Нейтронная звезда

Расчеты показывают, что при взрыве сверхновой с M ~ 25M остается плотное нейтронное ядро (нейтронная звезда) с массой ~ 1.6M . В звездах с остаточной массой M > 1.4M , не достигших стадии сверхновой, давление вырожденного электронного газа также не в состоянии уравновесить гравитационные силы и звезда сжимается до состояния ядерной плотности. Механизм этого гравитационного коллапса тот же, что и при взрыве сверхновой. Давление и температура внутри звезды достигают таких значений, при которых электроны и протоны как бы “вдавливаются” друг в друга и в результате реакции

после выброса нейтрино образуются нейтроны, занимающие гораздо меньший фазовый объем, чем электроны. Возникает так называемая нейтронная звезда, плотность которой достигает 10 14 - 10 15 г/см 3 . Характерный размер нейтронной звезды 10 - 15 км. В некотором смысле нейтронная звезда представляет собой гигантское атомное ядро. Дальнейшему гравитационному сжатию препятствует давление ядерной материи, возникающее за счет взаимодействия нейтронов. Это также давление вырождения, как ранее в случае белого карлика, но - давление вырождения существенно более плотного нейтронного газа. Это давление в состоянии удерживать массы вплоть до 3.2M .
Нейтрино, образующиеся в момент коллапса, довольно быстро охлаждают нейтронную звезду. Согласно теоретическим оценкам температура ее падает с 10 11 до 10 9 K за время ~ 100 с. Дальше темп остывания несколько уменьшается. Однако он достаточно высок по астрономическим масштабам. Уменьшение температуры с 10 9 до 10 8 K происходит за 100 лет и до 10 6 K - за миллион лет. Обнаружить нейтронные звезды оптическими методами довольно сложно из-за малого размера и низкой температуры.
В 1967 г. в Кембриджском университете Хьюиш и Белл открыли космические источники периодического электромагнит-ного излучения - пульсары. Периоды повторения импульсов боль-шинства пульсаров лежат в интервале от 3.3·10 -2 до 4.3 с. Согласно современным представлениям, пульсары - это вращающиеся нейтронные звезды, имеющие массу 1 - 3M и диаметр 10 - 20 км. Только компактные объекты, имеющие свойства нейтронных звезд, могут сохранять свою форму, не разрушаясь при таких скоростях вращения. Сохранение углового момента и магнитного поля при образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с сильным магнитным полем B ~ 10 12 Гс.
Считается, что нейтронная звезда имеет магнитное поле, ось которого не совпадает с осью вращения звезды. В этом случае излучение звезды (радиоволны и видимый свет) скользит по Земле как лучи маяка. Когда луч пересекает Землю регистрируется импульс. Само излучение нейтронной звезды возникает за счет того, что заряженные частицы с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Этот механизма радиоизлучения пульсара, впервые предложенный Голдом, показан на рис. 39.

Если пучок излучения попадает на земного наблюдателя, то радиотелескоп фиксирует короткие импульсы радиоизлучения с периодом, равным периоду вращения нейтронной звезды. Форма импульса может быть очень сложной, что обусловлено геометрией магнитосферы нейтронной звезды и является характерной для каждого пульсара. Периоды вращения пульсаров строго постоянны и точности измерения этих периодов доходят до 14-значной цифры.
В настоящее время обнаружены пульсары, входящие в двойные системы. Если пульсар вращается по орбите вокруг второго компонента, то должны наблюдаться вариации периода пульсара вследствие эффекта Допплера. Когда пульсар приближается к наблюдателю, регистрируемый период радиоимпульсов из-за допплеровского эффекта уменьшается, а когда пульсар удаляется от нас, его период увеличивается. На основе этого явления и были обнаружены пульсары, входящие в состав двойных звезд. Для впервые обнаруженного пульсара PSR 1913 + 16, входящего в состав двойной системы, орбитальный период обращения составил 7 часов 45 мин. Собственный период обращения пульсара PSR 1913 + 16 равен 59 мс.
Излучение пульсара должно приводить к уменьшению скорости вращения нейтронной звезды. Такой эффект также был обнару-жен. Нейтронная звезда, входящая в состав двойной системы, может быть и источником интенсивного рентгеновского излучения.
Структура нейтронной звезды массой 1.4M и радиусом 16 км показана на рис. 40.

I - тонкий внешний слой из плотно упакованных атомов. В областях II и III ядра расположены в виде объемно-центрированной кубической решетки. Область IV состоит в основном из нейтронов. В области V вещество может состоять из пионов и гиперонов, образуя адронную сердцевину нейтронной звезды. Отдельные детали строения нейтронной звезды в настоящее время уточняются.
Образование нейтронных звезд не всегда является следствием вспышки сверхновой. Возможен и другой механизм образования нейтронных звезд в ходе эволюции белых карликов в тесных двойных звездных системах. Перетекание вещества звезды-компаньона на белый карлик постепенно увеличивает массу белого карлика и по достижении критической массы (предела Чандрасекара) белый карлик превращается в нейтронную звезду. В случае, когда перетекание вещества продолжается и после образования нейтронной звезды, её масса может существенно увеличиться и в результате гравитационного коллапса она может превратиться в черную дыру. Это соответствует так называемому “тихому” коллапсу.
Компактные двойные звезды могут проявляться и как источники рентгеновского излучения. Оно также возникает за счет аккреции вещества, падающего с “нормальной” звезды на более компактную. При аккреции вещества на нейтронную звезду с B > 10 10 Гс вещество падает в район магнитных полюсов. Рентгеновское излучение модулируется её вращением вокруг оси. Такие источники называют рентгеновскими пульсарами.
Существуют рентгеновские источники (называемые барстерами), в которых периодически с интервалом от нескольких часов до суток происходят всплески излучения. Характерное время нарастания всплеска - 1 сек. Длительность всплеска от 3 до 10 сек. Интенсивность в момент всплеска может на 2 - 3 порядка превосходить светимость в спокойном состоянии. В настоящее время известно несколько сотен таких источников. Считается, что всплески излучения происходят в результате термоядерных взрывов вещества, накопившегося на поверхности нейтронной звезды в результате аккреции.
Хорошо известно, что на малых расстояниях между нуклонами (< 0.3·10 -13 см) ядерные силы притяжения сменяются силами оттал-кивания, т. е. противодействие ядерного вещества на малых расстояниях сжимающей силе тяготения увеличивается. Если плотность вещества в центре нейтронной звезды превышает ядерную плотность ρ яд и достигает 10 15 г/см 3 , то в центре звезды наряду с нуклонами и электронами образуются также мезоны, гипероны и другие более массивные частицы. Исследования поведения вещества при плотностях, превышающих ядерную плотность, в настоящее время находятся в начальной стадии и имеется много нерешенных проблем. Расчеты показывают, что при плотностях вещества ρ > ρ яд возможны такие процессы, как появление пионного конденсата, переход нейтронизованного вещества в твердое кристаллическое состояние, образование гиперонной и кварк-глюонной плазмы. Возможно образование сверхтекучего и сверхпроводящего состояний нейтронного вещества.
В соответствии с современными представлениями о поведении вещества при плотностях в 10 2 - 10 3 раз, превышающих ядерную (а именно о таких плотностях идет речь, когда обсуждается внутреннее строение нейтронной звезды), внутри звезды образуются атомные ядра вблизи границы устойчивости. Более глубокое понимание может быть достигнуто в результате исследования состояния вещества в зависимости от плотности, температуры, устойчивости ядерной материи при экзотических отношениях числа протонов к числу нейтронов в ядре n p /n n , учете слабых процессов с участием нейтрино. В настоящее время практически единственной возможностью исследования вещества при плотностях больших ядерной являются ядерные реакции между тяжелыми ионами. Однако, экспериментальные данные по столкновению тяжелых ионов дают пока недостаточно информации, т. к. достижимые значения n p /n n как для ядра - мишени, так и для налетающего ускоренного ядра невелики (~ 1 - 0.7).
Точные измерения периодов радиопульсаров показали, что скорость вращения нейтронной звезды постепенно замедляется. Это связано с переходом кинетической энергии вращения звезды в энергию излучения пульсара и с эмиссией нейтрино. Небольшие скачкообразные изменения периодов радиопульсаров объясняются накоплением напряжений в поверхностном слое нейтронной звезды, сопровождающимся “растрескиванием” и “разломами”, что и приводит к изменению скорости вращения звезды. В наблюдаемых временных характеристиках радиопульсаров содержится информация о свойствах “коры” нейтронной звезды, физических условиях внутри неё и о сверхтекучести нейтронного вещества. В последнее время обнаружено значительное число ра-диопульсаров с периодами меньшими 10 мс. Это требует уточнения представлений о процессах, происходящих в нейтронных звездах.
Другой проблемой является исследование нейтринных процессов в нейтронных звездах. Эмиссия нейтрино является одним из механизмов потери энергии нейтронной звездой в течении 10 5 - 10 6 лет после её образования.

