Химической связью называют взаимодействие частиц (ионов или атомов), которое осуществляется в процессе обмена электронами, находящимися на последнем электронном уровне. Существует несколько видов такой связи: ковалентная (она делится на неполярную и полярную) и ионная. В этой статье мы подробнее остановимся именно на первом виде химических связей - ковалентных. А если быть точнее, то на полярном ее виде.

Ковалентная полярная связь - это химическая связь между валентными электронными облаками соседних атомов. Приставка «ко-» - означает в данном случае «совместно», а основа «валента» переводится как сила или способность. Те два электрона, которые связываются между собой, называют электронной парой.

История

Впервые этот термин употребил в научном контексте лауреат Нобелевской премии химик Ирвинг Леннгрюм. Произошло это в 1919 году. В своей работе ученый объяснял, что связь, в которой наблюдаются общие для двух атомов электроны, отличается от металлической или ионной. А значит, требует отдельного названия.

Позже, уже в 1927 году, Ф. Лондон и В. Гайтлер, взяв в качестве примера молекулу водорода как химически и физически наиболее простую модель, описали ковалентную связь. Они взялись за дело с другого конца, и свои наблюдения обосновывали, используя квантовую механику.

Суть реакции

Процесс преобразования атомарного водорода в молекулярный является типичной химической реакцией, качественным признаком которой служит большое выделение теплоты при объединении двух электронов. Выглядит это примерно так: два атома гелия приближаются друг к другу, имея по одному электрону на своей орбите. Затем эти два облака сближаются и образуют новое, похожее на оболочку гелия, в котором вращаются уже два электрона.

Завершенные электронные оболочки устойчивее, чем незавершенные, поэтому их энергия существенно ниже, чем у двух отдельных атомов. При образовании молекулы излишек тепла рассеивается в окружающей среде.

Классификация

В химии выделяют два вида ковалентной связи:

  1. Ковалентная неполярная связь, образующаяся между двумя атомами одного неметаллического элемента, например кислород, водород, азот, углерод.
  2. Ковалентная полярная связь, возникает между атомами разных неметаллов. Хорошим примером может служить молекула хлороводорода. Когда атомы двух элементов соединяются друг с другом, то неспаренный электрон от водорода частично переходит на последний электронный уровень атома хлора. Таким образом, на атоме водорода образуется положительный заряд, а на атоме хлора - отрицательный.

Донорно-акцепторная связь также является видом ковалентной связи. Она заключается в том, что один атом из пары предоставляет оба электрона, становясь донором, а принимающий их атом, соответственно, считается акцептором. При образовании связи между атомами, заряд донора увеличивает на единицу, а заряд акцептора снижается.

Семиполярная связь - е е можно считать подвидом донорно-акцепторной. Только в этом случае объединяются атомы, один из которых имеет законченную электронную орбиталь (галогены, фосфор, азот), а второй - два неспаренных электрона (кислород). Образование связи проходит в два этапа:

  • сначала от неподеленной пары отрывает один электрон и присоединяется к неспаренным;
  • объединение оставшихся неспаренных электродов, то есть формируется ковалентная полярная связь.

Свойства

Полярная ковалентная связь имеет свои физико-химические свойства, такие как направленность, насыщаемость, полярность, поляризуемость. Именно они определяют характеристики образующихся молекул.

Направленность связи зависит от будущего молекулярного строения образующегося вещества, а именно от геометрической формы, которую формируют два атома при присоединении.

Насыщаемость показывает, сколько ковалентных связей способен образовать один атом вещества. Это число ограничено количеством внешних атомных орбиталей.

Полярность молекулы возникает потому, что электронное облако, образующееся из двух разных электронов, неравномерно по всей своей окружности. Это возникает из-за разницы отрицательного заряда в каждом из них. Именно это свойство и определяет, полярная связь или неполярная. Когда объединяются два атома одного элемента, электронное облако симметрично, значит, связь ковалентная неполярная. А если объединяются атомы разных элементов, то формируется асимметричное электронное облако, так называемый дипольный момент молекулы.

