленные гетероциклические соединения с двумя гетероатомами 524
1. Пирамидин 524
2. Тназин 527
Часть четвертая ЭЛЕМЕНТЫ БИООРГАНИЧЕСКОЙ ХИМИИ
Глава 32. Белки. Ферменты. Витамины 529
1. Белки 529
Классификация белков 531
Строение белков 532
Синтез полипептидов и белков 538
Применение белков 539
2. Ферменты 540
3. Витамины как коферменты 541
Глава 33. Углеводы 542
1. Моносахариды (монозы) 546
Строение 546
Способы получения 552
Физические и химические свойства 553
Отдельные представители 561
2. Олигосахариды. Дисахариды (биозы) 567
3. Несахароподобные полисахариды 570
Глава 34. Нуклеиновые кислоты 576
1. Дезоксирибонуклеиновые кислоты (ДНК) 577
2. Рибонуклеиновые кислоты (РНК) 580
Глава 35. Липиды 584
1. Карбоновые кислоты 585
2. Триглнцериды, или нейтральные жиры 585
3. Фосфолипнды 587
4. Воска 588
5. Терпены 588
6. Стероиды 594
Глава 36. Гормоны 595
Литература 598
Предметный указатель 599

ПРЕДИСЛОВИЕ
Предлагаемое читателю учебное пособие представляет собой пятое (первое посмертное) переработанное издание учебника А. А. Петрова, А. Т Трощенко и X. В. Бальяна по курсу «Органическая химия».
В учебнике в доступной для студентов 2-3 курсов форме изложены основы органической химии на современном уровне развития теории, экспериментальной техники и достижений промышленного производства органических веществ. Теоретические вопросы излагаются на основе бутлеровских представлений о взаимном влиянии атомов в молекулах и современных квантово-химических воззрений.
В учебнике значительное место отведено описанию механизмов важнейших реакций и практическому использованию достижений органической химии. Отмечается исключительная роль в современной органической химии физических методов исследования, однако излагается только сущность важнейших из них. Более подробные сведения студент может найти в специальных монографиях, список которых приведен в конце книги.
Объем и расположение материала соответствуют действующей программе по органической химии для химико-технологических специальностей вузов. Основу содержания книги составляет курс лекций по органической химии, читаемый в Санкт-Петербургском Технологическом институте.
При подготовке пятого издания учебника авторы ставили перед собой задачу значительно обновить фактический материал с учетом новых достижений в органической химии и технологии.
Переработке подвергнуты все разделы учебника. Значительно расширены сведения о современных методах лабораторного и промышленного органического синтеза, таких, как твердофазный синтез, межфазный катализ, синтез с применением краун-эфиров, металлокомплексный катализ. Значительно более глубоко и полно освещаются экологические вопросы.
Особенностью книги является и большее приспособление ее к условиям и возможностям самостоятельной работы студентов.
Кроме программного материала учебник содержит также материал для более углубленного изучения (набран петитом), обычно включающий самые последние Данные в области развития теории и методов органического синтеза.

СПб: Химия, 1995 — 464 с. На современном уровне в интересной, доступной форме изложены основы органической химии, на конкретных примерах показана связь науки с промышленностью, сельским хозяйством, биологией, фармакологией и др. Оригинальная форма подачи материала, выделения основных терминов, целей и ключевых понятий, наглядность схем и уравнений, задачи и упражнения с

М.: 2010 — 280 с. В шпаргалке в краткой и удобной форме приведены ответы на все основные вопросы, предусмотренные государственным образовательным стандартом и учебной программой по дисциплине «Органическая химия». Рекомендуется всем изучающим и сдающим дисциплину «Органическая химия».

М.: Химия, 1966 — 680 с., 784 с. Новая книга хорошо известных советскому читателю американских химиков, супругов Л. и М. Филер, представляет собой систематизированное учебное и справочное руководство по органической химии. В ней освещены последние достижения теоретической и прикладной органической химии, причем особенно большое внимание уделено современным промышленным методам и

М.: Академкнига; Т.1-2004, 727с., Т.2-2004, 582с. В книге систематически изложены способы получения, строение, свойства и реакции органических соединений, принадлежащих к основным классам. Принятая последовательность глав соответствует принципу "от простого к сложному". В первой главе читатель знакомится с основными теоретическими понятиями и концепциями органической химии. Эти сведения даны на примере кислотно-основных

М.: Высшая школа, 1990 — 751 с. В учебнике компактно и четко описаны основные классы органических соединений, которые расположены по характеристическим группам. Рассматриваются природа связей, пространственное строение молекул, механизмы реакций с использованием представлений квантовой химии, современные методы физической органической химии. Основное внимание уделено применению органических соединений в народном хозяйстве, сырьевым

М.: Мир, 1974 — 1132 с. Книга представляет собой современный курс органической химии. Авторы избрали классический путь построения учебника по органической химии, расположив весь материал по классам органических соединений. В то же время им удалось избежать обычного недостатка традиционных курсов по органической химии - перенасыщения частными фактическими сведениями в ущерб

4-е изд., перераб. и доп. — М.: 2001 — 672 с. В учебнике большое внимание уделяется общетеоретическим основам современной органической химии: строению органических соединений, механизмам реакций, современным физико-химическим и физическим методам исследования. Для книги характерны ярко выраженная биологическая направленность и высокий научный уровень. Четвертое издание (3-е — 1987 г.) переработано

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

ГОУ ВПО “Уральский государственный технический университет – УПИ”

КАФЕДРА ОРГАНИЧЕСКОЙ ХИМИИ

ОРГАНИЧЕСКАЯ ХИМИЯ

КОНСПЕКТ ЛЕКЦИЙ

для направления 240100 "Химическая технология и биотехнология"

Екатеринбург


Понизовский М.Г., к.х.н., доцент кафедры органической химии

Русинова Л.И., к.х.н., доцент кафедры органической химии

АННОТАЦИЯ

Учебное пособие является частью учебно-методического комплекса дисциплины «Органическая химия». Оно включает в себя краткий конспект 44 лекций, охватывающих все разделы читаемого курса. Пособие предназначено для организации самостоятельной работы студентов при подготовке к лекционным, практическим, лабораторным занятиям, промежуточному, итоговому контролю и выполнению домашних заданий и контрольных работ в курсе «Органическая химия». Пособие является учебным материалом для студентов II курса ХТФ, а также может быть полезно студентам I-III курсов ФСМ, ФТФ, МТФ РТФ.

