Прошли тысячелетия, прежде чем человечество в ходе своей

общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде

всего в природе две тенденции: наличие строгой упорядоченности,

соразмерности, равновесия и их нарушения.
Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на

деревьях, лепестков, цветов, семян растений и отобразили эту

упорядоченность в своей практической деятельности, мышлении

и искусстве.
Понятие «симметрия» употреблялось в двух значениях. В одном

смысле симметричное означало нечто пропорциональное; симметрия показывает тот способ согласования многих частей, с

помощью которого они объединяются в целое. Второй смысл этого

слова - равновесие.
Греческое слово ((((((((означает однородность, соразмерность,

пропорциональность, гармонию.
Познавая качественное многообразие проявлений порядка и

гармонии в природе, мыслители древности, особенно греческие

философы, пришли к выводу о необходимости выразить симметрию

и в количественных отношениях, при помощи геометрических

построений и чисел.

Симметрия форм предметов природы как выражение пропорциональности, соразмерности, гармонии подавляла древнего человека

своим совершенством, и это было использовано религией, различными представлениями мистицизма, пытавшимися истолковать наличие симметрии в объективной действительности для доказательства

всемогущества богов, якобы вносящих порядок и гармонию в первоначальный хаос. Так, в учении пифагорейцев симметрия, симметричные фигуры и тела
(круг и шар) имели мистическое значение, являлись воплощением совершенства.

Следует обратить внимание и на учение Пифагора о гармонии.

Известно, что если уменьшить длину струны или флейты вдвое,

тон повысится на одну октаву. Уменьшению в отношении 3:2 и

4:3 будут соответствовать интервалы квинта и кварта. То, что важнейшие гармонические интервалы получаются при помощи отношений чисел 1, 2 и 3, 4, пифагорейцы использовали для своих мистических выводов о том, что «все есть число» или «все упорядочивается в соответствии с числами». Сами эти числа
1, 2, 3, 4 составляли

знаменитую «тетраду». Очень древнее изречение гласит: «Что есть

оракул дельфийский? Тетрада! Ибо она есть музыкальная гамма

сирен». Геометрическим образом тетрады является треугольник из

десяти точек, основание которого составляют 4 точки плюс 3,

плюс 2, а одна находится в центре.

В геометрии, механике - всюду, где мы имеем дело с отрезками

прямых, мы встречаемся и с понятиями меры, сравнения и соотношения. Эти понятия являются отражением реальных отношений

между предметами в объективном мире. Чтобы пояснить это положение, можно выбрать на данной прямой АВ любую третью точку С.

Таким образом, совершается переход от единства к двойственности,

и мысль этим самым приводит к понятию пропорции. Следует

подчеркнуть, что соотношение есть количественное сравнение двух

однородных величин, или число, выражающее это сравнение. Про-

порция есть результат согласования или равноценности двух или нескольких соотношений. Следовательно, необходимо наличие

не менее трех величин (в рассматриваемом случае прямая и два

ее отрезка) для определения пропорции. Деление данного отрезка

прямой АВ путем выбора третьей точки С, находящейся между

А и В, дает возможность построить шесть различных возможных

соотношений:

a:b ; a:c ; b:a ; b:c ; c:a ; c:b

при условии отметки соответствующей длины отрезков прямой бук-

вами «а», «b», «с» и применения к данной длине любой системы

мер. Проанализировав возможные случаи деления отрезка АВ на

две части, мы приходим к выводу, что отрезок можно делить на:

1) две симметрические части a=b; 2) a:b = c:a

Так как c = a + b, то

a/b = (a + b)/a ;

((a + b)/a очевидно, превосходит единицу); дело обстоит так же и в отношении а/b; значит, «а» превосходит «b» и точка «С» стоит ближе к В, чем

Это соотношение a:b = c:a или AC/CB = AB/AC может быть выражено следующим образом: длина АВ была разделе-

на на две неравные части таким образом, что большая из ее частей

относится к меньшей, как длина всего отрезка АВ относится к его большей части:

3) a/b = b/c равноценно a/b = b/(a + b).

В этом случае «b» больше «а»; точка С ближе к А, чем к В, но отношения те же, что и во втором случае,
Рассмотрим равенство

a/b = c/a = (a + b)/a,

при котором отрезок АС длиннее отрезка СВ. Это общее простейшее

деление отрезка прямой АВ, являющееся логическим выражением

принципа наименьшего действия. Между точками А и В имеется

лишь одна точка C, поставленная таким образом, чтобы длина отрез-

ков АВ, СВ и АС соответствовала принципу простейшего деления;

следовательно, существует только одно числовое выражение, соответствующее отношению a/b. Эту же задачу можно решить путем гео-

метрического построения, известного как деление прямой на две

неравные части таким образом, чтобы соотношение меньшей и боль-

шей частей равнялось соотношению большей части и суммы длин

обеих частей, а это и соответствует формуле

a/b = (a + b)/a, которую называют «божественная пропорция», «золотое сечение» т.д.

Изучение объективной реальности и задачи практики привели к возникновению наряду с понятием симметрия и понятия асимметрии, которое нашло одно из своих первых количественных выражений в так назыываемом золотом делении, или золотой пропорции.

Пифагор выразил «золотою пропорцию» соотношением:

где Н и R суть гармоническая и арифметическая средние между

величинами А и В.

R = (A + B)/2; H = 2AB/ (A + B).

Кеплер первый обращает вни-

мание на значение этой пропорции в ботанике и называет ее

sectio divina - «божественное сечение»; Леонардо да Винчи назы-

вает эту пропорцию «золотое сечение».
Проведем некоторые преобразования вышеприведенной формулы.

Прежде всего разделим на «b» оба элемента второго члена этого

равенства и обозначим

a/b = x; тогда a/b = (a/b + 1)/(a/b),

или x2 = x + 1

Корнями этого уравнения являются

х = 1((5/2 = 1,61803398 .

2
Это число обладает характернейшими особенностями. Обозначим это число буквой Ф.

Ф = ((5 + 1)/2 = 1,618…; 1/Ф = ((5 – 1) /2 = 0,618…;

Ф2 = -((5 + 3)/2 = 2,618…
Оказывается, что геометрическая прогрессия, в основании которой

лежит Ф, обладает следующей особенностью: любой член этого

ряда равен сумме двух предшествующих ему членов. Ряд 1, Ф, Ф2,

Ф3, ..., Фn является одновременно и мультипликативным, и аддитив-

ным, т. е. одновременно причастен природе геометрической прогрес-

сии и арифметического ряда. Следует обратить внимание на то, что

выражает простейшее асимметрическое деление прямой АВ. С этой

точки зрения данное отношение является «логической» инвариан-

той, проистекающей из счислений отношений и групп. Пеано,

Бертран Рассел и Кутюра показали, что исходя из принципа тождественности можно вывести из этих отношений и групп принципы чистой математики.
Любопытно, что древние архитекторы уже пользовались приемом

асимметричного деления. Так, например, стороны пирамиды Фараона

Джосера относятся друг к другу, как 2: /5, а ее высота относится к большей стороне, как 1: 2.

Интересно, что на сохранившемся до наших дней изображении

древнеегипетского зодчего Хисеры (жил свыше 4,5 тыс. лет тому

назад) имеются две палки - очевидно, эталоны меры. Их длины

относятся, как 1: 1/5, т. е. как меньшая сторона прямоугольного

треугольника к гипотенузе.

Архитектор И. Шевелев рассматривая пропорции древнерусской

архитектуры (церковь Покрова на Нерли и храм Вознесения в

Коломенском) привел убедительные данные, свидетельствующие о

том, что русские архитекторы также пользовались пропорциями,

связанными с «золотым сечением».

Пропорция «золотого сечения» дает возможность архитекторам

находить наиболее удачные, красивые, гармоничные сечения целого

и частей, единство разнообразного; в конечном счете они пользуются сочетанием принципов симметрии и асимметрии,
Если в период Возрождения внимание ученых и преподавателей

искусства было приковано к «золотому сечению», то впоследствии

оно постепенно падало, и только в 1855 г. немецкий ученый Цейзинг

вновь ввел его в обиход в своем труде

«Эстетические исследования». В нем он писал, что для того, чтобы

целое, разделенное на две неравные части, казалось прекрасным

с точки зрения формы, между меньшей и большей частями должно

быть то же отношение, что и между большей частью и целым,
Применение «золотого сечения» есть лишь частный случай общего закона периодической повторяемости одной и той же пропорции

в совокупности, в деталях целого,
Рассмотрение вопроса о «золотом сечении» приводит к выводу,

что здесь мы имеем дело с отображением средствами математики

(при помощи понятий симметрии и асимметрии) существующей

в природе пропорциональности.

Все вышеизложенное позволяет утверждать, что взгляды Пифагора и его школы содержали наряду с мистикой и идеализмом

и некоторые плодотворные математические и естественнонаучные

идеи. Впоследствии учение пифагорейцев получило развитие в философии крупнейшего представителя античного идеализма Платона.

Мир, утверждал Платон, состоит из правильных многоугольников,

обладающих идеальной симметрией. Физические тела - это идеальные математические сущности, составленные из треугольников,

упорядоченные демиургом.

Отдельные интересные суждения о симметрии и гармонии мы

встречаем в работах многих философов и естествоиспытателей

(прежде всего Леонардо да Винчи, Лейбница, Декарта, Спенсера,

Гегеля и других). В значительной

степени прав немецкий ученый Венцлав Бодо, когда пишет, что

«философия, за исключением некоторых высказываний, не пыталась

дать объяснение этой интересной стороне природы. На протяжении

веков спорили о причинности, детерминизме и других вопросах,

не видя взаимосвязи их с проблематикой симметрии или не стремясь

к этому. Симметрия, по-видимому, прибавлялась только как искусственная роскошь к довольно узкому готовому миру вещей с их

свойствами и силовыми взаимодействиями, их движениями и изменениями».

В настоящее время в науке преобладают

определения указанных категорий на основе перечисления их важнейших признаков. Например, симметрия определяется как совокупность

свойств: порядка, однородности, соразмерности, пропорциональности, гармоничности и т. д. Асимметрия же обычно определяется

как отсутствие признаков симметрии, как беспорядок, несоразмерность, неоднородность и т. д. Все признаки симметрии в такого рода

ее определениях, естественно, рассматриваются как равноправные,

одинаково существенные, и в отдельных конкретных случаях при

установлении симметрии какого-либо явления можно пользоваться

любым из них. Так, в одних случаях симметрия - это однородность,

а в других - соразмерность и т. д. Очевидно, что по мере развития

нашего познания к определению симметрии можно прибавлять все новые и новые признаки. Поэтому определения симметрии такого

рода всегда неполны.

То же можно сказать и о существующих определениях асимметрии. Очевидно, что в определениях понятий, сформулированных

по принципу перечисления свойств объектов, ими отражаемых,

отсутствует связь между перечисленными свойствами объектов.

Такие свойства симметрии, как, например, однородность и соразмерность, друг из друга не следуют. Сказанное, однако, не означает бесполезности вышеуказанных определений симметрии и асимметрии. Наоборот, они весьма полезны и необходимы. Без них

нельзя дать и более общее определение категорий симметрии

и асимметрии. На основе подобных эмпирических определений

симметрии и асимметрии развиваются определения более общего

характера, сущность которых - в соотнесении частных признаков

симметрии и асимметрии к определенным всеобщим свойствам движущейся материи. «В симметрии,- пишет А. В. Шубников,-

отражается та сторона явлений, которая соответствует покою, а в

дисимметрии (по нашей терминологии в асимметрии) та их

сторона, которая отвечает движению»

Таким образом, все свойства симметрии рассматриваются как

проявления состояний покоя, а все свойства асимметрии - как

проявления состояний движения. Если признать это правильным,

то очевидно, что соотношение симметрии и асимметрии в таком

случае таково же, как соотношение покоя и движения. Мы, следовательно, можем сказать, что симметрия относительна, а асимметрия

абсолютна. Симметрию мы должны, далее, рассматривать как частный случай асимметрии, как ее момент. Поэтому ни о каком равноправии симметрии и асимметрии и речи быть не может. Взаимоотношение симметрии и асимметрии здесь явно асимметрично. Но

вряд ли можно с таких позиций правильно понять многие свойства

симметрии и асимметрии. Почему, например,

такую симметрию пространства, как его однородность, должны

рассматривать как соответствующую покою? Почему мы должны искать симметрию только среди покоящихся

явлений? Разве нет симметрии во взаимодействии и движении явлений мира?
Мысль о связи между понятиями симметрии и асимметрии и соответственно между понятиями покоя и движения точнее

можно выразить как единство покоя и движения. Понятие сим-

метрии раскрывает момент покоя, равновесия в состояниях движения, а понятие асимметрии - момент движения, изменения в со стояниях покоя, равновесия. Но и такой формулировкой не охватывают основные признаки симметрии и асимметрии. Например, симметрия частиц и античастиц и их ассиметрия в известной нам области мира не могут быть истолкованы исходя из понятий о единстве покоя и движения. Вряд ли существование частиц и античастиц можно рассматривать как момент покоя в каком-то движении материи, а несоответствие числа частиц числу античастиц в известной нам области мира - как моменты движения в каком-то состоянии покоя. Можно сделать вывод, что в идее А. В. Шубникова о соотнесении симметрии с покоем, а асимметрии - с движением заключается только момент истины.

Хорошо известно, что понятие симметрии охватывает и такие стороны существования явлений, которые ничего общего с покоем не имеют. Например, регулярная повторяемость тех или иных состояний движения, их определенная периодичность является одним из признаков симметрии, но к покою, она никакого отношения не имеет. Такой вид асимметрии, как анизотропность пространства, из свойств движения, конечно, выведена быть не может. Тем не менее многие свойства симметрии и асимметрии соответственно связаны с покоем и движением.