Белые карлики — проэволюционировавшие звёзды с массой, не превышающей предел Чандрасекара, лишённые собственных источников термоядерной энергии. Это компактные звёзды с массами, сравнимыми с массой Солнца, но с радиусами в ~100 и, соответственно, светимостями в ~10 000 раз меньшими солнечной. Плотность белых карликов составляет порядка 10 6 г/см³, что почти в миллион раз выше плотности обычных звёзд главной последовательности. По численности белые карлики составляют по разным оценкам 3—10 % звёздного населения нашей Галактики.
На рисунке сравнительные размеры Солнце (справа) и двойной системы IK Пегаса компонент B - белый карлик с температурой поверхности 35,500 K (по центру) и компонент А - звезда спектрального типа A8 (слева).

Открытие В 1844г директор Кёнигсбергской обсерватории Фридрих Бессель обнаружил, что Сириус, ярчайшая звезда северного неба, периодически, хотя и весьма слабо, отклоняется от прямолинейной траектории движения по небесной сфере. Бессель пришёл к выводу, что у Сириуса должен быть невидимый «тёмный» спутник, причём период обращения обеих звёзд вокруг общего центра масс должен быть порядка 50 лет. Сообщение было встречено скептически, поскольку тёмный спутник оставался ненаблюдаемым, а его масса должна была быть достаточно велика — сравнимой с массой Сириуса.
В январе 1862г А.Г. Кларк, юстируя 18-ти дюймовый рефрактор, самый большой на то время телескоп в мире (Dearborn Telescope), поставленный семейной фирмой Кларков в Чикагскую обсерваторию, обнаружил в непосредственной близости от Сириуса тусклую звёздочку. Это был тёмный спутник Сириуса, Сириус B, предсказанный Бесселем. Температура поверхности Сириуса B составляет 25 000 К, что, с учётом его аномально низкой светимости, указывает на очень малый радиус и, соответственно, крайне высокую плотность — 10 6 г/см³ (плотность Сириуса ~0,25 г/см³, плотность Солнца ~1,4 г/см³).
В 1917г Адриан Ван Маанен открыл следующий белый карлик — звезду Ван Маанена в созвездии Рыб.

Парадокс плотности В начале XX века Герцшпрунгом и Расселом была открыта закономерность в отношении спектрального класса (температуры) и светимости звёзд — Диаграмма Герцшпрунга — Рассела (Г—Р диаграмма). Казалось, что всё разнообразие звёзд укладывается в две ветви Г—Р диаграммы — главную последовательность и ветвь красных гигантов. В ходе работ по накоплению статистики распределения звёзд по спектральному классу и светимости Рассел обратился в 1910г к профессору Э. Пикерингу. Дальнейшие события Рассел описывает так:

«Я был у своего друга … профессора Э. Пиккеринга с деловым визитом. С характерной для него добротой он предложил получить спектры всех звёзд, которые Хинкс и я наблюдали … с целью определения их параллаксов. Эта часть казавшейся рутинной работы оказалась весьма плодотворной — она привела к открытию того, что все звёзды очень малой абсолютной величины (т. е. низкой светимости) имеют спектральный класс M (т. е. очень низкую поверхностную температуру). Как мне помнится, обсуждая этот вопрос, я спросил у Пиккеринга о некоторых других слабых звёздах…, упомянув в частности 40 Эридана B. Ведя себя характерным для него образом, он тут же отправил запрос в офис (Гарвардской) обсерватории, и вскоре был получен ответ (я думаю, от миссис Флеминг), что спектр этой звезды — A (т. е. высокая поверхностная температура). Даже в те палеозойские времена я знал об этих вещах достаточно, чтобы сразу же осознать, что здесь имеется крайнее несоответствие между тем, что мы тогда назвали бы «возможными» значениями поверхностной яркости и плотности. Я, видимо, не скрыл, что не просто удивлён, а буквально сражён этим исключением из того, что казалось вполне нормальным правилом для характеристик звёзд. Пиккеринг же улыбнулся мне и сказал: «Именно такие исключения и ведут к расширению наших знаний» — и белые карлики вошли в мир исследуемого»

Удивление Рассела вполне понятно: 40 Эридана B относится к относительно близким звёздам, и по наблюдаемому параллаксу можно достаточно точно определить расстояние до неё и, соответственно, светимость. Светимость 40 Эридана B оказалась аномально низкой для её спектрального класса — белые карлики образовали новую область на Г—Р диаграмме. Такое сочетание светимости, массы и температуры было непонятно и не находило объяснения в рамках стандартной модели строения звёзд главной последовательности, разработанной в 1920-х годах.
Высокая плотность белых карликов нашла объяснение лишь в рамках квантовой механики после появления статистики Ферми-Дирака. В 1926г Фаулер в статье «Плотная материя» («Dense matter», Monthly Notices R. Astron. Soc. 87, 114—122) показал, что, в отличие от звёзд главной последовательности, для которых уравнение состояния основывается на модели идеального газа (стандартная модель Эддингтона), для белых карликов плотность и давление вещества определяются свойствами вырожденного электронного газа (Ферми-газа).
Следующим этапом в объяснении природы белых карликов стали работы Я. И. Френкеля и Чандрасекара. В 1928г Френкель указал, что для белых карликов должен существовать верхний предел массы, и в 1930г Чандрасекар в работе «Максимальная масса идеального белого карлика» («The maximum mass of ideal white dwarfs», Astroph. J. 74, 81—82) показал, что белые карлики с массой выше 1,4 солнечных неустойчивы (предел Чандрасекара) и должны коллапсировать.