Поляризуемость отражает то, насколько активно электроны в молекуле смещаются под действием внешних физических или химических агентов, например электрического или магнитного поля, других частиц.

Два последних свойства образующейся молекулы определяют ее способность реагировать с другими полярными реагентами.

Сигма-связь и пи-связь

Формирование этих связей зависит от плотности распределения электронов в электронном облаке в процессе формирования молекулы.

Для сигма-связи характерно наличие плотного скопления электронов вдоль оси, соединяющей ядра атомов, то есть в горизонтальной плоскости.

Пи-связь характеризуется уплотнение электронных облаков в месте их пересечения, то есть над и под ядром атома.

Визуализация связи в записи формулы

Для примера можем взять атом хлора. На ее внешнем электронном уровне содержится семь электронов. В формуле их располагают тремя парами и одним неспаренным электроном вокруг обозначения элемента в виде точек.

Если таким же образом записывать молекулу хлора, то будет видно, что два неспаренных электрона образовали пару, общую для двух атомов, она называется поделенной. При этом каждый из них получил по восемь электронов.

Правило октета-дублета

Химик Льюис, который предположил, как образуется ковалентная полярная связь, первым из своих коллег сформулировал правило, объясняющее устойчивость атомов при их объединении в молекулы. Суть его заключается в том, что химические связи между атомами образуются в том случае, когда обобществляется достаточное количество электронов, чтобы получилась электронная конфигурация, повторяющая подобная атомам благородных элементов.

То есть при образовании молекул для их стабилизации необходимо, чтобы все атомы имели законченный внешний электронный уровень. Например, атомы водорода, объединяясь в молекулу, повторяют электронную оболочку гелия, атомы хлора, приобретают схожесть на электронном уровне с атомом аргона.

Длина связи

Ковалентная полярная связь, кроме всего прочего, характеризуется определенным расстоянием между ядрами атомов, образующих молекулу. Они находятся на таком расстоянии друг от друга, при котором энергия молекулы минимальна. Для того чтобы этого достичь, необходимо, чтобы электронные облака атомов максимально перекрывали друг друга. Существует прямо пропорциональная закономерность между размером атомов и длинной связи. Чем больше атом, тем длиннее связь между ядрами.

Возможен вариант, когда атом образует не одну, а несколько ковалентных полярных связей. Тогда между ядрами формируются так называемые валентные углы. Они могут быть от девяноста до ста восьмидесяти градусов. Они и определяют геометрическую формулу молекулы.

Ковалентная связь (от латинского «со» совместно и «vales» имеющий силу) осуществляется за счет электронной пары, принадлежащей обоим атомам. Образуется между атомами неметаллов.

Электроотрицательность неметаллов довольно велика, так что при химическом взаимодействии двух атомов неметаллов полный перенос электронов от одного к другому (как в случае ) невозможен. В этом случае для выполнения необходимо объединение электронов.

В качестве примера обсудим взаимодействие атомов водорода и хлора:

H 1s 1 — один электрон

Cl 1s 2 2s 2 2 p 6 3 s 2 3 p 5 — семь электронов на внешнем уровне

Каждому из двух атомов недостает по одному электрону для того, чтобы иметь завершенную внешнюю электронную оболочку. И каждый из атомов выделяет „в общее пользование” по одному электрону. Тем самым правило октета оказывается выполненным. Лучше всего изобра­жать это с помощью формул Льюиса:

Образование ковалентной связи

Обобществленные электроны принадлежат теперь обоим атомам. Атом водорода имеет два электрона (свой собственный и обобществленный электрон атома хлора), а атом хлора - восемь электронов (свои плюс обобществленный электрон атома водорода). Эти два обобществленных электрона образуют ковалентную связь между атомами водорода и хло­ра. Образовавшаяся при связывании двух атомов частица называется молекулой.

Неполярная ковалентная связь

Ковалентная связь может образоваться и между двумя одинаковы­ми атомами. Например:

Эта схема объясняет, почему водород и хлор существуют в виде двухатомных молекул. Благодаря спариванию и обобществлению двух элек­тронов удается выполнить правило октета для обоих атомов.