К общим определениям понятий симметрии и асимметрии можно подойти исходя из следующих положений: во-первых, нужно признать, что эти понятия относятся ко всем известным нам атрибутам материи, что они отражают взаимные связи между ними; во-вторых, эти понятия основываются на диалектике соотношения тождества и различия, существующей как между атрибутами материи, так и между их состояниями и признаками; в-третьих, нужно иметь в виду, что единство симметрии и асимметрии представляет собой одну из форм проявления закона единства и взаимоисключения противоположности. Правильность этих отправных положений может быть доказана как выводом их из многочисленных частных определений симметрии и асимметрии, так и правильностью их следствий, т. е. необходимостью и всеобщностью определений симметрии и асимметрии, полученных на их основе.
Непосредственной логической основой для определения понятий симметрии и асимметрии, на наш взгляд, является диалектика тождества и различия. Здесь нужно отметить, что в диалектике тождество и различие рассматриваются лишь в определенных отношениях, во взаимодействии, во включении различия в тождество, а тождества в различие.
Тождество проявляется только в определенных отношениях и в определенных процессах; тождество всегда конкретно. К тождеству можно отнести: равновесие, равнодействие, сохранение, устойчивость, равенство, соразмерность, повторяемость и т. д. Тождество не существует вечно: оно возникает, становится и развивается. Если дать его общее определение, то можно сказать, что оно представляет собой процесс образования сходства в различном и противоположном.
Для того, чтобы имело место тождество, необходимо существование различного и противоположного. Вне различий тождество вообще не имеет смысла, поэтому нельзя говорить о тождественном в тождественном, а только в различном и противоположном.

Характеризуя диалектическое понимание тождества, нужно выделить его следующие стороны: тождество не существует вне различия и противоположности, тождество возникает и исчезает; тождество существует только в определенных отношениях и возникает при определенных условиях, наиболее полным выражением тождества является полное превращение противоположностей друг в друга. Проявления тождества бесконечно многообразны. Поэтому в процессе познания явлений мира нельзя ограничиваться только установлением тождества между ними, но необходимо раскрывать то, как возникает это тождество, при каких условиях и в каких отношениях оно существует. Основываясь на этой характеристике диалектики тождества и различия, можно сформулировать следующие определения симметрии и асимметрии.

Действительно ли является всеобщим

сформулированное нами определение понятия симметрии, охватывает

ли оно все известные нам формы проявления симметрии как в объективном мире, так и в процессе нашего познания? Очевидно, что

при ответе на этот вопрос придется ограничиться только наиболее

общими характерными примерами. Представим себе две точки, находящиеся по отношению к какой-то прямой на ее противоположных

сторонах; если эти противоположные точки равноудалены от этой

прямой, то о них говорят как о симметричных по отношению к

данной прямой. Если мы теперь совершим операцию перегиба, то

в результате наши точки полностью совпадут, сольются друг с другом,

следовательно, можно говорить об их полном тождестве. Симметрия

расположения данных точек указывает именно на то, при каком

процессе и при каких условиях они становятся тождественными.

Значит, этот вид симметрии полностью подходит под сформулирован-

ное определение симметрии. Как известно, существует определенная

симметрия между протоном и нейтроном; она выражается в том, что

в условиях сильных взаимодействий они не отличаются друг от друга,

становятся тождественными друг другу. Их симметрия и есть не что иное, как образование тождества между этими различными части-

цами в процессе сильных взаимодействий. В понятии изотопического

спина как раз и выражаются моменты тождества, имеющиеся у

протонов и нейтронов, т. е. их симметрия в условиях сильного

взаимодействия. Но подходят ли под данное определение симметрии

такие общие симметрии пространства и времени, как, например, их

однородность?
Однородность пространства означает, что по отношению к вза-

имодействиям явлений все места в пространстве тождественны и ни-

как не сказываются на характере взаимодействия. Тождествен-

ность всех мест в пространстве (точек в пространстве) по отноше-

нию к взаимодействиям явлений и есть их,строгая полная симметрия.

То же в общем виде можно сказать и об однородности времени.

Тождественность всех временных интервалов по отношению к взаимо-
. действию явлений и есть их строгая и полная,симметрия. На наш

взгляд, нельзя найти ни одного вида симметрии, который бы

противоречил данному нами определению. Но это не значит, что

данное определение симметрии является законченным и вполне

строгим - видимо, будут необходимы какие-то его уточнения.
Сформулированное определение понятия симметрии позволяет

распространить это понятие на все атрибуты материи, на все ее

состояния и структуры, а также на все типы связей и взаимодействий.

Так, группа преобразований Лоренца выражает существующую сим-

метрию во взаимосвязи пространства, времени и движения - этих

атрибутов материи". Симметрия группы изотопического спина выра-

жает тождественные моменты по отношению к сильным взаимодей-

ствиям у частиц, участвующих в этих взаимодействиях.
В первом издании этой книги (1968) мы писали: «Поскольку

существуют различные взаимодействия, и даже во многих отноше-

ниях противоположные, как, например, сильные и слабые, то есте-

ственно допустить, что в них при определенных условиях возникают

и существуют тождественные моменты, т. е. им свойственна опреде-

ленная симметричность. Открытие такой симметрии было бы значи-

тельным шагом вперед в деле создания теории элементарных

частиц. В настоящее время связь между известными видами взаимо-

действия в физике еще не установлена, но можно предвидеть эти

связи исходя из принципа симметрии». Теперь эти связи между

сильным, слабым и электромагнитным взаимодействиями установле-

ны, и это действительно явилось важным звеном в развитии теории

элеменарных частиц. Хотелось бы высказаться против жесткого

разделения многообразных видов симметрии на геометрические и

динамические. Первые отражают свойства симметрии пространства и

времени, а вторые - свойства симметрии состояния взаимодействия.

Но поскольку пространство, время, движение и входящее в него вза имодействие внутренне связаны между собой, должна быть внут-

ренняя связь также между геометрической и динамической сим-

метриями. И она на самом деле существует. Так, симметрия равно-

мерного прямолинейного движения и покоя (одна из черт сим-

метрии группы Галилея), очевидно, не может быть охарактери-

зована только как динамическая или только как геометрическая.

В ней выражены свойства симметрии как пространства и времени",

так и состояния движения. Вообще любая симметрия в своей основе

имеет единство и взаимосвязь различных атрибутов материи. Правда,

не всегда эта взаимосвязь носит непосредственный характер, что

и создает возможность разделения видов симметрии на геометри-

ческие и динамические. Оба эти вида симметрии могут быть вы-

ражены и в динамической, и в геометрической форме. Так, группу

симметрии изотопического спина, которая обычно относится к дина-

мической симметрии, можно выразить и в геометрической форме;

ядерные взаимодействия инвариантны относительно поворотов в изо-

топическом пространстве. Из этой формулировки можно получить

ряд характеристик взаимодействия нуклонов, например, положение

о том, что ядерные силы между протоном и протоном и протоном

и нейтроном одинаковы, и ряд других. При изучении различных видов

симметрии весьма важно учитывать единство атрибутов материи, а

следовательно, и внутреннюю связь между симметриями их свойств

и состояний. Значение этого положения особенно ясно выступает

при изучении вопроса о взаимоотношении группы симметрии и зако-

нов сохранения.

По этому вопросу существуют две точки зрения.
Часть физиков (Берестецкий, Вигнер, Штейнман и др.) утверж-

дает, что фундаментом законов сохранения являются формы геомет-

рической симметрии, в то время как другие, наоборот, считают,

что законы сохранения определяют формы геометрической сим-

метрии.. Согласно первой точке зрения, например, однородность

времени определяет закон сохранения энергии, а согласно второй-

закон сохранения энергии определяет однородность времени. Мы

думаем, что обе точки зрения являются некоторой абсолютизацией

возможных подходов к проблеме. Наличие обеих точек зрения про-

явилось в том, что возникло мнение о разделении законов сохранения

на две группы: наиболее общие из них связаны с геометрическими

симметриями, а менее общие - с динамическими.

Так, законы сохранения оказались разделенными на две группы:

кинематические (основанные на геометрических симметриях) и

динамические (основанные на динамических симметриях). К первой

группе относятся законы сохранения энергии, импульса, момента

импульса, ко второй - закон сохранения электрического заряда,

барионного числа, лептонного числа, изотопического спина и ряд

других.
Такое разделение законов сохранения в итоге основано на игно-

рировании единства атрибутов материи и на таком следствии этого игнорирования, как противопоставление динамических и геоме-

трических симметрий друг другу. Непосредственной же предпосылкой

деления законов сохранения на две группы является убеждение,

что законы сохранения зависят от определенных симметрий.

Бесспорно, что между формами симметрии и законами сохранения

существует глубокая связь, но эту связь нельзя преувеличивать.

С определенными симметриями связаны не сами законы сохранения,"

а определенные формы их проявления. Так, известные нам формы

проявления закона сохранения энергии, конечно, связаны с однород-

ностью времени, но в целом этот закон может быть связан и с другими

геометрическими симметриями, пока нам не известными. Кроме того,

каждый закон сохранения связан и с,определенными формами

асимметрии, об этом подробнее будет сказано ниже.

Формы симметрии и формы закона сохранения всегда взаимосвя-

заны, но в целом как симметрия, так и законы сохранения пред-

ставляют собой две различные, отнюдь не изолированные друг от

друга стороны единой закономерности мира.

Перейдем теперь к характеристике необходимых предпосылок

для определения асимметрии.

Как и для определения симметрии, так и для определения асим-

метрии непосредственной предпосылкой, основанием является диа-

лектика тождества и различия.

Вместе с процессами становления тождества в различном и

противоположном происходят процессы становления различий и

противоположностей в едином, тождественном, целом. Если основой

метрии нужно полагать в раздвоении единого на противополож-

ные стороны. Понятие асимметрии, как и понятие симметрии,

применимо ко всем атрибутам материи и выражает их различие, их

особенность по отношению друг к другу. Поэтому взаимосвязь

атрибутов материи выражается не только симметрией, но и асиммет-

рией. Применимо понятие асимметрии и к различным состояниям

атрибутов материи и их взаимосвязи. Вообще говоря, где применима

симметрия, там применима и асимметрия, и наоборот.

Исходя из сказанного можно дать следующее определение асим-

существование и становление в определенных условиях и отношениях

различий и противоположностей внутри единства, тождества, цель-

ности явлений мира.

Рассмотрим некоторые виды асимметрии.
Весьма общим видом асимметрии является однонаправленность

хода времени, полнейшая невозможность фактической замены

настоящего прошедшим или будущим, а будущего - прошедшим или

настоящим, в свою очередь прошедшего - настоящим и будущим.

Все эти три состояния времени не заменяют друг друга - в них

на первом плане находится различие. В них нет симметрии. Извест-

ная операция обращения времени, рассматриваемая только как математический прием, основана на том положении, что законы

движения обладают большей устойчивостью и в обозримых интерва-

лах не изменяются. Мы убеждены, что законы явлений мира яв-

ляются вечными и поэтому действуют во всех состояниях времени:

настоящем, прошедшем и будущем. Значит, операция обращения

времени имеет реальный смысл лишь постольку, поскольку в какой-то

мере наше убеждение в полной устойчивости, вечности законов

явлений мира отвечает действительности.
Объективная диалектика обратимых и необратимых процессов

может быть выражена единством симметрии и асимметрии времени.

Необратимость является существенной характеристикой всякого раз-

вития: исходящая и нисходящая, прогрессивная и регрессивная

ветви развития сами по себе необратимы и асимметричны. Однако

соединенные общим и единым процессом развития, они с необходи-

мостью приводят к симметричным ситуациям: повторениям на ка-

чественно новых уровнях спиралеобразного движения.

Особым вариантом понятий симметрии и асимметрии являются

понятия ритма и аритмии. Регулярная повторяемость подавляющего

большинства процессов в природе, их устойчивое чередование (в жи-

вой природе, например, упорядоченная во времени смена поколений,

в неживой природе - повторяющиеся космические процессы) позво-

ляет видеть в ритмических процессах одну из фундаментальных

симметрий природы, С другой стороны, аритмия - это одна из ха-

рактеристик объективной асимметрии, суть которой в нерегулярной

и случайной смене и чередовании процессов. Понятия ритма и арит-

мии могут быть экстраполированы на процесс развития, поскольку

асимметричное время как атрибут развития придает смысл ритму и

аритмии. Вне времени они просто лишены смысла.

Симметрия обращения времени, таким образом, является резуль-

татом абстрагирования от изменчивости, присущей законам явлений

мира. И только в рамках применимости этой абстракции обращение

времени в уравнениях, выражающих законы движения, не противо-

речит действительности. В самом деле, в каких-то очень широких

следовательно, и допускать операцию обращения времени. Призна-

вая, что у нас сейчас нет никаких оснований утверждать, что в

действительности время может идти и от будущего к прошедшему,

все же в связи с высказанными выше положениями о единстве

атрибутов материи и о взаимопроникновении тождества и различия

напрашивается вопрос: если состояния времени глубоко различны,

то существует ли в каждом различии и тождество?
Время необратимо, его состояния не эквивалентны друг другу,

но, может быть, все же есть и моменты тождества между ними,

может быть, в необратимости времени есть и моменты его обра-

тимости, может быть, его состояния в каких-то отношениях

взаимозаменяемы, как взаимозаменяемы измерения пространства?

Мы думаем, что в различных состояниях времени есть и моменты их тождества, а в общей его необратимости есть моменты его об-

что должны же быть реальные, природные основания для возмож-

ности обратного хода времени в отражении объективных событий,

как, например, на киноленте кадры, движущиеся в обратном на-

правлении? То, что реально существует в отражении, должно иметь

моменты каких-то реальных прообразов и в том, что отражается.

Поэтому в математической модели позитрона как электрона, дви-

жущегося из будущего в прошедшее, есть, видимо, какой-то

реальный смысл. Вообще факты асимметрии так же многочисленны

и многообразны, как и факты симметрии.