Происхождение белых карликов
Решение Фаулера объяснило внутреннее строение белых карликов, но не прояснило механизм их происхождения. В объяснении генезиса белых карликов ключевую роль сыграли две идеи: мысль Э. Эпика, что красные гиганты образуются из звёзд главной последовательности в результате выгорания ядерного горючего и предположение В.Г. Фесенкова, сделанное вскоре после Второй мировой войны, что звёзды главной последовательности должны терять массу, и такая потеря массы должна оказывать существенное влияние на эволюцию звёзд. Эти предположения полностью подтвердились.
В процессе эволюции звёзд главной последовательности происходит «выгорание» водорода с образованием гелия (цикл Бете). Такое выгорание приводит к прекращению энерговыделения в центральных частях звезды, сжатию и, соответственно, к повышению температуры и плотности в её ядре, что ведет к условиям, в которых активируется новый источник термоядерной энергии: выгорание гелия при температурах порядка 10 8 K (тройная гелиевая реакция или тройной альфа-процесс), характерный для красных гигантов и сверхгигантов:
He 4 + He 4 = Be 8 - два ядра гелия (альфа-частицы) сливаются и образуется нестабильный изотоп бериллия;
Be 8 + He 4 = C 12 + 7,3 МэВ - большая часть Be 8 снова распадается на две альфа-частицы, но при столкновении Be 8 с высокоэнергетической альфа-частицей может образоваться стабильное ядро углерода C 12 .
Следует, однако, отметить, что тройная гелиевая реакция характеризуется значительно меньшим энерговыделением, чем цикл Бете: в пересчёте на единицу массы энерговыделение при «горении» гелия более чем в 10 раз ниже, чем при «горении» водорода . По мере выгорания гелия и исчерпания источника энергии в ядре возможны и более сложные реакции нуклеосинтеза, однако, во-первых, для таких реакций требуются все более высокие температуры и, во-вторых, энерговыделение на единицу массы в таких реакциях падает по мере роста массовых чисел ядер, вступающих в реакцию.
Дополнительным фактором, по видимому влияющим на эволюцию ядер красных гигантов, является сочетание высокой температурной чувствительности тройной гелиевой реакции и реакций синтеза более тяжёлых ядер с механизмом нейтринного охлаждения : при высоких температурах и давлениях возможно рассеяние фотонов на электронах с образованием нейтрино-антинейтринных пар, которые свободно уносят энергию из ядра: звезда для них прозрачна. Скорость такого объёмного нейтринного охлаждения, в отличие от классического поверхностного фотонного охлаждения, не лимитирована процессами передачи энергии из недр звезды к её фотосфере. В результате реакции нуклеосинтеза в ядре звезды достигается новое равновесие, характеризующееся одинаковой температурой ядра: образуется изотермическое ядро .
В случае красных гигантов с относительно небольшой массой (порядка солнечной) изотермические ядра состоят, в основном, из гелия, в случае более массивных звёзд — из углерода и более тяжёлых элементов. Однако, в любом случае плотность такого изотермического ядра настолько высока, что расстояния между электронами образующей ядро плазмы становятся соизмеримыми с их длиной волны Де Бройля λ = h / m v , то есть выполняются условия вырождения электронного газа. Расчёты показывают, что плотность изотермических ядер соответствует плотности белых карликов, т. е. ядрами красных гигантов являются белые карлики .

Потеря массы красными гигантами
Ядерные реакции в красных гигантах происходят не только в ядре: по мере выгорания водорода в ядре, нуклеосинтез гелия распространяется на ещё богатые водородом области звезды, образуя сферический слой на границе бедных и богатых водородом областей. Аналогичная ситуация возникает и с тройной гелиевой реакцией: по мере выгорания гелия в ядре она также сосредотачивается в сферическом слое на границе между бедными и богатыми гелием областями. Светимость звёзд с такими «двухслойными» областями нуклеосинтеза значительно возрастает, достигая порядка нескольких тысяч светимостей Солнца, звезда при этом «раздувается», увеличивая свой диаметр до размеров земной орбиты. Зона нуклеосинтеза гелия поднимается к поверхности звезды: доля массы внутри этой зоны составляет ~70 % массы звезды. «Раздувание» сопровождается достаточно интенсивным истечением вещества с поверхности звезды, такие объекты наблюдаются как протопланетарные туманности, например Nebula HD44179 (рисунок ).
Такие звезды явно являются нестабильными и в 1956г И.С. Шкловский предложил механизм образования планетарных туманностей через сброс оболочек красных гигантов, при этом обнажение изотермических вырожденных ядер таких звёзд приводит к рождению белых карликов (данный сценарий конца эволюции красных гигантов является общепринятым и подкреплён многочисленными наблюдательными данными). Точные механизмы потери массы и дальнейшего сброса оболочки для таких звёзд пока до конца неясен, но можно предположить следующие факторы, могущие внести свой вклад в потерю оболочки:

  • В протяжённых звёздных оболочках могут развиваться неустойчивости, приводящие к сильным колебательным процессам, сопровождающимися изменением теплового режима звезды. На рисунке чётко заметны волны плотности выброшенной звездой материи, которые могут быть следствиями таких колебаний.
  • Вследствие ионизации водорода в областях, лежащих ниже фотосферы может развиться сильная конвективная неустойчивость. Аналогичную природу имеет солнечная активность, в случае же красных гигантов мощность конвективных потоков должна значительно превосходить солнечную.
  • Из-за крайне высокой светимости существенным становится световое давление потока излучения звезды на её внешние слои, что, по расчётным данным, может привести к потере оболочки за несколько тысяч лет.

Так или иначе, но достаточно длительный период относительно спокойного истечение вещества с поверхности красных гигантов заканчивается сбросом его оболочки и обнажением его ядра. Такая сброшенная оболочка наблюдается как планетарная туманность. Скорости расширения протопланетарных туманностей составляют десятки км/с, т. е. близки к значению параболических скоростей на поверхности красных гигантов, что служит дополнительным подтверждением их образования сбросом «излишка массы» красных гигантов.