Помимо одинарных связей может образовываться двойная или тройная ковалентная связь, как, например, в молекулах кислорода О 2 или азота N 2 . Атомы азота имеют по пять валентных электронов, следовательно, для завершения оболочки требуется еще по три электро­на. Это достигается обобществлением трех пар электронов, как показано ниже:

Ковалентные соединения — обычно газы, жидкости или сравнитель­но низкоплавкие твердые вещества. Одним из редких исключений явля­ется алмаз, который плавится выше 3 500 °С. Это объясняется строением алмаза, который представляет собой сплошную решетку ковалентно связанных атомов углерода, а не совокупность отдельных молекул. Фак­тически любой кристалл алмаза, независимо от его размера, представля­ет собой одну огромную молекулу.

Ковалентная связь возникает при объединении электронов двух атомов неметаллов. Возникшая при этом структура называется молекулой.

Полярная ковалентная связь

В большинстве случаев два ковалентно связанных атома имеют раз­ную электроотрицательность и обобществленные электроны не принад­лежат двум атомам в равной степени. Большую часть времени они нахо­дятся ближе к одному атому, чем к другому. В молекуле хлороводорода, например, электроны, образующие ковалентную связь, располагаются ближе к атому хлора, поскольку его электроотрицательность выше, чем у водорода. Однако разница в способности притягивать электроны не столь велика, чтобы произошел полный перенос электрона с атома водо­рода на атом хлора. Поэтому связь между атомами водорода и хлора можно рассматривать как нечто среднее между ионной связью (полный перенос электрона) и неполярной ковалентной связью (симмет­ричное расположение пары электронов между двумя атомами). Частич­ный заряд на атомах обозначается греческой буквой δ. Такая связь называется полярной ковалентной связью, а о молеку­ле хлороводорода говорят, что она полярна, т. е. имеет положительно заряженный конец (атом водорода) и отрицательно заряженный конец (атом хлора).


В таблице ниже перечислены основные типы связей и примеры веществ:


Обменный и донорно-акцепторный механизм образования ковалентной связи

1) Обменный механизм. Каждый атом дает по одному неспаренному электрону в общую электронную пару.

2) Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь.


В которой один из атомов отдавал электрон и становился катионом , а другой атом принимал электрон и становился анионом .

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные - двухатомная молекула состоит из одинаковых атомов (H 2 , Cl 2 , N 2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные - двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождая дипольный момент молекулы).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов . Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Однако, дважды лауреат Нобелевской премии Л. Полинг указывал, что «в некоторых молекулах имеются ковалентные связи, обусловленные одним или тремя электронами вместо общей пары» . Одноэлектронная химическая связь реализуется в молекулярном ионе водорода H 2 + .

Молекулярный ион водорода H 2 + содержит два протона и один электрон. Единственный электрон молекулярной системы компенсирует электростатическое отталкивание двух протонов и удерживает их на расстоянии 1,06 Å (длина химической связи H 2 +). Центр электронной плотности электронного облака молекулярной системы равноудалён от обоих протонов на боровский радиус α 0 =0,53 А и является центром симметрии молекулярного иона водорода H 2 + .

Энциклопедичный YouTube

  • 1 / 5

    Ковалентная связь образуется парой электронов, поделённой между двумя атомами, причём эти электроны должны занимать две устойчивые орбитали, по одной от каждого атома .

    A· + ·В → А: В

    В результате обобществления электроны образуют заполненный энергетический уровень. Связь образуется, если их суммарная энергия на этом уровне будет меньше, чем в первоначальном состоянии (а разница в энергии будет ни чем иным, как энергией связи).

    Согласно теории молекулярных орбиталей, перекрывание двух атомных орбиталей приводит в простейшем случае к образованию двух молекулярных орбиталей (МО): связывающей МО и антисвязывающей (разрыхляющей) МО . Обобществлённые электроны располагаются на более низкой по энергии связывающей МО.