Асимметрия - такой же необходимый момент в структуре, в

изменении и во взаимосвязи явлений мира, как и симметрия. Асим-

метрия необходимо имеет место и в самой симметрии. Так, в сим-

метрии состояний покоя и равномерного прямолинейного движения

по отношению к законам движения есть все же асимметричность,

которая состоит в неравноправности этих их состояний и проявляется

в ряде различий между состояниями покоя и равномерного прямо-

линейного движения. У тела, покоящегося в данной системе отсчета

по отношению ко всем другим телам, покоящимся и движущимся

в этой же системе отсчета, скорость будет равна нулю, а у тела

движущегося скорость по отношению ко всем покоящимся и дви-

жущимся телам в данной системе отсчета будет иметь определенное

значение и только в частном случае равна нулю. Отсюда далеко

не полная эквивалентность состояний В практике эта асимметрия проявляется весьма резко - ведь

далеко не безразлично, движется ли поезд из Москвы к Ленинграду

или Ленинград движется навстречу поезду. Очевидно, что энергия

передается для передвижения поезда, а не расходуется на пере-

движение Ленинграда. Операция приближения поезда к Ленинграду

и опе а ии п иближения Ленинграда к поезду не эквивалентны и не взаимозаменяемы.
Весьма общими примерами асимметрии являются асимметрия

между фермионами и бозонами, асимметрия между реакциями

порождения и поглощения нейтрино, асимметрия спинов электронов,

асимметрия в прямых и обратных превращениях энергии.
Уже из определений симметрии и асимметрии следует их не-

разрывное единство.
Это обстоятельство в какой-то мере подчеркнуто А. В. Шубни-

ковым: «Какой бы трактовки симметрии мы ни придерживались, одно

остается обязательным: нельзя рассматривать симметрию без ее

антипода - дисимметрии» (29, 162).

По нашему мнению, более точным является название не «принцип

симметрии», а принцип единства симметрии и асимметрии.
Во всех реальных явлениях симметрия и асимметрия сочетаются

друг с другом. И надо думать, что во всех правильных, т. е. соот ветствующих действительности, научных обобщениях имеют место

не просто те или иные симметрии или асимметрии, а определенные

формы их единства.
Так, в группах преобразования Галилея и Лоренца наряду с чер-

тами симметрии существуют и черты асимметрии.
Например, в преобразованиях Галилея и Лоренца симметричны

все состояния покоя и равномерного прямолинейного движения,

но асимметричны состояния покоя и ускоренного движения.

Задача нахождения единства симметрии и асимметрии каких-

либо явлений сводится к нахождению таких групп операций,

в которых раскрывается как тождественное в различном, так и

различное в тождественном. Поэтому прежде чем поставить задачу

нахождения симметрии в данном явлении или совокупности явле-

ний по отношению к каким-то группам операций, необходимо

установить различия между сторонами данного явления или между

явлениями в их совокупности, так как симметрия представляет собой

наличие тождества не вообще, а только в различном. Если же мы

имеем совокупность абсолютно тождественных явлений, то никакой

симметрии в этой совокупности по отношению к любой группе

операции быть не может.
Значит, прежде чем искать симметрию, нужно найти асимметрию.

Прежде чем была установлена симметрия протонов и нейтронов по

отношению к сильным взаимодействиям, было установлено разли-

чие между ними, их определенная асимметричность по отношению

к электромагнитным взаимодействиям. Частицы и античастицы асим-

метричны потому, что в противоположности между ними имеются

тождественные моменты, в силу чего они и являются зеркальными

отражениями друг друга. Единство симметрии и асимметрии заклю-

чается и в том, что они предшествуют одна другой.
Диалектическое единство, присущее объективным процессам сим-

метрии и асимметрии, позволяет выдвинуть в качестве одного из

принципов познания принцип диалектического единства симметрии

и асимметрии, согласно которому всякому объекту присуща та или

иная форма единства симметрии и асимметрии. Причем рассмотрение

данного объекта в генезисе выражается в переходе от симметрии к

асимметрии (или наоборот). Заметим, что данный процесс тождест-

вен смене конкретных форм единства симметрии и асимметрии.

Как известно, в объективной действительности не может иметь

места абсолютное единство противоположностей. Именно поэтому

отношение конкретного тождества, т. е. тождества, ограниченного

различиями, и является объективным аналогом гносеологическо-

го единства симметрии и асимметрии.
Всякий принцип познания воплощается в конкретный метод, ору-

дие и средство познающей деятельности. Таким методом может быть

метод перехода от симметрии к асимметрии (или наоборот). Он

позволяет осуществлять объясняющую и предсказывающую функ-

ции в развивающемся знании, а также в определенной мере опти мизировать поисковую деятельность. Этот метод оказывается тесно

связанным с методами сходства и различия, предвидения и гипотезы,

аналогии, экстраполяции.

Если принять за симметрию теоретической системы ее непроти-

воречивость, себетождественность и инвариантность по отношению

к описываемым объектам и явлениям, то развитие научного знания

можно определить как переход к симметрии (т. е. асимметрия- сим-

метрия). В этом случае симметрия выступает как идеализированная

цель познания. Поиск симметрии - это поиск единого и тождествен-

ного в том, что первоначально виделось различныМ, разобщенным.

Всякая более высокая симметрия реализует возможность переноса

научной теории для решения новых познавательных задач.

Упрощая в некоторых случаях теоретические системы, симмет-

рия совсем не обязательно выступает аналогом простоты научного

знания. Поиск новых форм симметрии интуитивно связан со стрем-

лением к порядку, гармонии. Однако нет достаточных оснований

для возведения антропоморфных понятий простоты и красоты тео-

рии в ранг методологических закономерностей (31. 1979. 12, 49 - 60).

Простота и красота - особые варианты симметрии, связанные

с рациональным и эмоциональным (образным) способами постиже-

ния человеком объективного мира. Абсолютизация роли этих понятий

в развивающемся знании представляется нам необоснованной,

поскольку связана с отрывом симметрии от своей диалектической

противоположности - асимметрии.
Асимметрия в познании проявляется как несоответствие тео-

рии и эксперимента, как взаимная противоречивость нескольких

независимых теорий, либо как их внутренняя противоречивость.

Асимметрия служит исходным пунктом в познании, на каждом из

этапов его развития; именно с ней связан процесс научного поиска

Асимметрия неоднократно играла эвристическую роль в познании.

Примерами являются; эпикурейское представление об отклонении

атомов от прямолинейного движения, несогласие Кеплера с симмет-

рией движения планет по Копернику и др. История науки свиде-

тельствует о том, что именно асимметрия обусловливает появление

в познании новой формы симметрии, которая и выступает в качестве

относительной истины.
Во взаимосвязи с принципом единства симметрии и асимметрии

находится принцип симметрии, согласно которому всякая научная

теория должна быть непротиворечивой и инвариантной отно-

сительно группы описываемых объектов и явлений. Симметрия

теории выражает также адекватность научного познания объектив-

ной действительности. Многие видные ученые (П. Дирак, П. Кюри,

Л. Пастер, А. Пуанкаре, А. Салам) интуитивно использовали прин-

цип симметрии при получении важных теоретических результатов.
Однако принцип симметрии не учитывает того обстоятельства, что всякой научной теории присущи внутренние (не логические, а диалектические) противоречия, а также недостатки, не говоря уже

о действительном или возможном существовании объектов, которые

"она описать не в состоянии. Отрицая, по сути дела, роль асимметрии

(признается только нарушение симметрии), данный принцип не

учитывает особенностей научного познания как процесса развития и

становления.

К ограниченности принципа симметрии следует отнести и то,

что он связан только с выявлением тождественных отношений среди

различных объектов. Между тем в познании не менее широко исполь-

зуется и противоположная процедура - нахождение различного и

противоположного среди тождественных объектов и явлений.
Несомненный интерес представляет статья немецкого философа

Герберта Герца, в которой он рассматривает роль симметрии и

асимметрии в теории элементарных частиц. Он справедливо утвер-

ждает, что «ни одна будущая теория (элементарных частиц.- В. Г.)

не может обойти проблему асимметрии. Из философских сообра-

жений все процессы в мире следует рассматривать как единство

симметрии и асимметрии» (183. 1963. 10; 227; 289). Автор считает, что

к возникновению новых воззрений в диалектике природы.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Каждый вопрос экзамена может иметь несколько ответов от разных авторов. Ответ может содержать текст, формулы, картинки. Удалить или редактировать вопрос может автор экзамена или автор ответа на экзамен.

ТИПЫ СИММЕТРИЙ

Понятия симметрии и асимметрии фигурируют в науке с древнейших времен скорее в качестве эстетического критерия, чем строго научных определений. До появления идеи симметрии математика, физика, естествознание в целом напоминали отдельные островки безнадежно изолированных друг от друга и даже противоречивых представлений, теорий, законов. Симметрия характеризует и знаменует собой эпоху синтеза, когда разрозненные фрагменты научного знания сливаются в единую, целостную картину мира. В качестве одной из основных тенденций этого процесса выступает математизация научного знания.

Симметрию принято рассматривать не только как основополагающую картину научного знания, устанавливающую внутренние связи между системами, теориями, законами и понятиями, но и относить ее к атрибутам таким же фундаментальным, как пространство и время, движение. В этом смысле симметрия определяет структуру материального мира, всех его составляющих. Симметрия обладает многоплановым и многоуровневым характером. Например, в системе физических знаний симметрия рассматривается на уровне явлений, законов, описывающих эти явления, и принципов, лежащих в основе этих законов, а в математике - при описании геометрических объектов. Симметрия может быть классифицирована как:

  • структурная;
  • геометрическая;
  • динамическая, описывающая соответственно кристаллографический, математический и физический аспекты данного понятия.

Простейшие симметрии представимы геометрически в нашем обычном трехмерном пространстве и потому наглядны. Такие симметрии связаны с геометрическими операциями, которые приводят рассматриваемое тело к совпадению с самим собой. Говорят, что симметрия проявляется в неизменности (инвариантности) тела или системы по отношению к определенной операции. Например, сфера (без каких-либо меток на ее поверхности) инвариантна относительно любого поворота. В этом проявляется ее симметричность. Сфера с меткой, например, в виде точки, совпадает сама с собой лишь при повороте, после которого в исходное положение попадает метка на ней. Наше трехмерное пространство изотропно. Это означает, что как и сфера без меток, оно совпадает с самим собой при любом повороте. Пространство неразрывно связано с материей. Поэтому наша Вселенная также изотропна. Пространство кроме того однородно. Это означает, что оно (и наша Вселенная) обладает симметрией относительно операции сдвига. Той же симметрией обладает и время.

Кроме простых (геометрических) симметрий в физике широко встречаются весьма сложные, так называемые динамические симметрии, то есть симметрии, связанные не с пространством и временем, а с определенным типом взаимодействий. Они не являются наглядными, и даже простейшие из них, например, так называемые калибровочные симметрии , затруднительно пояснить без использования довольно сложной физической теории. Калибровочным симметриям в физике также отвечают некоторые законы сохранения. Например, калибровочная симметрия электромагнитных потенциалов приводит к закону сохранения электрического заряда.

В ходе общественной практики человечество накопило много фактов, свидетельствующих как о строгой упорядоченности, равновесии между частями целого, так и о нарушениях этой упорядоченности. В этой связи можно выделить следующие пять категорий симметрии:

  • симметрия;
  • асимметрия;
  • дисимметрия;
  • антисимметрия;
  • суперсимметрия.

Асимметрия

Асимметрия - это несимметрия, т.е. такое состояние, когда симметрия отсутствует. Но еще Кант говорил, что отрицание никогда не является простым исключением или отсутствием соответствующего положительного содержания. Например, движение - это отрицание своего предыдущего состояния, изменение объекта. Движение отрицает покой, но покой не есть отсутствие движения, так как очень мало информации и эта информация ошибочна. Отсутствия покоя, как и движения, не бывает, поскольку это две стороны одной и той же сущности. Покой - это другой аспект движения.

Полного отсутствия симметрии также не бывает. Фигура, не имеющая элемента симметрии, называется асимметричной. Но, строго говоря, это не так. В случае асимметричных фигур расстройство симметрии просто доведено до конца, но не до полного отсутствия симметрии, так как эти фигуры еще характеризуются бесконечным числом осей первого порядка, которые также являются элементами симметрии.

Асимметрия связана с отсутствием у объекта всех элементов симметрии. Такой элемент неделим на части. Примером является рука человека. Асимметрия - это категория, противоположная симметрии, которая отражает существующие в объективном мире нарушения равновесия, связанные с изменением, развитием, перестройкой частей целого. Так же, как мы говорим о движении, имея в виду единство движения и покоя, так же симметрия и асимметрия - две полярные противоположности объективного мира. В реальной природе нет чистых симметрии и асимметрии. Они всегда находятся в единстве и непрерывной борьбе.

На разном уровне развития материи присутствует то симметрия (относительный порядок), то асимметрия (тенденция нарушения покоя, движение, развитие), но всегда эти две тенденции едины и их борьба абсолютна. Реальные, даже самые совершенные кристаллы далеки по своей структуре от кристаллов идеальной формы и идеальной симметрии, рассматриваемой в кристаллографии. В них имеются существенные отступления от идеальной симметрии. Они имеют и элементы асимметрии: дислокации, вакансии, оказывающие влияние на их физические свойства.

Определения симметрии и асимметрии указывают на универсальный, общий характер симметрии и асимметрии как свойств материального мира. Анализ понятия симметрии в физике и математике (за редким исключением) имеет тенденцию к абсолютизации симметрии и трактовке асимметрии как отсутствия симметрии и порядка. Антипод симметрии выступает как понятие чисто негативное, но заслуживающее внимания. Значительный интерес к асимметрии возник в середине XIX века в связи с опытами Л. Пастера по изучению и разделению стереоизомеров.

Дисимметрия

Дисимметрией называется внутренняя, или расстроенная, симметрия, т.е. отсутствие у объекта некоторых элементов симметрии. Например, у рек, текущих вдоль земных меридианов, один берег выше другого (в Северном полушарии правый берег выше левого, а в Южном - наоборот). По Пастеру, дисимметричной является та фигура, которая не совмещается простым наложением со своим зеркальным отражением. Величина симметрии дисимметричного объекта может быть сколь угодно высокой. Дисимметрию в самом широком смысле ее понимания можно было бы определить как любую форму приближения от бесконечно симметричного объекта к бесконечно асимметричному.