Особенности спектров
Спектры белых карликов сильно отличаются от спектров звёзд главной последовательности и гигантов. Главная их особенность — небольшое число сильно уширенных линий поглощения, а некоторые белые карлики (спектральный класс DC) вообще не содержат заметных линий поглощения. Малое число линий поглощения в спектрах звёзд этого класса объясняется очень сильным уширением линий: только самые сильные линии поглощения, уширяясь, имеют достаточную глубину, чтобы остаться заметными, а слабые, из-за малой глубины, практически сливаются с непрерывным спектром.
Особенности спектров белых карликов объясняются несколькими факторами. Во-первых, из-за высокой плотности белых карликов ускорение свободного падения на их поверхности составляет ~10 8 см/с² (или ~1000 Км/с²), что, в свою очередь, приводит к малым протяжённостям их фотосфер, огромным плотностям и давлениям в них и уширению линий поглощения. Другим следствием сильного гравитационного поля на поверхности является гравитационное красное смещение линий в их спектрах, эквивалентное скоростям в несколько десятков км/с. Во-вторых, у некоторых белых карликов, обладающих сильными магнитными полями, наблюдаются сильная поляризация излучения и расщепление спектральных линий вследствие эффекта Зеемана.

Рентгеновское излучение белых карликов
Температура поверхности молодых белых карликов — изотропных ядер звёзд после сброса оболочек, очень высока — более 2·10 5 K, однако достаточно быстро падает за счёт нейтринного охлаждения и излучения с поверхности. Такие очень молодые белые карлики наблюдаются в рентгеновском диапазоне. Температура поверхности наиболее горячих белых карликов — 7·10 4 K, наиболее холодных — ~5·10³ K.
Особенностью излучения белых карликов в рентгеновском диапазоне является тот факт, что основным источником рентгеновского излучения для них является фотосфера, что резко отличает их от «нормальных» звёзд: у последних в рентгене излучает корона, разогретая до нескольких миллионов кельвинов, а температура фотосферы слишком низка для испускания рентгеновского излучения.
В отсутствие аккреции источником светимости белых карликов является запас тепловой энергии ионов в их недрах, поэтому их светимость зависит от возраста. Количественную теорию остывания белых карликов построил в конце 1940-х гг С.А. Каплан.

Аккреция на белые карлики в двойных системах

  • Нестационарная аккреция на белые карлики в случае, если компаньоном является массивный красный карлик, приводит к возникновению карликовых новых (звёзд типа U Gem (UG)) и новоподобных катастрофических переменных звёзд.
  • Аккреция на белые карлики, обладающие сильным магнитным полем, направляется в район магнитных полюсов белого карлика, и циклотронный механизм излучения аккрецирующей плазмы в околополярных областях поля вызывает сильную поляризацию излучения в видимой области (поляры и промежуточные поляры).
  • Аккреция на белые карлики богатого водородом вещества приводит к его накоплению на поверхности (состоящей преимущественно из гелия) и разогреву до температур реакции синтеза гелия, что, в случае развития тепловой неустойчивости, приводит к взрыву, наблюдаемому как вспышка новой звезды.

С массами порядка массы Солнца (М?) и радиусами, примерно в 100 раз меньшими, чем радиус Солнца. Средняя плотность вещества белых карликов 10 8 -10 9 кг/м 3 . Белые карлики составляют несколько процентов всех звёзд Галактики. Многие белые карлики входят в двойные звёздные системы. Первой звездой, отнесённой к белым карликам, был Сириус В (спутник Сириуса), открытый американским астрономом А. Кларком в 1862 году. В 1910-е годы белые карлики выделены в особый класс звёзд; их название связано с цветом первых представителей этого класса.

Имея массу звезды и размер небольшой планеты, белый карлик обладает колоссальным притяжением вблизи своей поверхности, которое стремится сжать звезду. Но она сохраняет устойчивое равновесие, поскольку гравитационным силам противостоит давление вырожденного газа электронов: при высокой плотности вещества, характерной для белых карликов, концентрация практически свободных электронов в нём столь велика, что, согласно принципу Паули, они обладают большим импульсом. Давление вырожденного газа практически не зависит от его температуры, поэтому при остывании белый карлик не сжимается.

Чем больше масса белого карлика, тем меньше его радиус. Теория указывает для белых карликов верхний предел массы около 1,4М? (так называемый Чандрасекара предел), превышение которого приводит к гравитационному коллапсу. Наличие такого предела обусловлено тем, что по мере роста плотности газа скорость электронов в нём приближается к скорости света и далее возрастать не может. В результате давление вырожденного газа уже не способно противостоять силе тяготения.

Белые карлики образуются в конце эволюции обычных звёзд с начальной массой менее 8М? после исчерпания ими запаса термоядерного горючего. В этот период звезда, пройдя через стадию красного гиганта и планетарной туманности, сбрасывает свои внешние слои и обнажает ядро, имеющее очень высокую температуру. Постепенно остывая, ядро звезды переходит в состояние белого карлика, продолжая ещё долго светить за счёт запасённой в недрах тепловой энергии. С возрастом светимость белого карлика падает. При возрасте около 1 миллиарда лет светимость белого карлика в тысячу раз ниже солнечной. Температуpa поверхности у изученных белых карликов лежит в диапазоне от 5·10 3 до 10 5 К.

У некоторых белых карликов обнаружена оптическая переменность с периодами от нескольких минут до получаса, объясняемая проявлением гравитационных нерадиальных колебаний звезды. Анализ этих колебаний методами астросейсмологии позволяет изучать внутреннее строение белых карликов. В спектрах около 3% белых карликов наблюдается сильная поляризация излучения или зеемановское расщепление спектральных линий, что указывает на существование у них магнитных полей индукцией 3·10 4 -10 9 Гс.

Если белый карлик входит в тесную двойную систему, то существенный вклад в его светимость может давать термоядерное горение водорода, перетекающего с соседней звезды. Это горение часто носит нестационарный характер, что проявляется в виде вспышек новых и новоподобных звёзд. В редких случаях накопление водорода на поверхности белого карлика приводит к термоядерному взрыву с полным разрушением звезды, наблюдаемому как вспышка сверхновой.

Лит.: Блинников С. И. Белые карлики. М., 1977; Шапиро С., Тьюколски С. Черные дыры, белые карлики и нейтронные звезды: В 2 часть М., 1985.

Белый карлик - звезда, в нашем космосе довольно распространенная. Ученые называют ее результатом эволюции звезд, финальным этапом развития. Всего есть два сценария видоизменения звездного тела, в одном случае завершающий этап - нейтронная звезда, в другом - черная дыра. Карлики - это окончательный эволюционный шаг. Вокруг них есть планетарные системы. Ученые смогли определить это, изучив обогащенные металлами экземпляры.