    Образование связи при рекомбинации атомов

    Однако, механизм межатомного взаимодействия долгое время оставался неизвестным. Лишь в 1930 г. Ф. Лондон ввёл понятие дисперсионное притяжение - взаимодействие между мгновенным и наведённым (индуцированными) диполями. В настоящее время силы притяжения, обусловленные взаимодействием между флуктуирующими электрическими диполями атомов и молекул носят название «Лондоновские силы ».

    Энергия такого взаимодействия прямо пропорциональна квадрату электронной поляризуемости α и обратно пропорциональна расстоянию между двумя атомами или молекулами в шестой степени .

    Образование связи по донорно-акцепторному механизму

    Кроме изложенного в предыдущем разделе гомогенного механизма образования ковалентной связи, существует гетерогенный механизм - взаимодействие разноименно заряженных ионов - протона H + и отрицательного иона водорода H - , называемого гидрид-ионом :

    H + + H - → H 2

    При сближении ионов двухэлектронное облако (электронная пара) гидрид-иона притягивается к протону и в конечном счёте становится общим для обоих ядер водорода, то есть превращается в связывающую электронную пару. Частица, поставляющая электронную пару, называется донором, а частица, принимающая эту электронную пару, называется акцептором. Такой механизм образования ковалентной связи называется донорно-акцепторным .

    H + + H 2 O → H 3 O +

    Протон атакует неподелённую электронную пару молекулы воды и образует устойчивый катион, существующий в водных растворах кислот .

    Аналогично происходит присоединение протона к молекуле аммиака с образованием комплексного катиона аммония :

    NH 3 + H + → NH 4 +

    Таким путём (по донорно-акцепторному механизму образования ковалентной связи) получают большой класс ониевых соединений , в состав которого входят аммониевые , оксониевые, фосфониевые, сульфониевые и другие соединения .

    В качестве донора электронной пары может выступать молекула водорода, которая при контакте с протоном приводит к образованию молекулярного иона водорода H 3 + :

    H 2 + H + → H 3 +

    Связывающая электронная пара молекулярного иона водорода H 3 + принадлежит одновременно трём протонам.

    Виды ковалентной связи

    Существуют три вида ковалентной химической связи, отличающихся механизмом образования:

    1. Простая ковалентная связь . Для её образования каждый из атомов предоставляет по одному неспаренному электрону. При образовании простой ковалентной связи формальные заряды атомов остаются неизменными.

    • Если атомы, образующие простую ковалентную связь, одинаковы, то истинные заряды атомов в молекуле также одинаковы, поскольку атомы, образующие связь, в равной степени владеют обобществлённой электронной парой. Такая связь называется неполярной ковалентной связью . Такую связь имеют простые вещества , например: 2 , 2 , 2 . Но не только неметаллы одного типа могут образовывать ковалентную неполярную связь. Ковалентную неполярную связь могут образовывать также элементы-неметаллы, электроотрицательность которых имеет равное значение, например, в молекуле PH 3 связь является ковалентной неполярной, так как ЭО водорода равна ЭО фосфора.
    • Если атомы различны, то степень владения обобществлённой парой электронов определяется различием в электроотрицательностях атомов. Атом с большей электроотрицательностью сильнее притягивает к себе пару электронов связи, и его истинный заряд становится отрицательным. Атом с меньшей электроотрицательностью приобретает, соответственно, такой же по величине положительный заряд. Если соединение образуется между двумя различными неметаллами , то такое соединение называется ковалентной полярной связью .

    В молекуле этилена С 2 Н 4 имеется двойная связь СН 2 =СН 2 , его электронная формула: Н:С::С:Н. Ядра всех атомов этилена расположены в одной плоскости. Три электронных облака каждого атома углерода образуют три ковалентные связи с другими атомами в одной плоскости (с углами между ними примерно 120°). Облако четвёртого валентного электрона атома углерода располагается над и под плоскостью молекулы. Такие электронные облака обоих атомов углерода, частично перекрываясь выше и ниже плоскости молекулы, образуют вторую связь между атомами углерода. Первую, более прочную ковалентную связь между атомами углерода называют σ-связью; вторую, менее прочную ковалентную связь называют π {\displaystyle \pi } -связью.