Антисимметрия

Антисимметрией называется противоположная симметрия, или симметрия противоположностей. Она связана с переменой знака фигуры: частицы - античастицы, выпуклость - вогнутость, черное - белое, растяжение - сжатие, вперед - назад и т.д. Это понятие можно объяснить примером с двумя парами черно-белых перчаток. Если из куска кожи, две стороны которой окрашены соответственно в белый и черный цвета, сшить две пары черно-белых перчаток, то их можно различать по признаку правизны - левизны, по цвету - черноты и белизны, иначе говоря, по признаку знакоинформатизма и некоторому другому знаку. Операция антисимметрии состоит из обыкновенных операций симметрии, сопровождаемых переменой второго признака фигуры.

Суперсимметрия

В последние десятилетия XX века стала развиваться модель суперсимметрии, которая была предложена российскими теоретиками Гельфандом и Лихтманом. Упрощенно говоря, их идея состояла в том, что, подобно тому как существуют обычные размерности пространства и времени, должны иметься экстра-размерности, которые можно измерить в так называемых числах Грассмана. Как говорил С. Хокинг, даже научные фантасты не додумались до чего-нибудь столь же странного, как размерности Грассмана. В нашей обычной арифметике, если число 4 умножить на 6, - это то же самое, что 6 умножить на 4. Но странность чисел Грассмана состоит в том, что если X умножить на Y, то это равно минус Y умножить на X. Чувствуете, как это далеко от наших классических представлений о природе и методах ее описания?

Симметрию можно рассматривать и по формам движения или так называемым операциями симметрии. Можно выделить следующие операции симметрии:

  • отражение в плоскости симметрии (отражение в зеркале);
  • поворот вокруг оси симметрии (поворотная симметрия );
  • отражение в центре симметрии (инверсия);
  • перенос (трансляция ) фигуры на расстояние;
  • винтовые повороты;
  • перестановочная симметрия.

Отражение в плоскости симметрии

Отражение - это наиболее известная и чаще других встречающаяся в природе разновидность симметрии. Зеркало в точности воспроизводит то, что оно "видит", но рассмотренный порядок является обращенным: правая рука у вашего двойника в действительности окажется левой, так как пальцы расположены на ней в обратном порядке. Всем, наверное, с детства знаком фильм "Королевство кривых зеркал", где имена всех героев читались в обратном порядке. Зеркальную симметрию можно обнаружить повсюду: в листьях и цветах растений, архитектуре, орнаментах. Человеческое тело, если говорить лишь о наружном виде, обладает зеркальной симметрией, хотя и не вполне строгой. Более того, зеркальная симметрия присуща телам почти всех живых существ, и такое совпадение отнюдь не случайно. Важность понятия зеркальной симметрии вряд ли можно переоценить.

Зеркальной симметрией обладает все, допускающее разбиение на две зеркально равные половинки. Каждая из половинок служит зеркальным отражением другой, а разделяющая их плоскость называется плоскостью зеркального отражения, или просто зеркальной плоскостью. Эту плоскость можно назвать элементом симметрии, а соответствующую операцию - операцией симметрии. С трехмерными симметричными узорами мы сталкиваемся ежедневно: это многие современные жилые здания, а иногда и целые кварталы, ящики и коробки, громоздящиеся на складах, атомы вещества в кристаллическом состоянии образуют кристаллическую решетку - элемент трехмерной симметрии. Во всех этих случаях правильное расположение позволяет экономно использовать пространство и обеспечивать устойчивость.

Замечательным примером зеркальной симметрии в литературе является фраза-"перевертыш": "А роза упала на лапу Азора". В этой строке центром зеркальной симметрии является буква "н", относительно которой все остальные буквы (не учитывая пропуски между словами) расположены во взаимно противоположной очередности.

Поворотная симметрия

Внешний вид узора не изменится, если его повернуть на некоторый угол вокруг оси. Симметрия, возникающая при этом, называется поворотной симметрией. Примером может служить детская игра "вертушка" с поворотной симметрией. Во многих танцах фигуры основаны на вращательных движениях, нередко совершаемых только в одну сторону (т.е. без отражения), например, хороводы.

Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

Отражение в центре симметрии

Примером объекта наивысшей симметрии, характеризующим эту операцию симметрии, является шар. Шаровые формы распространены в природе достаточно широко. Они обычны в атмосфере (капли тумана, облака), гидросфере (различные микроорганизмы), литосфере и космосе. Шаровую форму имеют споры и пыльца растений, капли воды, выпущенной в состоянии невесомости на космическом корабле. На метагалактическом уровне наиболее крупными шаровыми структурами являются галактики шаровой формы. Чем плотнее скопление галактик, тем ближе оно к шаровой форме. Звездные скопления - тоже шаровые формы.

Трансляция, или перенос фигуры на расстояние

Трансляция, или параллельный перенос фигуры на расстояние - это любой неограниченно повторяющийся узор. Она может быть одномерной, двумерной, трехмерной. Трансляция в одном и том же или противоположных направлениях образует одномерный узор. Трансляция по двум непараллельным направлениям образует двумерный узор. Паркетные полы, узоры на обоях, кружевные ленты, дорожки, вымощенные кирпичом или плитками, кристаллические фигуры образуют узоры, которые не имеют естественных границ. При изучении орнаментов, используемых в книгопечатании, были обнаружены те же элементы симметрии, что и в рисунке выложенных кафельными плитами полов. Орнаментальные бордюры связаны с музыкой. В музыке элементы симметричной конструкции включают в себя операции повторения (трансляции) и обращения (отражения). Именно эти элементы симметрии обнаруживаются и в бордюрах. Хотя в большинстве случаев музыка не отличается строгой симметрией, в основе многих музыкальных произведений лежат операции симметрии. Особенно заметны они в детских песенках, которые, видимо, поэтому так легко и запоминаются. Операции симметрии обнаруживаются в музыке средневековья и Возрождения, в музыке эпохи барокко (нередко в весьма изощренной форме). Во времена И.С. Баха, когда симметрия была важным принципом композиции, широкое распространение получила своеобразная игра в музыкальные головоломки. Одна из них заключалась в решении загадочных "канонов". Канон - это одна из форм многоголосной музыки, основанной на проведении темы, которую ведет один голос, в других голосах. Композитор предлагал какую-нибудь тему, а слушателям требовалось угадать операции симметрии, которые он намеревался использовать при повторении темы.

Природа задает головоломки как бы противоположного типа: нам предлагается завершенный канон, а мы должны отыскать правила и мотивы, лежащие в основе существующих узоров и симметрии, и наоборот, отыскивать узоры, возникающие при повторении мотива по разным правилам. Первый подход приводит к изучению структуры вещества, искусства, музыки, мышления. Второй подход ставит нас перед проблемой замысла или плана, с древних времен волнующей художников, архитекторов, музыкантов, ученых.

Винтовые повороты

Трансляцию можно комбинировать с отражением или поворотом, при этом возникают новые операции симметрии. Поворот на определенное число градусов, сопровождаемый трансляцией на расстояние вдоль оси поворота, порождает винтовую симметрию - симметрию винтовой лестницы. Пример винтовой симметрии - расположение листьев на стебле многих растений. Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре. В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым. Но какими бы интересными и привлекательными ни были проявления симметрии в мире растений, там еще много тайн, управляющих процессами развития. Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.

Перестановочная симметрия

Дальнейшее расширение количества физических симметрий связано с развитием квантовой механики. Одним из специальных видов симметрии в микромире является перестановочная симметрия. Она основана на принципиальной неразличимости одинаковых микрочастиц, которые движутся не по определенным траекториям, а их положения оцениваются по вероятностным характеристикам, связанным с квадратом модуля волновой функции. Перестановочная симметрия и заключается в том, что при "перестановке" квантовых частиц не изменяются вероятностные характеристики, квадрат модуля волновой функции - величина постоянная.

Симметрия подобия

Еще один тип симметрии - симметрия подобия, связанная с одновременным увеличением или уменьшением подобных частей фигуры и расстояний между ними. Примером такого рода симметрии служит матрешка. Очень широко распространена такая симметрия в живой природе. Ее демонстрируют все растущие организмы.

Вопросы симметрии играют решающую роль в современной физике. Динамические законы природы характеризуются определенными видами симметрии. В общем смысле под симметрией физических законов подразумевают их инвариантность по отношению к определенным преобразованиям. Необходимо также отметить, что рассмотренные типы симметрии имеют определенные границы применимости. Например, симметрия правого и левого существует только в области сильных электромагнитных взаимодействий, но нарушается при слабых. Изотопическая инвариантность справедлива только при учете электромагнитных сил. Для применения понятия симметрии можно ввести некую структуру, учитывающую четыре фактора:

  • объект или явление, которое исследуется;
  • преобразование, по отношению к которому рассматривается симметрия;
  • Инвариантность каких-либо свойств объекта или явления, выражающая рассматриваемую симметрию. Связь симметрии физических законов с законами сохранения;
  • границы применимости различных видов симметрии.

Изучение свойств симметрии физических систем или законов требует привлечения специального математического анализа, в первую очередь представлений теории групп, наиболее развитой в настоящее время в физике твердого тела и кристаллографии.СИММЕТРИЯ В ЖИВОЙ ПРИРОДЕ

Преобладание симметрии характерно для неживой природы, хотя наблюдается асимметрия на уровне элементарных частиц (абсолютное преобладание в нашей части Вселенной частиц над античастицами). При переходе от неживой к живой природе на микроуровне возрастает роль асимметрии. Это говорит о большом значении симметрии и асимметрии в неживой и живой природе, показывает их связь с основными свойствами материального мира, со структурой материальных объектов на микро-, макро- и мегауровнях, со свойствами пространства и времени как форм существования материи. Накопленные наукой факты показывают объективный характер симметрии и асимметрии как одних из важнейших характеристик движения и структуры материи, пространства и времени, наряду с такими характеристиками, как прерывное и непрерывное, конечное и бесконечное. Развитие современного естествознания приводит к выводу, что одним из наиболее ярких проявлений закона единства и борьбы противоположностей является единство и борьба симметрии и асимметрии в процессах, имеющих место в живой и неживой природе, что симметрия и асимметрия являются парными относительными категориями.

Симметрия играет основную роль в сфере математического знания, асимметрия - в сфере биологического знания. Поэтому принцип симметрии - это единственный принцип, благодаря которому есть возможность надежно отличать вещество биогенного происхождения от вещества неживого. Парадокс: мы не можем ответить на вопрос, что такое жизнь, но имеем способ отличать живое от неживого.

Если считать, что равновесие характеризуется состоянием покоя и симметрии, а асимметрия связана с движением и неравновесным состоянием, то понятие равновесия играет в биологии не менее важную роль, чем в физике. Всеобщий закон биологии -принцип устойчивого термодинамического равновесия живых систем, определяет специфику биологической формы движения материи. Действительно, устойчивое термодинамическое равновесие является основным принципом, который не только охватывает все уровни познания живого, но и выступает в качестве ключевого принципа постановки и решения вопроса о происхождении жизни на Земле. Понятие равновесия может быть рассмотрено не только в статическом аспекте, но и в динамическом. Симметричной считается среда, находящаяся в состоянии термодинамического равновесия, среда с высокой энтропией и максимальным беспорядком частиц. Асимметричная среда характеризуется нарушением термодинамического равновесия, низкой энтропией и высокой упорядоченностью структуры.

При рассмотрении целостного объекта картина меняется. Симметричные системы, например кристаллы, характеризуются состоянием равновесия и упорядоченности. Но асимметричные системы, которыми являются живые тела, также характеризуются равновесием и упорядоченностью с тем только различием, что в последнем случае имеем дело с динамической системой. Таким образом, устойчивое термодинамическое равновесие (или асимметрия) статической системы есть другая форма выражения устойчивого динамического равновесия, высокой упорядоченности и структурности организма на всех его уровнях. Такие системы называются асимметричными динамическими системами. Здесь нужно только указать, что структурность носит динамический характер.

Теперь уместно связать симметрию с энтропией живых организмов. Известно, что переход вещества на более высокую степень организации, упорядоченности снижает энтропию как меру хаотичности. Но наибольшей симметрией обладает как раз равновесное хаотическое состояние. Значит, уменьшение энтропии неизбежно приводит к уменьшению симметрии, т.е. увеличению асимметрии живых организмов. Чем выше уровень организации материи, тем меньше энтропия и симметрия. Для снижения энтропии живых организмов как открытых систем, обменивающихся энергией и материей (пища и отправления) с окружающей средой, необходима энергия, причем значительная, которая вырабатывается в соответствующих частях клеток (митохондриях) живых организмов за счет пищи, т.е. поглощения энергии внешней среды (Солнца и биосферы). Образно выражаясь, мы забираем от природы более организованную структурированную материю, обладающую меньшей энтропией, а отдаем ей неструктурированную материю, обладающую большей энтропией. "Питаемся", с энергетической физической точки зрения, отрицательной энтропией, а отдаем положительную энтропию. И когда в естественных условиях этот баланс нарушается, то наступает некоторое динамическое равновесие - обмен энтропией между человеком и окружающей средой стабилизируется, энтропия системы человек - окружающая среда возрастает, и живой организм гибнет (энтропия его возросла). Поэтому биологическая смерть живого организма - это рост энтропии до ее уровня в окружающей среде. Повышение же энергетического потенциала в живом организме при "нормальном" обмене энтропией с окружающей средой увеличивает химическую активность клеток и дает возможность самовоспроизведения и развития.