История вопроса

Белые карлики - звезды, привлекшие внимание астрономов в 1919. Впервые удалось открыть такое небесное тело ученому из Нидерландов Маанену. Для своего времени специалист сделал довольно нетипичное и неожиданное открытие. Увиденный им карлик был похож на звезду, но имел нестандартные маленькие размеры. Спектр, однако, был таков, словно бы это массивное и большое небесное тело.

Причины такого странного явления привлекали ученых довольно долгое время, поэтому было приложено немало усилий для изучения строения белых карликов. Прорыв совершился, когда высказали и доказали предположение обилия в атмосфере небесного тела разнообразных металлических структур.

Необходимо уточнить, что металлы в астрофизике - это всевозможные элементы, молекулы которых тяжелее водородных, гелиевых, а химический состав их более прогрессивен, нежели эти два соединения. Гелий, водород, как удалось установить ученым, в нашей вселенной распространены шире, нежели любые другие вещества. Отталкиваясь от этого, было решено все прочее обозначать металлами.

Развитие темы

Хотя впервые сильно отличающиеся размерами от Солнца белые карлики были замечены в двадцатых годах, только через половину века люди выявили, что наличие металлических структур в звездной атмосфере не является типичным явлением. Как выяснилось, при включении в атмосферу помимо двух самых распространенных веществ более тяжелых происходит их смещение в глубокие слои. Тяжелые вещества, оказавшись среди молекул гелия, водорода, со временем должны переместиться в ядро звезды.

Причин такого процесса удалось обнаружить несколько. Радиус белого карлика мал, такие звездные тела очень компактные - не зря они получили свое название. В среднем радиус сравним с земным, в то время как вес сходен с весом звезды, освещающей нашу планетарную систему. Такое соотношение габаритов и веса становится причиной исключительно большого гравитационного поверхностного ускорения. Следовательно, оседание тяжелых металлов в водородной и гелиевой атмосфере происходит всего лишь за несколько земных дней после попадания молекулы в общую газовую массу.

Возможности и продолжительность

Иногда характеристики белых карликов таковы, что процесс оседания молекул тяжелых веществ может затянуться надолго. Наиболее благоприятные варианты, с точки зрения наблюдателя с Земли, - это процессы, на которые уходят миллионы, десятки миллионов лет. И все же такие временные промежутки исключительно малы в сравнении с продолжительностью существования самого звездного тела.

Эволюция белого карлика такова, что большая часть наблюдаемых человеком в настоящий момент формирований уже насчитывает несколько сотен миллионов земных лет. Если сравнить это с самым медленным процессом поглощения металлов ядром, разница получается более чем существенная. Следовательно, выявление металла в атмосфере определенной наблюдаемой звезды позволяет с уверенностью заключить, что изначально тело не имело такого состава атмосферы, иначе все металлические включения давно пропали бы.

Теория и практика

Описанные выше наблюдения, а также собранная за долгие десятилетия информация о белых карликах, нейтронных звездах, черных дырах позволила предположить, что атмосфера получает металлические включения из внешних источников. Ученые сперва решили, что таковой является среда между звездами. Небесное тело перемещается сквозь такое вещество, аккрецирует среду на свою поверхность, тем самым обогащая атмосферу тяжелыми элементами. Но дальнейшие наблюдения показали, что такая теория несостоятельна. Как уточнили специалисты, если бы изменение атмосферы происходило именно таким путем, преимущественно карлик извне получал бы водород, так как среда между звездами сформирована в своей основной массе именно водородными и гелиевыми молекулами. Лишь малый процент среды приходится на долю тяжелых соединений.

Если бы сформированная из первичных наблюдений за белыми карликами, нейтронными звездами, черными дырами теория оправдала бы себя, карлики состояли бы из водорода как самого легкого элемента. Это не допускало бы существования даже гелиевых небесных тел, ведь гелий тяжелее, а значит, водородная аккреция полностью скрыла бы его от глаза внешнего наблюдателя. Исходя из наличия гелиевых карликов, ученые пришли к выводу, что межзвездная среда не может служить единственным и даже основным источником металлов в атмосфере звездных тел.

Как объяснить?

Ученые, занимавшиеся в 70-х годах прошлого столетия черными дырами, белыми карликами, предположили, что металлические включения могут объясняться падением комет на поверхность небесного тела. Правда, в свое время такие идеи были признаны слишком экзотичными и поддержки не получили. Во многом это объяснялось тем, что люди еще не знали о наличии иных планетных систем - известна была только наша «домашняя» Солнечная.

Существенный шаг вперед в исследовании черных дыр, белых карликов был сделан в конце следующего, восьмого десятилетия прошлого века. Ученые получили в свое распоряжение особенно мощные инфракрасные приборы для наблюдения за глубинами космоса, что позволило вокруг одного из известных астрономам белого карлика обнаружить инфракрасное излучение. Таковое было выявлено именно вокруг карлика, атмосфера которого содержала металлические включения.

Инфракрасное излучение, позволившее оценить температуру белого карлика, также сообщило ученым, что звездное тело окружено некоторым веществом, способным поглощать звездное излучение. Это вещество нагрето до конкретного температурного уровня, меньшего присущего звезде. Это позволяет постепенно перенаправлять поглощенную энергию. Излучение происходит в инфракрасном диапазоне.

Наука движется вперед

Спектры белого карлика стали объектом изучения передовых умов мира астрономов. Как оказалось, из них можно получить довольно объемную информацию об особенностях небесных тел. Особенно интересными были наблюдения за звездными телами с избыточным инфракрасным излучением. В настоящее время удалось выявить около трех десятков систем такого типа. Основной их процент изучался посредством мощнейшего телескопа «Спитцер».

Ученые, наблюдая за небесными телами, установили, что плотность белых карликов существенно меньше этого параметра, свойственного гигантам. Также было выявлено, что избыточное инфракрасное излучение объясняется наличием дисков, сформированных специфическим веществом, способным поглощать энергетическое излучение. Именно оно затем излучает энергию, но уже в ином диапазоне волн.

Диски расположены исключительно близко и в некоторой степени влияют на массу белых карликов (которая не может превышать предела Чандрасекара). Внешний радиус получил название обломочного диска. Было высказано предположение, что таковой сформировался при разрушении некоторого тела. В среднем радиус по размеру сравним с Солнцем.

Если обратить внимание на нашу планетарную систему, станет ясно, что относительно недалеко от «дома» мы может наблюдать сходный пример - это окружающие Сатурн кольца, размер которых также сравним с радиусом нашего светила. Со временем ученые установили, что эта особенность - не единственная из тех, что роднит карлики и Сатурн. К примеру, и планета, и звезды обладают очень тонкими дисками, которым несвойственна прозрачность при попытке просвечивания светом.

Выводы и развитие теории

Поскольку кольца белых карликов сравнимы с теми, что окружают Сатурн, стало возможным сформулировать новые теории, объясняющие наличие металлов в атмосфере этих звезд. Астрономам известно, что вокруг Сатурна кольца сформированы приливным разрушением некоторых тел, оказавшихся достаточно близко от планеты, чтобы на них повлияло ее гравитационное поле. В такой ситуации внешнее тело не может сохранять собственную гравитацию, что приводит к нарушению целостности.