    В линейной молекуле ацетилена

    Н-С≡С-Н (Н: С::: С: Н)

    имеются σ-связи между атомами углерода и водорода, одна σ-связь между двумя атомами углерода и две π {\displaystyle \pi } -связи между этими же атомами углерода. Две π {\displaystyle \pi } -связи расположены над сферой действия σ-связи в двух взаимно перпендикулярных плоскостях.

    Все шесть атомов углерода циклической молекулы бензола С 6 H 6 лежат в одной плоскости. Между атомами углерода в плоскости кольца действуют σ-связи; такие же связи имеются у каждого атома углерода с атомами водорода. На осуществление этих связей атомы углерода затрачивают по три электрона. Облака четвёртых валентных электронов атомов углерода, имеющих форму восьмерок, расположены перпендикулярно к плоскости молекулы бензола. Каждое такое облако перекрывается одинаково с электронными облаками соседних атомов углерода. В молекуле бензола образуются не три отдельные π {\displaystyle \pi } -связи, а единая π {\displaystyle \pi } диэлектрики или полупроводники . Типичными примерами атомных кристаллов (атомы в которых соединены между собой ковалентными (атомными) связями) могут служить

    Вещества молекулярного строения образуются с помощью особого вида взаимосвязи. Ковалентная связь в молекуле, полярная и неполярная, также называется атомной. Это название происходит от латинского «co» — «совместно» и «vales» — «имеющий силу». При таком способе образования соединений пара электронов делится между двумя атомами.

    Что такое ковалентная полярная и неполярная связь? Если новое соединение образуется таким образом, то происходит обобществление электронных пар. Обычно такие вещества имеют молекулярное строение: Н 2 , О 3 , HCl, HF, CH 4 .

    Есть и немолекулярные вещества, в которых атомы связаны таким образом. Это так называемые атомные кристаллы: алмаз, диоксид кремния, карбид кремния. В них каждая частица связана с четырьмя другими, в результате получается очень прочный кристалл. Кристаллы с молекулярной структурой обычно не отличаются высокой прочностью.

    Свойства такого способа образования соединений:

    • кратность;
    • направленность;
    • степень полярности;
    • поляризуемость;
    • сопряжение.

    Кратность - это количество поделенных электронных пар. Их может быть от одной до трех. У кислорода до заполнения оболочки двух электронов не хватает, поэтому она будет двойной. У азота в молекуле N 2 она тройная.

    Поляризуемость - возможность образования ковалентной полярной связи и неполярной. При этом она может быть более или менее полярна, ближе к ионной или наоборот - в этом заключается свойство степени полярности.

    Направленность означает, что атомы стремятся соединиться таким образом, чтобы между ними осталась как можно большая электронная плотность. О направленности имеет смысл говорить тогда, когда соединяются p или d-орбитали. S-орбитали сферически симметричны, для них все направления равноценны. У p-орбиталей неполярная или полярная ковалентная связь направлена вдоль их оси, так что две «восьмерки» перекрываются вершинами. Это σ-связь. Существуют и менее прочные π-связи. В случае p-орбиталей «восьмерки» перекрываются боковыми сторонами вне оси молекулы. В двойном или тройном случае p-орбитали образуют одну σ-связь, а остальные будут типа π.

    Сопряжение - это чередование простых и кратных, делающее молекулу более стабильной. Такое свойство характерно для сложных органических соединений.

    Виды и способы образования химических связей

    Полярность

    Важно! Как определить, вещества с неполярной ковалентной или полярной связью перед нами? Это очень просто: первая всегда возникает между одинаковыми атомами, а вторая - между разными, имеющими неодинаковую электроотрицательность.

    Примеры ковалентной неполярной связи - простые вещества:

    • водород Н 2 ;
    • азот N 2 ;
    • кислород О 2 ;
    • хлор Cl 2 .