По мере упорядочения живых организмов, их усложнения в ходе развития жизни асимметрия все больше и больше превалирует над симметрией, вытесняя ее из биохимических и физиологических процессов. Однако и здесь имеет место динамический процесс: симметрия и асимметрия в функционировании живых организмов тесно связаны. Внешне человек и животные симметричны, однако их внутреннее строение существенно асимметрично. Если у низших биологических объектов, например низших растений, размножение идет симметрично, то у высших имеет место явная асимметрия, например разделение полов, где каждый пол вносит в процесс самовоспроизведения свойственную только ему генетическую информацию. Так, устойчивое сохранение наследственности есть проявление в известном смысле симметрии, а в изменчивости проявляется асимметрия. В целом же глубокая внутренняя связь симметрии и асимметрии в живой природе обусловливает ее возникновение, существование и развитие.

Вселенная есть асимметричное целое, и жизнь в таком виде, в каком она представляется, должна быть функцией асимметрии Вселенной и вытекающих отсюда следствий. В отличие от молекул неживой природы молекулы органических веществ имеют ярко выраженный асимметричный характер (хиральность ). Придавая большое значение асимметрии живого вещества, Пастер считал ее именно той единственной, четко разграничивающей линией, которую в настоящее время можно провести между живой и неживой природой, т.е. тем, что отличает живое вещество от неживого. Современная наука доказала, что в живых организмах, как и в кристаллах, изменениям в строении отвечают изменения свойств.

Внимательно приглядевшись к природе, можно увидеть общее даже в самых незначительных вещах и деталях, найти проявления симметрии. Форма листа дерева не является случайной: она строго закономерна. Листок как бы склеен из двух более или менее одинаковых половинок, одна из которых расположена зеркально относительно другой. Симметрия листка упорно повторяется, будь то гусеница, бабочка, жучок и т.п.

Радиально-лучевой симметрией обладают цветы, грибы, деревья. Здесь можно отметить, что на не сорванных цветах и грибах, растущих деревьях плоскости симметрии ориентированы всегда вертикально. Определяя пространственную организацию живых организмов, прямой угол организует жизнь силами гравитации. Биосфера (пласт бытия живых существ) ортогональна вертикальной линии земного тяготения. Вертикальные стебли растений, стволы деревьев, горизонтальные поверхности водных пространств и в целом земная кора составляют прямой угол. Прямой гол является объективной реальностью зрительного восприятия: выделение прямого угла осуществляют структуры сетчатки в цепи нейронных связей. Зрение чутко реагирует на кривизну прямых линий, отклонения от вертикальности и горизонтальности. Прямой угол, лежащий в основе треугольника, правит пространством симметрии подобий, а подобие, как уже говорилось, - есть цель жизни. И сама природа, и первородная часть человека находятся во власти геометрии, подчинены симметрии и как сущности, и как символы. Как бы ни были выстроены объекты природы, каждый имеет свой основной признак, который отображен формой, будь то яблоко, зерно ржи или человек.

На основании этого можно сформулировать в несколько упрощенном и схематизированном виде (из двух пунктов) общий закон симметрии, ярко и повсеместно проявляющийся в природе:

1. Все, что растет или движется по вертикали, т.е. вверх или вниз относительно земной поверхности, подчиняется радиально-лучевой симметрии в виде веера пересекающихся плоскостей симметрии. Листья и цветы многих растений обнаруживают радиальную симметрию. Это такая симметрия, при которой лист или цветок, поворачиваясь вокруг оси симметрии, переходит в себя. На поперечных сечениях тканей, образующих корень или стебель растения, отчетливо бывает видна радиальная симметрия. Соцветия многих цветков также обладают радиальной симметрией.

Поворот на определенное число градусов, сопровождаемый трансляцией на расстояние вдоль оси поворота, порождает винтовую симметрию - симметрию винтовой лестницы. Пример винтовой симметрии - расположение листьев на стебле многих растений. Головка подсолнечника имеет отростки, расположенные по геометрическим спиралям, раскручивающимся от центра наружу. Самые молодые члены спирали находятся в центре. В таких системах можно заметить два семейства спиралей, раскручивающихся в противоположные стороны и пересекающихся под углами, близкими к прямым. Но какими бы интересными и привлекательными ни были проявления симметрии в мире растений, там еще много тайн, управляющих процессами развития. Вслед за Гете, который говорил о стремлении природы к спирали, можно предположить, что движение это осуществляется по логарифмической спирали, начиная всякий раз с центральной, неподвижной точки и сочетая поступательное движение (растяжение) с поворотом вращения.

2. Все то, что растет и движется горизонтально или наклонно по отношению к земной поверхности, подчиняется билатеральной симметрии, симметрии листка.

Этому всеобщему закону из двух постулатов подчиняются не только цветы, животные, легкоподвижные жидкости и газы, но и твердые, неподатливые камни. Этот закон влияет на изменчивые формы облаков. В безветренный день они имеют куполовидную форму с более или менее ясно выраженной радиально-лучевой симметрией. Влияние универсального закона симметрии является по сути дела чисто внешним, грубым, налагающим свою печать только на наружную форму природных тел. Внутреннее их строение и детали ускользают из-под его власти.

Основой эволюции живой материи является симметрия подобия. Рассмотрим игрушечную матрешку, цветок розы или кочан капусты. Важную роль в геометрии всех этих природных тел играет подобие их сходных частей. Такие части, конечно, связаны между собой каким-то общим, еще не известным нам геометрическим законом, позволяющим выводить их друг из друга. Симметрия подобия, осуществляющаяся в пространстве и во времени, повсеместно проявляется в природе на всем, что растет. А ведь именно к растущим формам относятся бесчисленные фигуры растений, животных и кристаллов. Форма древесного ствола - коническая, сильно вытянутая. Ветви обычно располагаются вокруг ствола по винтовой линии. Это не простая винтовая линия: она постепенно сужается к вершине. Да и сами ветви уменьшаются по мере приближения к вершине дерева. Следовательно, здесь мы имеем дело с винтовой осью симметрии подобия.

Живая природа в любых ее проявлениях обнаруживает одну и ту же цель, один и тот же смысл жизни: всякий живой предмет повторяет себя в себе подобном. Главной задачей жизни является жизнь, а доступная форма бытия заключается в существовании отдельных целостных организмов. И не только примитивные организации, но и сложные космические системы, такие как человек, демонстрируют поразительную способность буквально повторять из поколения в поколение одни и те же формы, одни и те же скульптуры, черты характера, те же жесты, манеры.

Природа обнаруживает подобие как свою глобальную генетическую программу. Ключ в изменении тоже заключается в подобии. Подобие правит живой природой в целом. Геометрическое подобие - общий принцип пространственной организации живых структур. Лист клена подобен листу клена, березы - листу березы. Геометрическое подобие пронизывает все ветви древа жизни. Какие бы метаморфозы ни претерпевала в процессе роста в дальнейшем живая клетка, принадлежащая целостному организму и выполняющая функцию его воспроизведения в новый, особенный, единичный объект бытия, она является точкой "начала", которая в итоге деления окажется преобразована в объект, подобный первоначальному. Этим объединяются все виды живых структур, по этой причине и существуют стереотипы жизни: человек, кошка, стрекоза, дождевой червь. Они бесконечно интерпретируются и варьируются механизмами деления, но остаются теми же стереотипами организации, формы и поведения.

Так же, как подобны одно другому целостные живые существа данного вида жизни, встроенные в ее непрерывно разветвляющуюся цепь, так же подобны одно другому и отдельные их члены, функционально специализированные. Можно сказать, что функция зрения в целом, как и детальная структура органов зрительного восприятия, подчинена глобальному принципу организации жизни - принципу геометрического подобия. Для живых организмов симметричное расположение частей органов тела помогает сохранять им равновесие при передвижении и функционировании, обеспечивает их жизнестойкость и лучшее приспособление к окружающему миру, что справедливо и в растительном мире. Например, ствол ели или сосны чаще всего прямой и ветви равномерно расположены относительно ствола. Дерево, развиваясь в условиях действия силы тяжести, достигает устойчивого положения. К вершине дерева ветви его становятся меньше в размерах - оно приобретает форму конуса, поскольку на нижние ветви, как и на верхние, должен падать свет. Кроме того, центр тяжести должен быть как можно ниже, от этого зависит устойчивость дерева. Законы естественного отбора и всемирного тяготения способствовали тому, что дерево не только эстетически красиво, но устроено целесообразно. Получается, что симметрия живых организмов связана с симметрией законов природы. На житейском уровне, когда мы видим проявление симметрии в живой и неживой природе, то невольно испытываем чувство удовлетворения тем всеобщим, как нам кажется, порядком, который царит в природе.

В общем смысле мы можем считать, что возникновение жизни в целом связано со спонтанным нарушением имевшейся до того в природе зеркальной симметрии. Предполагают, что возникшая асимметрия произошла скачком в результате Большого Биологического Взрыва (по аналогии с Большим Взрывом, в результате которого образовалась Вселенная) под действием радиации, температуры, электромагнитных полей и т.д. и нашла свое отражение в генах живых организмов. Этот процесс, по существу, также является процессом самоорганизации.

Симметрия и асимметрия являются объективными свойствами природы, одними из фундаментальных в современном естествознании. Симметрия и асимметрия имеют универсальный, общий характер как свойство материального мира.

Симметрия (от греч.symmetria – соразмерность, порядок, гармония) является всеобщим свойством природы. Представление о симметрии у человека складывалось тысячелетиями. Термин «симметрия» фигурирует в представлениях человека как элемент чего‑то «правильного», прекрасного и совершенного. В своих раздумьях над картиной мироздания человек определял симметрию как магическое качество природы, ее целесообразность, совершенство и старался отразить эти свойства в музыке, поэзии, архитектуре. В определенной мере симметрия выражает степень упорядоченности системы. В связи с этим имеется тесная корреляционная связь энтропии как меры неупорядоченности с симметрией: чем выше степень организованности вещества, тем выше симметрия и ниже энтропия.

Степень симметрии природных систем отражается в симметрии математических уравнений, законов, отображающих их состояние, в неизменности каких‑либо их свойств по отношению к преобразованиям симметрии.

Симметрия – это понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой‑либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, то есть некий элемент гармонии.

Асимметрия – понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия, что связано с изменением и развитием системы.

Из определений симметрии и асимметрии следует, что развивающаяся динамическая система должна быть обязательно несимметричной и неравновесной.

Современное естествознание представлено целой иерархией симметрий, которая отражает свойства иерархии уровней организации материи. Выделяют различные формы симметрий: калибровочные, пространственно‑временные, изотопические, перестановочные, зеркальные и т. д. Все эти виды симметрий подразделяются на внешние и внутренние.

Внутреннюю симметрию невозможно наблюдать, она скрыта в математических уравнениях и законах, выражающих состояние исследуемой системы. Пример тому – уравнение Максвелла, описывающее взаимосвязь электрических и магнитных явлений, или теория гравитации Эйнштейна, связывающая свойства пространства, времени и тяготения.

Внешняя симметрия (пространственная или геометрическая) представлена в природе большим многообразием. Это симметрия кристаллов, молекул, живых организмов.

Для чего нужна симметрия живому и как она возникла?

Живые организмы формировали свою симметрию в процессе эволюции. Зародившиеся в водах океана, первые живые организмы имели правильную сферическую форму. Внедрение организмов в другие среды заставляло их адаптироваться к новым специфическим условиям. Один из способов такой адаптации – симметрия на уровне физической формы. Симметричное расположение частей органов тела обеспечивает живым организмам равновесие при движении и функционировании, жизнестойкость и адаптацию. Довольно симметричны внешние формы крупных животных, человека. Растительный мир организмов также наделен симметрией, что связано с борьбой за свет, физической устойчивостью к полеганию (закон всемирного тяготения). Например, конусообразная крона ели имеет строго вертикальную ось симметрии – вертикальный ствол, утолщенный книзу для устойчивости. Отдельные ветви симметрично расположены по отношению к стволу, а форма конуса способствует рациональному использованию кроной светового потока солнечной энергии, увеличивает устойчивость. Таким образом, благодаря притяжению и законам естественного отбора ель выглядит эстетически красиво и «построена» рационально. Внешняя симметрия насекомых и животных помогает им держать равновесие при движении, извлекать максимум энергии из окружающей среды и рационально ее использовать.

В физических и химических системах симметрия приобретает еще более глубокий смысл. Так, наиболее устойчивы молекулы, обладающие высокой симметрией (инертные газы). Симметрия молекул определяет характер молекулярных спектров. Высокая симметрия характерна для кристаллов. Кристаллы – это симметричные тела, их структура определяется периодическим повторением в трех измерениях элементарного атомного мотива.

Асимметрия также широко распространена в мире.

Внутреннее расположение отдельных органов в живых организмах часто асимметрично. Например, сердце расположено слева у человека, печень – справа и т. д. Л. Пастер, французский микробиолог и иммунолог, выделил левые и правые кристаллы винной кислоты. Молекула ДНК асимметрична – ее спираль всегда закручена вправо. Все аминокислоты и белки, входящие в состав живых организмов, способны отклонять поляризованный луч света влево.

В отличие от молекул неживой природы, где левые и правые молекулы встречаются часто, то есть носят в основном симметричный характер, молекулы органических веществ характеризуются ярко выраженной асимметрией. Придавая большое значение асимметрии живого, В. И. Вернадский предполагал, что именно здесь проходит тонкая граница между химией живого и неживого. Л. Пастер также, основываясь на этих признаках, провел границу между живым и неживым. Следует также отметить, что живые организмы (растения) в процессе жизнедеятельности поглощают из окружающей среды (почвы) в значительной степени химические соединения минеральной пищи, молекулы которой симметричны и в своем организме превращают их в асимметричные органические вещества: крахмал, белки глюкозу и т. д. Симметрия молекул пищевых веществ живого организма согласуется с симметрией молекул самого организма. В противном случае пища будет несовместимой (ядовитой).

Структура компонентов клетки также асимметрична, что имеет большое значение для ее обмена веществ, энергетической обеспеченности, а также способствует более высокой скорости протекания биохимических реакций.