Около пятнадцати лет назад была представлена новая теория, объяснившая образование колец белых карликов сходным образом. Предположили, что первоначально карлик представлял собой звезду в центре системы планет. Небесное тело с течением времени эволюционирует, на что уходят миллиарды лет, разбухает, теряет оболочку, и это становится причиной формирования карлика, постепенно остывающего. Кстати говоря, цвет белых карликов объясняется именно их температурой. У некоторых она оценивается в 200 000 К.

Система планет в ходе такой эволюции может выжить, что приводит к расширению внешней части системы одновременно с уменьшением массы звезды. В результате формируется крупная система астероиды и многие другие элементы выживают при эволюции.

Что дальше?

Прогресс системы может привести к ее нестабильности. Это приводит к бомбардировке камнями окружающего планеты пространства, и астероиды частично вылетают из системы. Некоторые из них, однако, перемещаются на орбиты, рано или поздно оказываясь в пределах солнечного радиуса карлика. Столкновения не происходит, но приливные силы приводят к нарушению целостности тела. Скопление таких астероидов приобретает форму, сходную с окружающими Сатурн кольцами. Тем самым вокруг звезды формируется диск обломков. Существенно отличается плотность белого карлика (порядка 10^7 г/см3) и его обломочного диска.

Описанная теория стала достаточно полным и логичным объяснением ряда астрономических явлений. Посредством нее можно понять, почему диски компактны, ведь звезда не может все время своего существования окружаться диском, радиус которого сравним с солнечным, иначе первое время такие диски были бы внутри ее тела.

Объяснив формирование дисков и их размер, можно понять, откуда берется своеобразный запас металлов. Он может оказаться на звездной поверхности, загрязнив карлик металлическими молекулами. Описанная теория, не противореча выявленным показателям средней плотности белых карликов (порядка 10^7 г/см3), доказывает, по какой причине металлы наблюдаются в атмосфере звезд, почему измерение химического состава возможно доступными человеку средствами и по какой причине распределение элементов сходно с тем, что свойственно нашей планете и другим изученным объектам.

Теории: а есть ли польза?

Описанная идея получила широкое распространение как база для объяснения, по какой причине оболочки звезд загрязнены металлами, почему появились обломочные диски. Кроме того, из нее вытекает, что вокруг карлика существует планетная система. Удивительного в таком выводе мало, ведь человечество установило, что большая часть звезд имеет собственные системы планет. Это свойственно как тем, что сходны с Солнцем, так и тем, что значительно больше его габаритами - а именно из них и формируются белые карлики.

Темы не исчерпаны

Даже если считать описанную выше теорию общепринятой и доказанной, некоторые вопросы для астрономов и по сей день остаются открытыми. Особенный интерес вызывает специфика переноса вещества между дисками и поверхностью небесного тела. Как предполагают некоторые, это объясняется радиационным излучением. Теории, призывающие таким образом описать перенос вещества, основаны на эффекте Пойнтинга-Робертсона. Это явление, под влиянием которого частицы медленно перемещаются по орбите вокруг молодой звезды, постепенно спирально смещаясь к центру и пропадая в небесном теле. Предположительно, этот эффект должен проявляться на обломочных дисках, окружающих звезды, то есть молекулы, которые присутствуют в дисках, рано или поздно оказываются в исключительной близости от карлика. Твердые вещества подвержены испарению, формируется газ - таковой в виде дисков был зафиксирован вокруг нескольких наблюдаемых карликов. Рано или поздно газ доходит до поверхности карлика, перенося сюда металлы.

Выявленные факты оцениваются астрономами как существенный вклад в науку, поскольку позволяют предположить, как сформированы планеты. Это важно, так как объекты для исследований, привлекающие специалистов, зачастую недоступны. К примеру, планеты, вращающиеся вокруг превышающих Солнце габаритами звезд, крайне редко можно изучить - это слишком сложно на том техническом уровне, который доступен нашей цивилизацией. Вместо этого, люди получили возможность изучения систем планет после превращения звезд в карлики. Если удастся развиваться в этом направлении, наверняка можно будет выявить новые данные о наличии систем планет и их отличительных характеристиках.

Белые карлики, в атмосфере которых выявлены металлы, позволяют составить представление о химическом составе комет и иных космических тел. Фактически иного способа для оценки состава у ученых просто нет. К примеру, изучая планеты-гиганты, можно составить представление только о внешнем слое, но нет никакой достоверной информации о внутреннем содержании. Это касается и нашей «домашней» системы, поскольку химический состав можно изучить лишь у того небесного тела, которое упало на поверхность Земли либо того, куда удалось приземлить аппарат для исследований.

Как все происходит?

Рано или поздно наша планетарная система также станет «домом» белого карлика. Как говорят ученые, звездное ядро располагает ограниченным объемом вещества для получения энергии, и рано или поздно термоядерные реакции исчерпываются. Газ уменьшается в объемах, плотность повышается до тонны на кубический сантиметр, в то время как во внешних слоях реакция по-прежнему протекает. Звезда расширяется, становится красным гигантом, радиус которого сравним с сотнями звезд, равных Солнцу. Когда внешняя оболочка прекращает «горение», в течение 100 000 лет происходит рассеивание вещества в пространстве, что сопровождается формированием туманности.

Ядро звезды, освободившись от оболочки, понижает температуру, что и приводит к формированию белого карлика. Фактически такая звезда - это высокоплотный газ. В науке карлики нередко именуют вырожденными небесными телами. Если бы наше светило сжалось и его радиус насчитывал бы лишь несколько тысяч километров, но вес бы полностью сохранился, то здесь также имел бы место белый карлик.

Особенности и технические моменты

Рассматриваемый тип космического тела способен светиться, но этот процесс объясняется иными механизмами, отличными от термоядерных реакций. Свечение называют остаточным, оно объясняется понижением температуры. Карлик сформирован веществом, ионы которого иногда холоднее 15000 К. Элементам характерны колебательные движения. Постепенно небесное тело становится кристаллическим, его свечение ослабевает, и карлик эволюционирует в коричневый.

Ученые выявили предел массы для такого небесного тела - до 1,4 веса Солнца, но не больше этой границы. Если масса превышает этот предел, звезда существовать не может. Это объясняется давлением вещества, находящегося в сжатом состоянии - оно меньше гравитационного притяжения, сжимающего вещество. Происходит очень сильное сжатие, которое приводит к появлению нейтронов, вещество нейтронизируется.

Процесс сжатия может привести к вырождению. В этом случае формируется нейтронная звезда. Второй вариант - продолжение сжатия, рано или поздно приводящее к взрыву.