    Схема образования ковалентной неполярной связи показывает, что с помощью объединения электронной пары атомы стремятся дополнить внешнюю оболочку до 8 или 2 электронов. Например, фтору не хватает одного электрона до восьмиэлектронной оболочки. После образования поделенной электронной пары она заполнится. Распространенная формула вещества с ковалентной неполярной связью - двухатомная молекула.

    Полярно обычно связываются только :

    • Н 2 О;
    • CH 4 .

    Но бывают и исключения, такие как AlCl 3 . Алюминий обладает свойством амфотерности, то есть в одних соединениях он ведет себя как металл, а в других - как неметалл. Разница в электроотрицательности в этом соединении небольшая, поэтому алюминий соединяется с хлором именно так, а не по ионному типу.

    В этом случае молекулу образуют разные элементы, но разница в электроотрицательности не так велика, чтобы электрон полностью перешел от одного атома к другому, как в веществах ионного строения.

    Схемы образования ковалентной структуры этого типа показывают, что электронная плотность смещается к более электроотрицательному атому, то есть поделенная электронная пара находится к одному из них ближе, чем ко второму. Части молекулы приобретают заряд, который обозначается греческой буквой дельта. В хлороводороде, например, хлор становится заряжен более отрицательно, а водород - более положительно. Заряд будет частичный, а не целый, как у ионов.

    Важно! Не следует путать полярность связи и полярность молекулы. В метане СН4, например, атомы связаны полярно, а сама молекула неполярна.

    Полезное видео: полярная и неполярная ковалентная связь

    Механизм образования

    Образование новых веществ может проходить по обменному или донорно-акцепторному механизму. При этом объединяются атомные орбитали. Возникает одна или несколько молекулярных орбиталей. Они отличаются тем, что охватывают оба атома. Как и на атомной, на ней может находиться не более двух электронов, причем их спины тоже должны быть разнонаправленными.

    Как определить, какой механизм задействован? Это можно сделать по числу электронов на внешних орбиталях.

    Обменный

    В этом случае электронная пара на молекулярной орбитали образуется из двух неспаренных электронов, каждый из которых принадлежит своему атому. Каждый из них стремится заполнить свою внешнюю электронную оболочку, сделать ее устойчивой восьми- или двухэлектронной. Так обычно образуются вещества с неполярной структурой.

    Для примера рассмотрим соляную кислоту HCl. У водорода на внешнем уровне один электрон. У хлора - семь. Нарисовав схемы образования ковалентной структуры для него, увидим, что для заполнения внешней оболочки каждому из них не хватает по одному электрону. Поделив между собой электронную пару, они смогут завершить внешнюю оболочку. По такому же принципу образуются и двухатомные молекулы простых веществ, например, водорода, кислорода, хлора, азота и других неметаллов.

    Механизм образования

    Донорно-акцепторный

    Во втором случае оба электрона представляют собой неподеленную пару и принадлежат одному атому (донору). У другого (акцептора) есть свободная орбиталь.

    Формула вещества с ковалентной полярной связью, образованной таким образом, например, ион аммония NH 4 +. Он образуется из иона водорода, в котором есть свободная орбиталь, и аммиака NH3, содержащего один «лишний» электрон. Электронная пара из аммиака обобществляется.

    Гибридизация

    Когда электронная пара обобществляется между орбиталями различной формы, например, s и р, образуется гибридное электронное облако sp. Такие орбитали сильнее перекрываются, поэтому связываются прочнее.

    Так устроены молекулы метана и аммиака. В молекуле метана СН 4 должны были образоваться три связи по p-орбиталям и одна по s. Вместо этого орбиталь гибридизируется с тремя р-орбиталями, получаются три гибридные sp3-орбитали в форме вытянутых капель. Это происходит потому, что электроны 2s и 2p имеют близкую энергию, они взаимодействуют друг с другом при соединении с другим атомом. Тогда можно образовать гибридную орбиталь. Получившаяся молекула имеет форму тетраэдра, водород располагается в его вершинах.

    Другие примеры веществ с гибридизацией:

    • ацетилен;
    • бензол;
    • алмаз;
    • вода.

    Для углерода характерна spЗ-гибридизация, поэтому она часто встречается в органических соединениях.