Симметрия и асимметрия – это две полярные характеристики объективного мира. Фактически в природе нет чистой (абсолютной) симметрии или асимметрии. Эти категории – противоположности, которые всегда находятся в единстве и борьбе. Там, где ослабевает симметрия, возрастает асимметрия, и наоборот. На разных уровнях развития материи ей свойственна то симметрия, то асимметрия. Однако эти две тенденции едины, а их борьба носит абсолютный характер. Эти категории тесно связаны с понятиями устойчивости и неустойчивости систем, порядка и беспорядка, организации и дезорганизации, отражающими свойства систем и динамику развития, а также взаимосвязь между динамическими и статическими законами.

Полагая, что равновесие есть состояние покоя и симметрии, а асимметрия приводит к движению и неравновесному состоянию, можно считать, что понятие равновесия играет в биологии не менее важную роль, чем в физике. Принцип устойчивости термодинамического равновесия живых систем характеризует специфику биологической формы движения материи. Именно устойчивое динамическое равновесие (асимметрия) является ключевым принципом постановки и решения проблемы происхождения жизни.

Как уже указывалось ранее, негласный лозунг физиков-теоретиков «правильная теория должна быть красивой» находит свое место в построении новых теоретических моделей и связан зачастую с симметрийными представлениями, а эстетический фактор играет при этом не последнее значение.

Интуитивно симметрия в своих простых формах понятна любому человеку и часто мы выделяем ее как элемент прекрасного и совершенного. В известной мере симметрия отражает степень упорядоченности системы. Например, окружность, ограничивающая каплю на плоскости, более упорядочена, чем размытое пятно на этой же площади, и следовательно, более симметрична. Поэтому можно связать изменение энтропии как характеристики упорядочения с симметрией: чем более организовано вещество, тем выше симметрия и тем меньше энтропия.

Одно из определений понятий симметрии и асимметрии дал В. Готт : симметрия - понятие, отражающее существующий в природе порядок, пропорциональность и соразмерность между элементами какой-либо системы или объекта природы, упорядоченность, равновесие системы, устойчивость, т.е. если хотите, некий элемент гармонии. Асимметрия - понятие, противоположное симметрии, отражающее разупорядочение системы, нарушение равновесия и это связано с изменением, развитием системы. Таким образом и из соображений симметрии-асимметрии мы приходим к выводу, что развивающаяся динамическая система должна быть неравновесной и несимметричной. В ряде случаев симметрия является достаточно очевидным фактом. Например, для определенных геометрических фигур нетрудно увидеть эту симметрию и показать ее путем соответствующих преобразований, в результате которых фигура не изменит своего вида.

Однако в общем смысле понятие симметрии гораздо шире и ее можно понимать как неизменность (инвариантность) каких-либо свойств объекта по отношению к преобразованиям, операциям, выполняемым над этим объектом. Причем это может быть не только материальный объект, но и закон, математическая формула или уравнения, в том числе и нелинейные, которые, как мы уже знаем из разд. 1.7, играют большую роль в самоорганизующихся процессах.

Дать более конкретное определение симметрии, чем у Готта, в общем случае затруднительно еще и потому, что она принимает свою форму в каждой сфере человеческой деятельности. Как мы обсуждали только что в предыдущем разделе, в искусстве симметрия может проявиться в соразмерности и взаимосвязанности, гармонизации отдельных частей в целом произведении. Что касается математических построений, то там также имеют место симметричные многочлены, которые можно использовать для существенного упрощения решения алгебраических и дифференциальных уравнений . Особенно полезным оказалось использование симметрийных представлений в теории групп с введением инварианта, т.е. такого преобразования, когда соотношения между переменными не изменяются. Отражением связи пространства, симметрии и законов сохранения может служить мысль великого французского математика А. Пуанкаре: «Пространство - это группа».

Наиболее наглядное и непосредственное применение идей симметрии имеет место в кристаллографии и физике твердого тела, изучающих физические свойства кристаллов в зависимости от их строения. Даже непосвященному человеку хорошо видна здесь ассоциация с неким совершенством, порядком и гармонией. Симметрия является для мира кристаллов естественной базой их физической сущности. Один из создателей современной физики твердого тела Дж. Займен вообще считал, что вся теория твердых тел основана на трансляционной симметрии. Здесь симметрия проявляется при совмещении геометрических тел, например правильных многогранников при повороте их в пространстве на определенные углы, а также при перемещениях в атомной решетке на определенные величины векторов трансляции, кратных периоду решетки:

(1.8.1)
где - вектор обратной решетки реального кристалла, = 1/a (a - период решетки), - волновой вектор.

Более глубокое понимание и применение симметрии связано, как мы уже рассматривали в главе 1.2, с изучением и обоснованием законов сохранения, отражающих фундаментальные свойства пространства-времени. Напомним, что симметрия относительно произвольного сдвига во времени приводит к закону сохранения энергии для консервативных (замкнутых) систем

E = const. (1.8.2)
Неизменность характеристик физической системы при произвольном перемещении ее как целого в пространстве на произвольный вектор приводит к закону сохранения импульса

P = mv = const, (1.8.3)
И, наконец, симметрия относительно произвольных пространственных поворотов (изотропность пространства) связана с законом сохранения момента импульса

(1.8.4)
Так как категория симметрии относится к любому объекту или понятию, то она в полной мере применяется, например, к физическому закону. А поскольку суть физического закона - нахождение и вычисление идентичного в явлениях, то для инерциальных систем, согласно принципу относительности Галилея, эти физические законы будут во всех системах одинаковы. Следовательно, они инвариантны относительно описания явлений как в одной инерциальной системе, так и другой и тем самым сохраняют симметрию, В 1918 г. были доказаны теоремы Нетер, смысл одной из которых состоит в том, что различным симметриям физических законов соответствуют определенные законы сохранения. Эта связь является настолько всеобщей, что ее можно считать наиболее полным отображением понятия сохранения субстанций и законов, их описывающих, в природе. Как сказал Р. Фейнман: «Среди мудрейших и удивительных вещей в физике эта связь - одна из самых красивых и удивительных».

Различие видов симметрии связано с разными способами пространственно-временного преобразования одной инерциальной системы в другую инерциальную систему. Остановимся на этом несколько подробнее. Каждому такому пространственно-временному преобразованию соответствует определенный вид симметрии. Так, перенос начала координат в произвольную точку пространства при неизменности физических свойств связан с симметрий таких преобразований (это как раз и есть трансляционная симметрия) и означает физическую эквивалентность всех точек пространства, т.е. его однородность.

Поворот координатных осей в пространстве связан с физической эквивалентностью разных направлений в пространстве и означает изотропность пространства. Симметрия относительно переноса во времени связана с физической эквивалентностью различных моментов времени, что должно также отражать идею независимости хода времени от его начала (время протекает одинаково). Откуда, кстати, следует, что однородность времени проявляется в его равномерном течении. Такое заключение позволяет полагать, что относительная скорость всех процессов, протекающих в природе, одинакова. Этот факт равномерности течения времени был установлен экспериментально с точностью до 10-14 с за период ~10 миллионов лет. В качестве примера можно привести тот факт, что спектральный состав излучения атомов звезд, испущенного миллионы лет тому назад и воспринимаемого нами только сейчас, такой же, как спектральный состав таких же атомов на Земле.

В классической релятивистской механике симметрия выражается в принципе относительности. Равномерное и прямолинейное движение системы отсчета, в принципе любого тела, с произвольной скоростью, но меньшей, чем скорость света, связано с симметрией и физической эквивалентностью такого движения и покоя. Это подтверждается уже рассмотренным экспериментальным примером неразличимости параметров движения объекта в движущемся равномерно и прямолинейно поезде и поезде, стоящем неподвижно на путях. Как мы знаем, при скоростях используются упомянутые ранее принцип относительности и преобразования Галилея, при v ~ c (релятивистские скорости) - принцип относительности Эйнштейна и преобразования Лоренца. Такого рода симметрию (неразличимость покоя и равномерно-прямолинейного движения) можно условно определить как изотропию пространства-времени. Эти виды симметрии объединяются в СТО в единую симметрию четырехмерного пространства-времени.

Заметим также, что проблемы симметрии-асимметрии оказываются связанными между собой глубже, чем это кажется исходя из бинарной структуры этих понятий (да-нет). В качестве примера можно привести состояние человека во вращающейся центрифуге. Есть симметрия вращения (поворота), но относительность покоя и вращательного движения нарушается и человек в такой центрифуге по своему состоянию (вестибулярные ощущения) может определить, что его вращающаяся закрытая (герметизированная) камера на центрифуге вращается. Таким образом, возникает ситуация, при которой физические законы не инвариантны относительно вращения, т.е. налицо асимметрия.

То же можно сказать и о так называемых преобразованиях подобия, связанных с изменением масштабов физических систем. Асимметрия относительно масштабных преобразований связана с тем, что порядок размеров атомов имеет одинаковое для всей Вселенной значение (~10-10 м). И если мы будем уменьшать размеры, например изделий микроэлектроники, в том числе и пленочных, то характер поведения электронов в них изменится (возникают размерные эффекты), т.е. опять-таки может возникнуть асимметричность процессов при таких размерах. Другой пример несимметрии относительно масштабов в биологии приводит Б. Свистунов : несмотря на похожесть окраски, нельзя, например, раскормить осу до размеров тигра, так как при массе 10-100 кг она потеряет способность летать - возникает другое качество.

В связи с этими примерами имеет смысл рассмотреть другие виды симметрии. Упомянутые выше пространственно-временные симметрии условно объединяет одно общее свойство - они являются как бы «внешними» симметриями в том смысле, что отражают глубокие свойства структуры пространства-времени, представляющей собой форму существования любого вида материи, и поэтому справедливой для любых мыслимых взаимодействий и физических процессов. Весь физический опыт познания мира показывает отсутствие нарушений инвариантности законов природы относительно указанных пространственно-временных преобразований. В этом уже не только физический, но и философский смысл познания и установления объективности законов природы.

Однако во «внешних» симметриях не затрагивается «внутренний мир» физического объекта и он никак не связан с внешними свойствами. В природе кроме рассмотренных законов сохранения энергии, импульса и момента импульса существуют и другие законы сохранения, которые выполняются с той или иной степенью общности, в частности закон сохранения электрического заряда. В физике элементарных частиц, как мы видели, имеются и другие сохраняющиеся (или по крайней мере введенные так) величины, подобные электрическому заряду, - барионное число, четность, изоспин, ароматы (странность, очарование, красота и т.д.). Эти по сути квантовые числа обусловлены фазовыми преобразованиями волновой функции ψ и в целом не связаны со свойствами пространства-времени. Симметрия играет важную роль в исследовании физики микромира. Наш физик-теоретик А. Мигдал считал, что главными направлениями физики XX века были поиски симметрии и единства картины мира .

Сохранение подобных величин, непосредственно не связанных со свойствами пространства-времени, относится к понятию «внутренней» симметрии. Остановимся на законе сохранения электрического заряда. Смысл его в том, что сохраняется во времени алгебраическая сумма зарядов любой электрической изолированной системы. Математическом смыслом закона сохранения заряда является уравнение непрерывности

(1.8.5)
где j - плотность тока, ρ - объемная плотность заряда. Физический смысл этого уравнения состоит в том, что div j - расходимость тока (его движение) - связана с изменением во времени, т.е. перемещением электрического заряда. Электрический ток - направленное движение свободных электрических частиц. Физический смысл (1.8.5) отражает факт несотворимости и неуничтожимости электрического заряда.

Нужно подчеркнуть, что сохранение электрического заряда в изолированных (замкнутых) системах не сводится к сохранению числа заряженных частиц. Так при β-распаде нейтрона, не имеющего заряда, возникают ρ (с зарядом e+), электрон (заряд e-) и антинейтрино, также не имеющее заряда. В этой реакции появились две электрически заряженные частицы, но их суммарный заряд равен нулю, как и у породившего их нейтрона. Отметим, что важным следствием закона сохранения заряда является устойчивость электрона. Электрон является самой легкой электрически заряженной частицей. Поэтому ему просто не на что распадаться так как в этом случае нарушился бы закон сохранения электрического заряда. По современным представлениям время жизни электрона не менее 1019 лет, что говорит в пользу этого закона.

Прежде чем перейти к другим «внутренним» симметриям, остановимся еще на двух видах дискретной симметрии, которые отличаются от рассмотренных «непрерывных» симметрий сдвига и поворота. Это хорошо известная всем нам уже давно зеркальная симметрия, которая описывается пространственной инверсией, т.е. отражением системы координатных осей. Инверсия пространства осуществляется «сразу» (в зеркале), а ее повторное применение возвращает систему в исходное состояние. Это отражение называется операцией изменения «четности» (пример с теннисистом в зеркале). Другой дискретной симметрией является симметрия относительного обращения времени, приводящая к тому, что в симметричной Вселенной законы природы не изменяются при замене направления течения времени на обратное (t = -t и наоборот). Применение данной симметрии показывает, что направление возрастания времени (движение в одну сторону) не играет существенной роли. С равной вероятностью возможен и обратный процесс. Другими словами, установить путем наблюдения направление развития событий, в будущее или в прошлое, для равновесной симметричной системы невозможно. Если вы помните, мы приходили к такому же результату для детерминированной механики Галилея - Ньютона в замкнутых системах. Но одновременно мы уже знаем и о существовании «стрелы времени» для открытых неравновесных систем. И это еще раз показывает неумолимо, что время все-таки «течет» от прошлого к будущему и наша Вселенная неравновесна и асимметрична. Заметим однако, что понятие энтропии не однозначно применимо к микромиру, и, следовательно, изучая его, нельзя установить направление времени.

Дальнейшее расширение количества физических симметрий связано с развитием квантовой механики. Одним из специальных видов симметрии в микромире является перестановочная симметрия. Она основана на принципиальной неразличимости одинаковых микрочастиц, которые, как мы знаем из главы 1.5, движутся не по определенным траекториям, а их положения оцениваются по вероятностным характеристикам, связанным с квадратом модуля волновой функции |ψ|2. Перестановочная симметрия и заключается в том, что при «перестановке» квантовых частиц не изменяются вероятностные характеристики, квадрат модуля волновой функции - величина постоянная |ψ|2 = const.