Общие параметры и особенности

Болометрическая светимость рассматриваемой категории небесных тел относительно свойственной Солнцу меньше приблизительно в десять тысяч раз. Радиус карлика меньше солнечного в сто раз, в то время как вес сравним со свойственным основной звезде нашей системы планет. Для определения границы массы для карлика был рассчитан предел Чандрасекара. При его превышении карлик эволюционирует в другую форму небесного тела. Фотосфера звезды в среднем состоит из плотного вещества, оцененного в 105-109 г/см3. В сравнении с главной звездной последовательностью это плотнее приблизительно в миллион раз.

Некоторые астрономы считают, что лишь 3% всех звезд в галактике - это белые карлики, а некоторые убеждены, что к такому классу принадлежит каждая десятая. Оценки столь сильно разнятся о причине сложности наблюдения за небесными телами - они удалены от нашей планеты и слишком слабо светятся.

Истории и имена

В 1785 в списке двойных звезд появилось тело, наблюдениями за которым занимался Гершель. Звезду назвали 40 Эридана B. Именно она считается первой увиденной человеком из категории белых карликов. В 1910 Расселл заметил, что этому небесному телу свойственен крайне низкий уровень свечения, хотя цветовая температура довольно высокая. Со временем было решено, что небесные тела такого класса необходимо выделять в отдельную категорию.

В 1844 Бессель, исследуя информацию, полученную при слежении за Проционом В, Сириусом В, решил, что обе они время от времени смещаются с прямой линии, а значит, там есть близкие спутники. Такое предположение научному сообществу показалось маловероятным, так как не удалось увидеть никакого спутника, в то время как отклонения могли бы объясниться только небесным телом, масса которого исключительно велика (аналогична Сириусу, Проциону).

В 1962 Кларк, работая с наиболее крупным телескопом из существовавших в тот момент, выявил вблизи Сириуса очень тусклое небесное тело. Именно его и назвали Сириусом В, тем самым спутником, который задолго до этого предположил Бессель. В 1896 исследования показали, что Процион также имеет спутника - он получил название Процион В. Следовательно, идеи Бесселя полностью подтвердились.

Когда мы смотрим на ночное небо, нам кажется, что все звезды одинаковы. Человеческий глаз с большим трудом различает видимый спектр света, излучаемого далекими небесными светилами. Звезда, которую еще едва видно, может уже давно погасла, и мы наблюдаем только ее свет. Каждая из звезд проживает свою жизнь. Одни светят ровным белым светом, другие выглядят пульсирующими неоновым светом яркими точками. Третьи представляют собой тусклые светящиеся пятнышки, едва заметные в небе.

Каждая из звезд пребывает на определенном этапе своей эволюции и с течением времени превращается в небесное светило другого класса. Вместо яркой и ослепительной точки на ночном небе появляется новый космический объект — белый карлик — стареющая звезда. Этот этап эволюции характерен для большинства обычных звезд. Не избежать подобной участи и нашему Солнцу .

Что такое белый карлик: звезда или фантом?

Только недавно, в XX веке ученым стало понятно, что белый карлик – это все, что осталось в космосе от обычной звезды. Изучение звезд с точки зрения термоядерной физики дало представление о процессах, которые бушуют в недрах небесных светил. Звезды, образовавшиеся в результате взаимодействия сил гравитации, представляют собой колоссальный термоядерный реактор, в котором постоянно происходят цепные реакции деления ядер водорода и гелия. В таких сложных системах темпы эволюции компонентов неодинаковы. Огромные запасы водорода обеспечивают жизнь звезды на миллиарды лет вперед. Термоядерные водородные реакции способствуют образованию гелия и углерода. Следом за термоядерным синтезом в дело вступают законы термодинамики.

После того, как звезда израсходовала весь водород, ее ядро под воздействием гравитационных сил и колоссального внутреннего давления начинает сжиматься. Теряя основную часть своей оболочки, небесное светило достигает предел массы звезды, при которой может существовать как белый карлик, лишенный источников энергии, продолжая по инерции излучать тепло. На самом деле белые карлики — это звезды из класса красных гигантов и сверхгигантов, утративших наружную оболочку.

Термоядерный синтез истощает звезду. Водород иссякает, а гелий, как более массивный компонент может проэволюционировать дальше, достигнув нового состояния. Все это приводит к тому, что сначала красные гиганты образуются на месте обычной звезды, и звезда покидает главную последовательность. Таким образом, небесное светило, встав на путь своего медленного и неизбежного старения постепенно трансформируется. Старость звезды – это долгий путь в небытие. Все это происходит очень медленно. Белый карлик является небесным светилом, с которым вне пределов главной последовательности, происходит неизбежный процесс угасания. Реакция синтеза гелия приводит к тому, что ядро стареющей звезды сжимается, светило окончательно теряет свою оболочку.

Эволюция белых карликов

Вне главной последовательности происходит процесс угасания звезды. Под воздействием сил гравитации нагретый газ красных гигантов и сверхгигантов разлетается по Вселенной, образуя молодую планетарную туманность. Через сотни тысяч лет туманность рассеивается, а на ее месте остается вырожденное ядро красного гиганта белого цвета. Температуры такого объекта достаточно высоки от 90000 К, оценивая по линии поглощения спектра и до 130000 К, когда оценка осуществляется в пределах рентгеновского спектра. Однако ввиду небольших размеров, остывание небесного светила происходит очень медленно.

Та картина звездного неба, которую мы наблюдаем, имеет возраст в десятки-сотни миллиардов лет. Там, где мы видим белые карлики, в пространстве уже возможно существует другое небесное тело. Звезда перешла в класс черного карлика, конечный этап эволюции. В действительности на месте звезды остается сгусток материи, температура которого равняется температуре окружающего пространства. Главная особенность этого объекта — полное отсутствие видимого света. Заметить такую звезду в обычный оптический телескоп достаточно трудно ввиду слабой светимости. Основным критерием обнаружения белых карликов является наличие мощного ультрафиолетового излучения и рентгеновских лучей.

Все известные белые карлики в зависимости от своего спектра делятся на две группы:

  • объекты водородные, спектрального класса DA, в спектре которых отсутствуют линии гелия;
  • гелиевые карлики, спектральный класс DB. Основные линии в спектре приходятся на гелий.

Белые карлики водородного типа составляют большинство популяции, до 80% из всех известных на данный момент объектов подобного типа. На гелиевые карлики приходится оставшиеся 20%.

Этап эволюции, в результате которой появляется белый карлик, является последним для немассивных звезд, к которым относится и наша звезда Солнце. На данном этапе звезда обладает следующими характеристиками. Несмотря на столь маленькие и компактные размеры звезды, ее звездное вещество весит ровно столько, сколько требуется для ее существования. Другими словами, белые карлики, которые имеют радиусы в 100 раз меньше радиуса солнечного диска, имеют массу равную массе Солнца или даже весят больше, чем наша звезда.