    Полезное видео: ковалентная полярная связь

    Вывод

    Ковалентная связь, полярная или неполярная, характерна для веществ молекулярного строения. Неполярно связаны атомы одного элемента, а полярно - разных, но с ненамного отличающейся электроотрицательностью. Обычно таким образом соединяются элементы-неметаллы, но бывают и исключения, такие как алюминий.

    Крайне редко химические вещества состоят из отдельных, не связанных между собой атомов химических элементов. Таким строением в обычных условиях обладает лишь небольшой ряд газов называемых благородными: гелий, неон, аргон, криптон, ксенон и радон. Чаще же всего химические вещества состоят не из разрозненных атомов, а из их объединений в различные группировки. Такие объединения атомов могут насчитывать несколько единиц, сотен, тысяч или даже больше атомов. Сила, которая удерживает эти атомы в составе таких группировок, называется химическая связь .

    Другими словами, можно сказать, что химической связью называют взаимодействие, которое обеспечивает связь отдельных атомов в более сложные структуры (молекулы, ионы, радикалы, кристаллы и др.).

    Причиной образования химической связи является то, что энергия более сложных структур меньше суммарной энергии отдельных, образующих ее атомов.

    Так, в частности, если при взаимодействии атомов X и Y образуется молекула XY, это означает, что внутренняя энергия молекул этого вещества ниже, чем внутренняя энергия отдельных атомов, из которых оно образовалось:

    E(XY) < E(X) + E(Y)

    По этой причине при образовании химических связей между отдельными атомами выделятся энергия.

    В образовании химических связей принимают участие электроны внешнего электронного слоя с наименьшей энергией связи с ядром, называемые валентными . Например, у бора таковыми являются электроны 2 энергетического уровня – 2 электрона на 2s- орбитали и 1 на 2p -орбитали:

    При образовании химической связи каждый атом стремится получить электронную конфигурацию атомов благородных газов, т.е. чтобы в его внешнем электронном слое было 8 электронов (2 для элементов первого периода). Это явление получило название правила октета.

    Достижение атомами электронной конфигурации благородного газа возможно, если изначально одиночные атомы сделают часть своих валентных электронов общими для других атомов. При этом образуются общие электронные пары.

    В зависимости от степени обобществления электронов можно выделить ковалентную, ионную и металлическую связи.

    Ковалентная связь

    Ковалентная связь возникает чаще всего между атомами элементов неметаллов. Если атомы неметаллов, образующие ковалентную связь, относятся к разным химическим элементам, такую связь называют ковалентной полярной. Причина такого названия кроется в том, что атомы разных элементов имеют и различную способность притягивать к себе общую электронную пару. Очевидно, что это приводит к смещению общей электронной пары в сторону одного из атомов, в результате чего на нем формируется частичный отрицательный заряд. В свою очередь, на другом атоме формируется частичный положительный заряд. Например, в молекуле хлороводорода электронная пара смещена от атома водорода к атому хлора:

    Примеры веществ с ковалентной полярной связью:

    СCl 4 , H 2 S, CO 2 , NH 3 , SiO 2 и т.д.

    Ковалентная неполярная связь образуется между атомами неметаллов одного химического элемента. Поскольку атомы идентичны, одинакова и их способность оттягивать на себя общие электроны. В связи с этим смещения электронной пары не наблюдается:

    Вышеописанный механизм образования ковалентной связи, когда оба атома предоставляют электроны для образования общих электронных пар, называется обменным.

    Также существует и донорно-акцепторный механизм.

    При образовании ковалентной связи по донорно-акцепторному механизму общая электронная пара образуется за счет заполненной орбитали одного атома (с двумя электронами) и пустой орбитали другого атома. Атом, предоставляющий неподеленную электронную пару, называют донором, а атом со свободной орбиталью – акцептором. В качестве доноров электронных пар выступают атомы, имеющие спаренные электроны, например N, O, P, S.

    Например, по донорно-акцепторному механизму происходит образование четвертой ковалентной связи N-H в катионе аммония NH 4 + :

    Помимо полярности ковалентные связи также характеризуются энергией. Энергией связи называют минимальную энергию, необходимую для разрыва связи между атомами.