Библиография 38 назв.

Подготовлено кафедрой «Органическая химия»

Лекция №1

· Предмет органической химии. Причины ее выделения в самостоятельную науку и основные этапы развития. Теория строения и ее роль в развитии органического синтеза.

· Эмпирические, молекулярные и структурные формулы. Изомерия. Изомеры строения. Гомологические ряды. Основные функциональные группы и классы органических соединений.

· Основные принципы номенклатуры органических веществ. Заместительная номенклатура, IUPAC. Основные правила составления названий органических соединений.

Предмет органической химии

Впервые понятие органическая химия ввел шведский химик Берцелиус в 1808 г. Он считал, что различие между неорганическими и органическими веществами состоит в том, что первые могут быть получены в лаборатории обычными препаративными методами, тогда как вторые могут образовываться исключительно в результате процессов жизнедеятельности.

В 1828 г. немецкий химик Ф. Вёлер осуществил превращение неорганического вещества циановокислого аммония в хорошо известное органическое соединение – мочевину:

Открытие Ф. Вёлером органического синтеза стало мощнейшим толчком к развитию органической химии во второй половине XIX века. А. Кекуле и А. Купер независимо друг от друга открыли четырехвалентность углерода. Купер отметил способность атомов углерода образовывать цепи и предложил использовать формулы, в которых символы атомов связаны валентными черточками. В 1861 г. А.М. Бутлеров выдвинул теорию химического строения, согласно которой свойства вещества обусловлены природой, числом составляющих его атомов и способом их связывания друг с другом. Это было названо Бутлеровым химическим строением вещества . Кроме того, Бутлеров утверждал, что изучение свойств веществ позволит установить их строение, а знание строения позволит прогнозировать свойства. В 1874 г. одновременно Вант-Гофф и Ле-Бель предположили, что некоторые явления могут быть объяснены пространственной ориентацией валентностей атома углерода. Согласно Вант-Гоффу четыре валентности углерода идентичны и направлены к вершинам правильного тетраэдра, в центре которого находится атом углерода.

Среди элементов, входящих вместе с углеродом в состав органических веществ, исключительная роль принадлежит водороду, поскольку число органических соединений, не содержащих ни одного водородного атома, чрезвычайно мало в сравнении с общим числом известных сегодня химикам-органикам веществ.

Набор свойств, определяющих уникальную природу органических соединений, принадлежит не углероду или водороду в отдельности, а веществам, образованным этими двумя элементами – гидридам углерода, или углеводородам . Углеводороды являются основой классификации органических веществ, поскольку все органические соединения можно считать производными углеводородов, образующимися при замещении атомов водорода атомами других элементов. Поэтому органическая химия – химия углеводородов и их производных (К. Шорлеммер, 1889 г.).

Сам термин «органическая» сохраняет силу в связи с тем, что химия углеводородов и их производных более важна для жизни, чем химия любых других элементов.

Эмпирические, молекулярные и структурные формулы. Изомерия.

Объектом изучения химии являются индивидуальные соединения, т.е. вещества, состоящие из одинаковых молекул. В простейшем случае вещество считается чистым, если его температура плавления (для твердого) или температура кипения (для жидкости) не меняются.

Эмпирическая формула – химическая формула, отражающая качественный состав с указанием относительного количества атомов каждого элемента во всем образце (не в одной молекуле) , с помощью целых чисел, не имеющих общего кратного. Например, СН – эмпирическая формула бензола.

Молекулярная формула (брутто-формула) показывает качественный и количественный состав молекулы. Молекулярная формула может быть тождественна эмпирической или быть ее целым кратным. С 6 Н 6 – молекулярная формула бензола.

Структурная формула показывает взаимное расположение атомов и функциональных групп в молекуле. Структурная формула бензола:

Изомеры (isos – тот же, meros – часть) - вещества, имеющие одинаковую молекулярную формулу, но различающиеся по строению. Явление изомерии обусловлено существованием молекул, имеющих одинаковый качественный и количественный состав, но обладающих различными физическими и химическими свойствами из-за различного расположения атомов или функциональных групп или их ориентации в пространстве.

Структурная изомерия – два или более соединения, имеющие одну молекулярную формулу, отличающиеся между собой:

· строением углеродного скелета, например, для С 5 Н 12:

· различным расположением одинаковых функциональных групп (при одинаковом углеродном скелете)

Другие виды изомерии будут рассмотрены в дальнейших лекциях.

Гомологический ряд – ряд соединений, в котором каждый член отличается от предыдущего на одинаковую структурную единицу (гомологическую разность). Гомологи – члены гомологического ряда.

Классификация органических веществ.

Основа классификации органических соединений - теория строения. Все органические вещества, содержащие разные радикалы R (где R – органический остаток) и одинаковые функциональные группы, могут быть разделены на соответствующие классы. Это позволяет классифицировать вещества по их химическим и физическим свойствам, характерным для определенного строения.

Рис. 1.1. Классификация органических веществ (фрагмент)