Исследование реакций с участием элементарных частиц и античастиц, а также процессов их распада привело к открытию некоторых новых свойств симметрии, а именно зарядовой симметрии, или, более точно, зарядовой симметрии частиц и античастиц. При изучении ядерных взаимодействий нуклонов (сильные взаимодействия) было обнаружено, что эти ядерные силы почти не зависят от типа нуклонов, т.е. при этих взаимодействиях нет различия между нейтроном и протоном, оба они есть два состояния одной частицы - нуклона. Аналогично, μ-мезон может находиться в трех состояниях, соответствующих трем различным частицам. Такие состояния называются изотопическими и они характеризуются изотопическим спином или изоспином. Симметрия, связанная с этими процессами, и получила название изотопической симметрии.

С теорией элементарных частиц, типами взаимодействия полей и попыткой введения единого поля связаны еще два вида симметрии: кварк-лептонной и калибровочной. Кварк-лептонная симметрия проявляется в единой теории поля. Считается, что по существу кварки и лептоны не различимы в области очень больших энергий. Но в случае спонтанного нарушения симметрии и в области низких энергий они приобретают совершенно различные свойства. Тем самым установлено, что между кварками и лептонами возможны переходы. Этот факт может служить еще одним убедительным доказательством единства природы.

Калибровочная симметрия связана с масштабными преобразованиями, представляющими сдвиги нулевых уровней скалярного и векторного потенциалов полей. Сам термин «калибровочное поле» (преобразование, инвариантность) выдвинул немецкий математик Г. Вейль. Смысл идеи состоит в том, что физические законы не должны зависеть от масштаба длины, выбранного в пространстве, и не должны изменять свой вид при замене этого масштаба на любой другой. С обычной логикой это вроде бы самоочевидно: почему действительно законы Ньютона будут другими, если мы будем измерять путь в метрах, сантиметрах или в мегапарсеках. Однако значение изменения масштаба состоит в том, что оно имеет принципиально не физический характер, так как не вызвано какими-либо физическими воздействиями, а геометрический, в частности, изменение длины обусловлено лишь особенностями структуры пространства-времени. Тем самым пространство-время перестает быть лишь пассивным резервуаром вещества и поля, где происходят физические процессы, оно само начинает активно влиять на эти процессы. Геометрия приобретает динамический характер.

Особое значение приобретает принцип калибровочной инвариантности, если преобразования приходят локально в каждой точке пространства-времени и неоднородно, т.е. с изменяющимся соотношением от точки к точке. Вот это преобразование Г. Вейль и назвал масштабным или калибровочным. Его формулировка звучит так: все физические законы инвариантны относительно произвольных (однородных и неоднородных) локальных калибровочных преобразований. В таком виде принцип Вейля является по существу развитием общего принципа относительности Эйнштейна, что все физические законы в любой системе отсчета (инерциальной и неинерциальной) должны иметь одинаковый вид. Уместно в связи с этим заметить, что теория Эйнштейна была первой теорией, в которой геометрический фактор (искривление пространства-времени) напрямую связывался с физической характеристикой (гравитационной массой), что послужило в настоящее время дальнейшему развитию идей геометродинамики . Эти преобразования масштаба оставляют силовые характеристики поля (например Е и В для электромагнитного поля) неизменными. На основе калибровочной симметрии построены теории электрослабого и электросильного взаимодействий. Из этой симметрии следует, что частицы, обладающие определенными свойствами, которые объединяются понятиями «заряда» (электрический, барионный, лептонный), «цвета» кварков, являются источниками полей, если хотите, материальными носителями этих полей.

Вопросы симметрии играют решающую роль в современной физике. Динамические законы природы характеризуются определенными видами симметрии. В общем смысле под симметрией физических законов подразумевают их инвариантность по отношению к определенным преобразованиям. Необходимо также отметить, что рассмотренные типы симметрий имеют, естественно, определенные границы применимости. Например, симметрия правого и левого существует только в области сильных электромагнитных взаимодействий, но нарушается при слабых. Изотопическая инвариантность справедлива только при учете электромагнитных сил. Для применения понятия симметрии в физике можно ввести некую структуру, учитывающую четыре фактора.

1. Объект или явление, которое исследуется.
2. Преобразование, по отношению к которому рассматривается симметрия.

3. Инвариантность каких-либо свойств объекта или явления, выражающая рассматриваемую симметрию. Связь симметрии физических законов с законами сохранения.

4. Границы применимости различных видов симметрии.
Заметим также, что изучение симметричных свойств физических систем или законов требует привлечения специального математического анализа, в первую очередь, представлений теории групп, наиболее развитой в настоящее время в физике твердого тела и кристаллографии.

В целом же из законов сохранения, которые, как мы уже поняли, являются следствием пространственно-временной симметрии законов самой природы, следует условность разделения физики на механику, термодинамику, электродинамику и т.д. и, следовательно, налицо неразрывность единства всей природы.

Не останавливаясь здесь более подробно на понятиях физики живого, чему будет посвящена специально вторая часть данного курса, рассмотрим идеи симметрии-асимметрии применительно к проблемам объектов живой и неживой природы. По существу это философский, если хотите, но с естественнонаучной точки зрения вопрос о возникновении, развитии и сущности жизни. Чем отличаются молекулы живых веществ от неживых? В какой-то мере это связано с симметрией, точнее зеркальной симметрией. Если рассмотреть пример зеркального изображения двух молекул неорганического вещества воды и органического, но «неживого» вещества - бутилового спирта (рис.), то принципиальное различие проявляется в том, что молекула Н2О зеркально симметрична, а молекула спирта зеркально асимметрична.

«Левая» и «правая» молекулы, не совпадают как левая и правая рука человека. Асимметричные молекулы в химии называют стереоизомерами, а само свойство зеркальной асимметрии носит название киральности или хиральности (от греческого слова «кир» - рука). Так вот, выяснилось, что в природе хиральностью обладают и «живые», и «неживые» молекулы, но «живые» всегда только хиральны, причем «неживые» хиральные молекулы равновероятно встречаем и в левом, и в правом варианте, а «живые» - только или в левом, или в правом. В этом смысле молекулы живых организмов хирально чисты. Так, ориентация ДНК-спирали всегда правая. В свое время Л. Пастер, а затем и В.И. Вернадский предлагали на этом принципиальном различии провести раздел между живой и неживой природой. Предполагают, что основополагающим признаком возникновения и развития жизни и является способность живых организмов извлекать и конструировать из симметричных и хирально нечистых молекул окружающей среды хирально чистые молекулы, необходимые для живого организма. Примером может служить извлечение растениями из симметричных молекул воды и углекислого газа в процессе фотосинтеза асимметричных молекул крахмала и сахара. Наряду с другими питательными веществами эти молекулы поступают в пище живых организмов и из них образуются уже хирально чистые молекулы. Если хиральность молекул веществ пищи изменится на противоположную, то эти вещества окажутся для живого организма биологическим ядом, они отторгаются организмом, ведут его к гибели. Это достаточно характерный пример того, как исходя из симметрийных представлений физики мы можем объяснить, если хотите, происхождение живой материи и даже дать рекомендации практической медицине.

В общем смысле мы можем считать, что и возникновение жизни в целом связано со спонтанным нарушением имевшейся до того в природе зеркальной симметрии. Предполагается, что асимметрия возникла скачком в результате Большого Биологического взрыва, по аналогии с БВ, в результате которого образовалась Вселенная, под действием радиации, температуры, полей и т.д. и нашла свое отражение в генах живых организмов. Этот процесс по существу также является процессом самоорганизации, который мы рассматривали в подразд. 1.7. В какой-то точке бифуркации произошел и самоорганизующий акт возникновения уже живой материи.

Уместно теперь связать симметрию с энтропией живых организмов. Переход вещества на более высокую степень организации, упорядоченности, как мы уже отмечали, снижает энтропию как меру хаотичности. Но наибольшей симметрией обладает как раз равновесное хаотическое состояние. Значит, уменьшение энтропии неизбежно приводит к уменьшению симметрии, т.е. увеличению асимметрии живых организмов. Чем выше уровень организации материи, тем меньше энтропия и симметрия. Но для снижения энтропии живых организмов как открытых систем, обменивающихся энергией и материей (пища и отправления) с окружающей средой, необходима энергия, причем значительная, которая, как мы увидим далее, вырабатывается в соответствующих частях клеток (митохондриях) живых организмов за счет пищи, т.е. поглощения энергии внешней среды (Солнца и биосферы).

Можно образно сказать, что мы забираем от природы более организованную структурированную материю, обладающую меньшей энтропией, т.е. подпитываем себя негэнтропией (отрицательной энтропией), а отдаем ей неструктурированную материю, обладающую большей энтропией. «Питаемся» так сказать, с энергетической физической точки зрения, отрицательной энтропией, а отдаем положительную энтропию. И когда в естественных условиях этот баланс нарушается, то наступает некоторое динамическое равновесие - обмен энтропией между человеком и окружающей средой стабилизируется, энтропия системы человек - окружающая среда возрастает, и живой организм гибнет (энтропия его возросла). Поэтому биологическая смерть организма - это рост энтропии до ее уровня в окружающей среде. Повышение же энергетического потенциала в живом организме при «нормальном» обмене энтропией его с окружающей средой увеличивает химическую активность клеток и дает возможность самовоспроизведения и развития.

Можно сказать, что по мере упорядочения живых организмов, их усложнения в ходе развития жизни асимметрия все больше и больше превалирует на симметрией, вытесняя ее из биохимических и физиологических процессов. Однако и здесь имеет место динамический процесс: симметрия и асимметрия в функционировании живых организмов тесно связаны. Внешне человек и животные симметричны, однако их внутреннее строение существенно асимметрично. Если у низших биологических объектов, например низших растений, размножение идет симметрично, то у высших имеет место явная асимметрия - разделение полов, где каждый пол вносит в процесс самовоспроизведения свойственную только ему генетическую информацию. Так устойчивое сохранение наследственности есть проявление в известном смысле симметрии, а в изменчивости проявляется асимметрия. В целом же глубокая внутренняя связь симметрии и асимметрии в живой природе обусловливает ее возникновение, существование и развитие.

Можно задаться вопросом, есть ли другие виды симметрии и связанные с ними законы сохранения. В чем состоит глубокое значение законов сохранения электрического заряда, лептонного и барионного чисел, странностей, изотопического спина и т.д.? Как это связано со свойствами абстрактного пространства? В чем смысл наличия «черных дыр» как неких «пропускных пунктов» из нашего пространства, мира, в другой антимир? К сожалению, пока на эти вопросы мы ответа не имеем, хотя и хорошо, что современная наука дает возможность их задавать.

Правда, по поводу задаваемых вопросов существует следующий физический анекдот. Паули очень любил задавать вопросы, на которые не всегда можно найти правильные ответы (их вообще могло и не быть!). Когда он умер, то продолжал свое любимое занятие на том свете. И там никто не мог ответить на его вопросы. Тогда он решил обратиться к Богу. Господь терпеливо и внимательно выслушал его и ответил: «Вся трудность, Паули, в том, что Вы задаете не те вопросы».

С теми или иными проявлениями симметрии мы встречаемся буквально на каждом шагу. Взгляните на порхающую бабочку, загадочную снежинку, мозаику в храме, морскую звезду, кристалл граната – все это примеры симметрии.

Несмотря на всеобщий характер симметрии окружающего нас мира, в природе мы не встречаем примеров математически безукоризненной симметрии. Например, нетрудно указать плоскость, относительно которой человеческое тело можно считать симметричным. Но столь же легко всегда указать и отклонение от полной симметрии. Именно эти небольшие отклонения от нее – родинка, волосы, расчесанные на косой пробор, или какая-нибудь деталь в одежде, нарушающая симметрию – и придают каждому человеку характерные только для него черты.

На симметрии держится мир, так как общие законы природы, характеризующие движение материи, связаны с симметрией пространства и времени. Когда мы видим проявление симметрии в форме тел живой и неживой природы, невольно испытываем чувство удовлетворения тем всеобщим порядком, который царит в природе.

Мир существует благодаря единству симметрии и ассиметрии. Симметрия и асимметрия должны рассматриваться совокупно в едином подходе.

Несмотря на то, что с данным явлениям посвящено много различных описаний, я предлагаю провести конкретное исследование, чтобы доказать влияние симметрии и асимметрии на жизнь и здоровье людей.

Понятие симметрии берет свое начало в глубокой древности. По мнению ученых, во времена развития коллективной охоты перед племенами встал вопрос о равном разделении добычи. При разделении туши животного поперек одно племя получало переднюю часть, а второе – заднюю. Это вызывало недовольство тех или иных, так как разделение было неравным по количеству и качеству мяса. И когда люди разделили тушу вдоль линии позвоночника (по оси симметрии), разделение получилось равным.

В более позднее время с ростом интеллектуального и культурного развития человечества симметрия нашла свое применение и в других видах деятельности.

Понятие симметрии. Виды симметрии

Понятие симметрии

Слово «симметрия» имеет греческое происхождение и буквально означает «symmetria» - соразмерность.

Под симметрией в широком смысле этого слова понимают всякую правильность во внутреннем строении тела или фигуры. Учение о различных видах симметрии представляет большую и важную ветвь геометрии, тесно связанную со многими отраслями естествознания и техники, начиная с текстильного производства (разрисовка тканей) и кончая тонкими вопросами строения вещества.

Виды симметрии

Зеркальная симметрия. Она хорошо знакома каждому из повседневного наблюдения. Как показывает само название, зеркальная симметрия связывает некоторый предмет и его изображение в плоском зеркале.

Говорят, что фигура (или тело) зеркально симметрична если существует плоскость, которая делит фигуру (или тело) на две симметричные части. На рисунке линия АВС симметрична линии АВС; правая рука симметрична левой.

Важно отметить, что два симметричных друг другу тела, вообще говоря, не могут быть «вложены друг в друга»; иначе, одно из таких тел не может занять место другого. Так, перчатка с одной руки не годится для другой.