    Энергия связи уменьшается с ростом радиусов связываемых атомов. Так, как мы знаем, атомные радиусы увеличиваются вниз по подгруппам, можно, например, сделать вывод о том, что прочность связи галоген-водород увеличивается в ряду:

    HI < HBr < HCl < HF

    Также энергия связи зависит от ее кратности – чем больше кратность связи, тем больше ее энергия. Под кратностью связи понимается количество общих электронных пар между двумя атомами.

    Ионная связь

    Ионную связь можно рассматривать как предельный случай ковалентной полярной связи. Если в ковалентной-полярной связи общая электронная пара смещена частично к одному из пары атомов, то в ионной она практически полностью «отдана» одному из атомов. Атом, отдавший электрон(ы), приобретает положительный заряд и становится катионом , а атом, забравший у него электроны, приобретает отрицательный заряд и становится анионом .

    Таким образом, ионная связь — это связь, образованная за счет электростатического притяжения катионов к анионам.

    Образование такого типа связи характерно при взаимодействии атомов типичных металлов и типичных неметаллов.

    Например, фторид калия. Катион калия получается в результате отрыва от нейтрального атома одного электрона, а ион фтора образуется при присоединении к атому фтора одного электрона:

    Между получившимися ионами возникает сила электростатического притяжения, в результате чего образуется ионное соединение.

    При образовании химической связи электроны от атома натрия перешли к атому хлора и образовались противоположно заряженные ионы, которые имеют завершенный внешний энергетический уровень.

    Установлено, что электроны от атома металла не отрываются полностью, а лишь смещаются в сторону атома хлора, как в ковалентной связи.

    Большинство бинарных соединений, которые содержат атомы металлов, являются ионными. Например, оксиды, галогениды, сульфиды, нитриды.

    Ионная связь возникает также между простыми катионами и простыми анионами (F − , Cl − , S 2-), а также между простыми катионами и сложными анионами (NO 3 − , SO 4 2- , PO 4 3- , OH −). Поэтому к ионным соединениям относят соли и основания (Na 2 SO 4 , Cu(NO 3) 2 , (NH 4) 2 SO 4), Ca(OH) 2 , NaOH)

    Металлическая связь

    Данный тип связи образуется в металлах.

    У атомов всех металлов на внешнем электронном слое присутствуют электроны, имеющие низкую энергию связи с ядром атома. Для большинства металлов, энергетически выгодным является процесс потери внешних электронов.

    Ввиду такого слабого взаимодействия с ядром эти электроны в металлах весьма подвижны и в каждом кристалле металла непрерывно происходит следующий процесс:

    М 0 — ne − = M n + ,

    где М 0 – нейтральный атом металла, а M n + катион этого же металла. На рисунке ниже представлена иллюстрация происходящих процессов.

    То есть по кристаллу металла «носятся» электроны, отсоединяясь от одного атома металла, образуя из него катион, присоединяясь к другому катиону, образуя нейтральный атом. Такое явление получило название “электронный ветер”, а совокупность свободных электронов в кристалле атома неметалла назвали “электронный газ”. Подобный тип взаимодействия между атомами металлов назвали металлической связью.

    Водородная связь

    Если атом водорода в каком-либо веществе связан с элементом с высокой электроотрицательностью (азотом, кислородом или фтором), для такого вещества характерно такое явление, как водородная связь.

    Поскольку атом водорода связан с электроотрицательным атомом, на атоме водорода образуется частичный положительный заряд, а на атоме электроотрицательного элемента — частичный отрицательный. В связи с этим становится возможным электростатическое притяжения между частично положительно заряженным атомом водорода одной молекулы и электроотрицательным атомом другой. Например водородная связь наблюдается для молекул воды:

    Именно водородной связью объясняется аномально высокая температура плавления воды. Кроме воды, также прочные водородные связи образуются в таких веществах, как фтороводород, аммиак, кислородсодержащие кислоты, фенолы, спирты, амины.