Этого говорит о том, что плотность белого карлика в миллионы раз выше плотности обычных звезд, находящихся в пределах главной последовательности. К примеру, плотность нашей звезды 1,41 г/см³, тогда как плотность у белых карликов может достигать колоссальных значений 105-110 г/см3.

В отсутствие собственных источников энергии, такие объекты постепенно остывают, соответственно имеют невысокую температуру. На поверхности белых карликов зафиксирована температура в диапазоне 5000-50000 градусов Кельвина. Чем старше звезда, тем ниже ее температура.

К примеру, соседка самой яркой звезды нашего небосклона Сириуса А, белый карлик Сириус В, имеет температуру поверхности всего 2100 градусов Кельвина. Внутри это небесное тело значительно горячее, почти 10000°К. Сириус В стал первым из белых карликов, обнаруженных астрономами. Цвет белых карликов, открытых после Сириуса В, оказался таким же белым, что и послужило поводом дать такое название этому классу звезд.

По яркости света Сириус А в 22 раза превышает яркость нашего Солнца, а вот ее сестра Сириус В светит тусклым светом, заметно уступая по яркость своей ослепительной соседке. Обнаружить присутствие белого карлика удалось благодаря снимкам Сириуса, сделанным рентгеновским телескопом Чандра. Белые карлики не обладают ярко выраженным световым спектром, поэтому принято считать такие звезды достаточно холодными темными космическими объектами. В инфракрасном и в рентгеновском диапазоне Сириус В светит значительно ярче, продолжая излучать огромное количество тепловой энергии. В отличие от обычных звезд, где источником рентгеновских волн служит корона, источником излучения у белых карликов является фотосфера.

Находясь вне главной последовательности по распространенности эти звезды не самые распространенные объекты во Вселенной. В нашей галактике на долю белых карликов приходится всего 3-10% небесных светил. Для этой части звездного населения нашей галактики неопределенность оценки затрудняет слабость излучения в видимой области поляры. Другими словами, свет белых карликов не в состоянии преодолеть большие скопления космического газа, из которых состоят рукава нашей галактики.

Научный взгляд на историю появления белых карликов

Дальше в небесных светилах на месте иссякших основных источников термоядерной энергии возникает новый источник термоядерной энергии, тройная гелиевая реакция, или тройной альфа-процесс, обеспечивающая выгорание гелия. Эти предположения полностью подтвердились, когда появилась возможность наблюдать поведение звезд в инфракрасном диапазоне. Спектр света обычной звезды существенно отличается от той картины, которую мы наблюдаем, глядя на красные гиганты и белые карлики. Для вырожденных ядер таких звезд существует верхний предел массы, в противном случае небесное тело становится физически неустойчивым и может наступить коллапс.

Объяснить столь высокую плотность, которую имеют белые карлики с точки зрения физических законов практически невозможно. Происходящие процессы стали понятны, только благодаря квантовой механике, которая позволила изучить состояние электронного газа звездного вещества. В отличие от обычной звезды, где для изучения состояния газа используется стандартная модель, в белых карликах ученые имеют дело с давлением релятивистского вырожденного электронного газа. Говоря понятным языком, наблюдается следующее. При огромном сжатии в 100 и более раз, звездное вещество становится похоже на один большой атом, в котором все атомные связи и цепочки сливаются воедино. В таком состоянии электроны образуют вырожденный электронный газ, новое квантовое образование которого может противостоять силам гравитации. Этот газ образует плотное ядро, лишенное оболочки.

При детальном изучении белых карликов с помощью радиотелескопов и рентгеновской оптики оказалось, что эти небесные объекты не такие простые и скучные, как может показаться на первый взгляд. Учитывая отсутствие внутри таких звезд термоядерных реакций, невольно возникает вопрос – откуда берется огромное давление, сумевшее уравновесить силы гравитации и силы внутреннего притяжения.

В результате исследований ученых физиков в области квантовой механики, была создана модель белого карлика. Под действием сил гравитации, звездное вещество сжимается до такой степени, что электронные оболочки атомов разрушаются, электроны начинают свое собственное хаотичное движение, переходя из одного состояния в другое. Ядра атомов в отсутствие электронов образуют систему, образуя между собой прочную и устойчивую связь. Электронов в звездном веществе настолько много, что образуется много состояний, соответственно скорость электронов сохраняется. Большая скорость элементарных частиц создает колоссальное внутренне давление электронного вырожденного газа, который в состоянии противостоять силам гравитации.

Когда стали известны белые карлики?

Несмотря на то, что первым белым карликом, открытым астрофизиками, считается Сириус В, имеются сторонники версии более раннего знакомства научного сообщества со звездными объектами этого класса. Еще в 1785 году астроном Гершель впервые включил в звездный каталог тройную звездную систему в созвездии Эридана, разделив все звезды по отдельности. Только спустя 125 лет астрономы выявили аномально низкую светимость 40 Эридана В при высокой цветовой температуре, что послужило поводом для выделения таких объектов в отдельный класс.

Объект обладал слабым блеском, соответствующим звездной величине +9,52m. Белый карлик обладал массой ½ солнечной и имел диаметр меньше земного. Эти параметры противоречили теории внутреннего строения звезд, где светимость, радиус и температура поверхности звезды являлись ключевыми параметрами определения класса звезды. Маленький диаметр, низкая светимость с точки зрения физических процессов не соответствовали высокой цветовой температуре. Такое несоответствие вызывало много вопросов.

Аналогичным образом выглядела ситуация с другим белым карликом — Сирусом В. Являясь спутником самой яркой звезды белый карлик имеет небольшие размеры и огромную плотность звездного вещества — 106 г/см3. Для сравнения, вещество этого небесного светила количеством со спичечный коробок весило бы на нашей планете более миллиона тонн. Температура этого карлика в 2,5 раза выше главной звезды системы Сириус.

Последние научные выводы

Небесные светила, с которыми мы имеем дело, представляют собой естественный природный полигон, благодаря которому человек может изучить строение звезд, этапы их эволюции. Если рождение звезд можно объяснить физическими законами, которые одинаково действуют в любой обстановке, то эволюция звезд представлена совершенно иными процессами. Научное объяснение многих из них переходит в категорию квантовой механики, науки об элементарных частицах.

Белые карлики выглядят в этом свете самыми загадочными объектами:

  • Во-первых, очень любопытно выглядит процесс вырождения ядра звезды, в результате которого звездное вещество не разлетается в космосе, а наоборот, сжимается до невообразимых размеров;
  • Во-вторых, при отсутствии термоядерных реакций, белые карлики остаются достаточно горячими космическими объектами;
  • В-третьих, эти звезды, имея высокую цветовую температуру, обладают низкой светимостью.

На эти и многие другие вопросы учеными всех мастей, астрофизикам, физикам и ядерщикам еще предстоит дать ответы, которые позволят предугадать судьбу нашего родного светила. Солнце ожидает судьба белого карлика, однако остается под вопросом, сможет ли человек наблюдать Солнце в этой роли.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них