«Что может быть больше похоже на мою руку или мое ухо, чем их собственное отражение в зеркале? И все же руку, которую я вижу в зеркале «нельзя поставить на место настоящей руки» (Иммануил Квант).

Симметричные фигуры при всем их сходстве существенно отличаются друг от друга.

Симметричные предметы нельзя назвать равными в узком смысле слова. Их называют зеркально равными. Вообще зеркально равными телами (или фигурами) называются тела (или фигура) в том случае, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела (или фигуры).

Центральная симметрия. Фигура (или тело) называется симметричной относительно центра С, если каждой точке Е этой фигуры (или тела) соответствует такая же принадлежащая той же фигуре (телу) точка А, что отрезок ЕА проходит через точку С и делится в ней пополам.

Симметрия вращения. Тело (или фигура) обладает симметрией вращения, если при повороте на угол 360 /n (n – целое число) вокруг некоторой прямой АВ (ось симметрии) оно полностью совмещается со своим исходным положением. Если число равно 2, 3, 4 и т. д. , то ось симметрии называется осью второго, третьего, четвертого и т. д. порядков.

Примеры перечисленных видов симметрии

Шар – обладает и центральной, и зеркальной, и осевой симметрией. Центром симметрии является центр шара, плоскостью симметрии – плоскость любого большого круга, осью – любой диаметр шара. Порядок оси – любое целое число.

Круглый конус имеет осевую симметрию (любого порядка); ось симметрии – ось конуса.

Правильная пятиугольная призма имеет плоскость симметрии, идущую параллельно основанию на равном от них расстоянии, и ось симметрии пятого порядка, совпадающую с осью призмы. Плоскостью симметрии может также служить плоскость, делящая пополам один из двугранных углов, образуемых боковыми гранями.

Симметрия в природе

Симметрия в растительном мире

Совершенно иной характер носит связь математики с красотой в природе, где с помощью математики красота не создается, как в технике и в искусстве, а лишь фиксируя, выражается.

Материал на любом уровне своей организации, будь то минералы, растительный ли животный мир, подчиняется строгим законам развития. В основе строения любой живой формы лежит принцип симметрии. Из прямого наблюдения мы можем вывести законы геометрии и почувствовать их несравненное совершенство.

Когда мы хотим нарисовать лист растения или бабочку, то нам приходится учитывать их осевую симметрию. Средняя жилка для листа и туловище бабочки служит осью симметрии. Центральная симметрия характерна для кристаллов, низших животных и цветов.

В своей книге «Этот правый. Левый мир» М, Гарднер пишет: «На Земле жизнь зародилась в сферически симметричных формах, а потом стала развиваться по двум главным линиям: образовался мир растений, обладающих симметрией конуса, и мир животных с билатеральной симметрией». Термин «Билатеральная симметрия» часто применяется в биологии. При этом имеется в виду зеркальная симметрия.

Характерная для растений симметрия конуса хорошо видна на примере фактически любого дерева.

Дерево при помощи коревой системы поглощает влагу и питательные вещества из почвы, то есть снизу, а остальные жизненно важные функции выполняются кроной, то есть наверху.

В то же время направления в плоскости, перпендикулярной к вертикали, для дерева фактически неразличимы; по всем этим направлениям к дереву в равной мере поступает воздух, свет, влага. Дерево имеет вертикальную поворотную ось (ось конуса) и вертикальные плоскости симметрии. Отметим, что вертикальная ориентация оси конуса, характеризующего симметрию дерева, определяется направлением силы тяжести.

Ярко выраженной симметрией обладают листья, ветви, цветы, плоды.

Зеркальная симметрия характерна для листьев, но встречается и у цветов.

Для цветов характерна поворотная симметрия.

Часто поворотная симметрия сочетается с зеркальной или переносной.

В многообразном мире цветов встречаются поворотные оси разных порядков. Однако наиболее распространена поворотная симметрия 5-го порядка.

Эта симметрия встречается у многих полевых цветов (колокольчик, незабудка, герань, гвоздика, зверобой, лапчатка), у цветов плодовых деревьев (вишня, яблоня, груша, мандарин и др.), у цветов плодово-ягодных растений (земляника, малина, калина, черемуха, рябина, боярышник).

Винтовая симметрия наблюдается в расположении листьев на стеблях большинства растений. Располагаясь винтом по стеблю, листья как бы раскидываются во все стороны и не заслоняют друг друга от света, крайне необходимого для жизни растений. Это интересное ботаническое явление носит название филлотаксиса (буквально «устроение листа»).

Другим проявлением филлотаксиса оказывается устройство соцветия подсолнечника или чешуи еловой шишки, в которой чешуйки располагаются в виде спиралей и винтовых линий. Такое расположение особенно четко видно у ананаса, имеющего более или менее шестиугольные ячейки, которые образуют ряды, идущие в различных направлениях.

Симметрия в мире животных

Поворотная симметрия 5-го порядка встречается и в животном мире. Примерами могут служить морская звезда и панцирь морского ежа.

Однако в отличие от мира растений поворотная симметрия в животном мире наблюдается редко.

Для насекомых, рыб, птиц, зверей характерно несовместимое с поворотной симметрией различие между направлениями «вперед» и «назад».

Направление движения является принципиально выделенным направлением, относительно которого нет симметрии у любого насекомого, любой птицы или рыбы, любого зверя. В этом направлении животное устремляется за пищей, в этом же направлении оно спасается от преследователей.

Кроме направления движения симметрию живых существ определяет еще одно направление – направление силы тяжести. Оба направления существенны; они задают плоскость симметрии животного существа.

Билатеральная (зеркальная) симметрия – характерная симметрия всех представителей животного мира.

Симметрия и асимметрия

Мир существует благодаря единству симметрии и ассиметрии. «Симметрия и ассиметрия есть одна из форм проявления общего закона диалектики – единства и борьбы противоположностей. Чем больше мы постигаем симметрию природы, тем шире проявляется ассиметрия».

Сведение красоты только к симметрии ограничивало богатство её внутреннего содержания, лишало красоту жизни. Истинную красоту можно постичь только в единстве противоположностей. Вот почему единство симметрии и асимметрии определяет сегодня внутреннее содержание прекрасного в искусстве. Симметрия воспринимается нами как покой, скованность, закономерность, тогда как асимметрия означает движение, свободу, случайность.

Примером удивительного сочетания симметрии и асимметрии является Покровский собор (храм Василия Блаженного) на Красной площади в Москве.

Эта причудливая композиция из десяти храмов, каждый из которых обладает центральной симметрией, в целом не имеет ни зеркальной, ни поворотной симметрии. Симметричные архитектурные детали собора «кружатся» в своём асимметричном «танце», создавая впечатление радости и праздника.

Сохранение темы и ее изменение (разработка, развитие) – это и есть единство симметрии и ассиметрии. Чем удачнее решает архитектор, композитор, поэт проблему между симметрией и ассиметрией, тем выше художественная ценность создаваемого произведения искусства.

В своем исследовании я хочу показать роль асимметрии в природе.

Проведение исследования

Определение степени асимметричности организма

Возникновение билатеральной симметрии (зеркальной, симметрии левого и правого) является важным эволюционным достижением, раскрывающим большие возможности для дифференцировки организма (Беклемешев, 1964). Поскольку в природе строение живых тел не бывает совершенным, естественно, встречаются и самые различные, как направленные, так и случайные, отклонения от билатеральной симметрии (асимметрия).

Флуктуирующая асимметрия является результатом неспособности организмов развиваться по точно определенным путям. Такое положение является вполне естественным, т. к. значительные различия между сторонами могут иметь место в природе лишь в том случае, если они носят приспособительный характер.

Флуктуирующая асимметрия отмечается и в тех случаях, когда в проявлении признака имеет место и направленная асимметрия, при которой как различие между сторонами, так и его направление генетически детерминировано. В этих случаях флуктуирующая асимметрия является отклонением от определенной средней асимметрии.

Факт возрастания асимметрии во всех живых организмах при ухудшении качества окружающей среды зафиксирован в многочисленных научных публикациях ученых всего мира, многие из которых приведены в обзорах: (Захаров, 1987; Palmer, Strobeck, 2001).

Явлениями флуктуирующей асимметрии охвачены практически все билатеральные структуры у самых разных видов живых организмов. Все исследованные (Захаров, 1987) признаки обнаружили флуктуирующую асимметрию. Даже для тех структур, которые при общем поверхностном анализе могут быть оценены как полностью симметричные, при более тщательном рассмотрении выявляется та или иная степень выраженности флуктуирующей асимметрии.

При анализе флуктуирующей асимметрии оценивается величина математической дисперсии различий между сторонами от некоторого среднего различия между сторонами, имеющего место в рассматриваемой выборке. Величина дисперсии асимметрии не зависит от абсолютных размеров признака. При этом получается точная количественная оценка величины флуктуирующей асимметрии даже при наличии направленной асимметрии. Метод строг с математической точки зрения, что позволяет проводить анализ полученных результатов с использованием обычных статистических подходов.

Высокий показатель асимметрии указывает на неоптимальность среды обитания исследуемых объектов. Показатель реагирует на изменение любого фактора (откликается повышением на изменение фактора) и стабилен при адаптации к изменившимся условиям (на стадии привыкания показатель постепенно снижается). Таким образом, на основании периодического вычисления этого показателя можно проследить изменения условий обитания объекта окружающей среды.

Описание участка сбора листьев берёзы

Мною был выбран участок берёзовой рощи, расположенный вдоль края дороги перед МОУ СОШ № 6.

Этот участок расположен в 150 – 200 метрах от шоссейной дороги, которая идёт вдоль него с запада на всем протяжении. С запада также располагается шоссейная дорога.

К описанию участка сбора листьев прилагается карта данной местности, где красным кружком обозначено место сбора.

Методика сбора материала для исследования (берёзовых листьев)

На выбранном участке березовой рощи выбираем десять берез, расположенных недалеко друг от друга (расстояние между ними не более 5-10 метров). Все эти берёзы должны находиться в генеративном, зрелом возрасте, то есть на ветвях должны быть соцветия – серёжки, с помощью которых они размножаются.

С каждой берёзы собирается по десять листьев со всех сторон дерева на высоте 2-2,2 метра (примерно на вытянутую руку). Собирают не все листья, а только листья с укороченных генеративных побегов. Листья кладут в прономерованные десять конвертов, в каждый по десять листьев с каждой березы. После чего делают их замеры сразу, до того как листья еще не совсем высохли, и не стали ломкими.

Данные листья собирают, потому что они самыми первыми реагируют на изменения в окружающей среде. Они являются индикаторами загрязнения атмосферы и почвы различными вредными веществами, особенно мутагенами, которые ускоряют процессы мутации, заставляя видоизменяться листья. В загрязненных районах листья с укороченных побегов имеют несимметричную неправильную форму, что свидетельствует о загрязнении атмосферы и почвы мутагенами. Поэтому собираем листья только с укороченных побегов, чтобы определить насколько велико и масштабно загрязнение.

Методика замеров листьев березы

Каждый собранный лист березы достают из конверта и с помощью линейки и транспортира делают следующие измерения:

Ширину половинок листа в миллиметрах с обеих сторон от центральной жилки. Для этого складывают лист поперек вдоль центральной жилки, так чтобы кончик листа доходил до конца листовой пластинки, где прикрепляется черешок.

Длину второй жилки в миллиметрах (левую и правую). Для этого прикладывают линейку к основанию второй жилки от центральной и измеряют её длину до края листовой пластинки с обеих сторон.

Расстояние между основаниями первой и второй жилки в миллиметрах (с обеих сторон). Расстояние между концами первой и второй жилки в миллиметрах. Для этого прикладывают линейку к концу первой жилки и измеряют расстояние до второй.

Угол между центральной и второй жилкой в градусах (с обеих сторон). Для этого прикладывают транспортир вдоль центральной жилки к основанию второй жилки и измеряют величину угла, под которым она расположена к центральной жилке.

Все полученные данные записывают в таблице. Дальше полученные результаты подвергаются исследованиям на основе математических подсчётов. После чего получается конкретные данные о загрязнении местности.

Обработка данных

После получения всех промеров, необходимо все данные занести в таблицу. Данные о загрязнении местности можно получить, выполнив пошаговые инструкции.

1. Получить среднее относительное различие на признак, равное среднему арифметическому отношению разности к сумме промеров листа слева и справа, отнесенное к числу признаков.

2. Если принять значение промера за Х, то ширина половинок листа будет соответственно Х л и Х п. Х = Х л - Х п. / Х л + Х п

Находим значение среднего относительного различия между сторонами листа на признак для каждого листа. Для этого сумму относительных различий нужно разделить на число признаков, в нашем случае: Z = Х 1 + Х 2 + Х 3 + Х 4 + Х 5 / 5

3. Для 10 берез среднее относительное различие на признак для 10 выборок:

А = ∑ Z/ n, где n – количество берез

4. Полученные данные характеризуют степень асимметричности организма – шкала Захарова В. М. - отклонения от нормы.

По результатам этой методики в целом можно сказать, что чистота воздуха соответствует условной норме, но есть тенденция критического состояния и среднего загрязнения для тех берез, которые расположены в максимальной близи от Малодубенского шоссе, это дает нам возможность говорить о дальнейшем загрязнении окружающей среды и, как мера предосторожности следующий этап моей исследовательской работы разработка фитодизайна.

Данная клумба выполнена в программе «Цветочная фантазия» и является завершением моей работы. Эта клумба «оживает» по мере роста растений начиная с апреля месяца и по октябрь.

Существуют три последовательные ступени в нашем знании о мире. На низшей ступени находятся явления; на следующей ступени – законы природы; на третьей ступени – это принципы симметрии. Законы природы управляют явлениями, а принципы симметрии – управляют законами природы. Если законы природы позволяют предсказывать явления, то принципы симметрии позволяют предсказывать законы природы.

Обобщая все написанное, нужно отметить, что симметрия многолика.