ом в 1912. Действие В. к. основано на явлении конденсации пересыщенного пара, т. e. на образовании мелких капелек жидкости на каких-либо центрах конденсации, например на ионах, образующихся вдоль следа быстрой заряженной частицы. Капельки достигают видимых размеров и могут быть сфотографированы. Исследуемые частицы могут либо испускаться помещаемым внутри камеры источником, либо попадать в камеру извне через прозрачное для них окно. В. к. обычно помещают в магнитное поле. Природу и свойства исследуемых частиц можно установить по величине пробега и импульса частиц. Величина импульса измеряется по искривлению следов частиц под действием магнитного поля.

Для исследования частиц с малой энергией камеры заполняют газом при давлении меньше атмосферного; для исследования частиц высоких энергий камеру наполняют газом до давлений в десятки атм. Широко варьируются размеры и форма камер, материалы их стенок. На рис. 1 и 2 приведены снимки ядерных процессов, наблюдавшихся при помощи В. к.

В. к. сыграла важную роль в изучении строения вещества. На протяжении нескольких десятилетий метод В. к. был практически единственным визуальным методом регистрации ядерных излучений. Однако в последние годы В. к. уступила место пузырьковым камерам (См. Пузырьковая камера) и искровым камерам (См. Искровая камера).

Лит.: Принципы и методы регистрации элементарных частиц, пер. с англ., М., 1963.

Е. М. Лейкин.

Рис. 1. Ядерная реакция 14 N (․α, р) 17 О, зарегистрированная в камере Вильсона. На снимке видны следы бомбардирующих ․α-частиц (линии, направленные снизу вверх), а также образующие вилку следы продуктов реакции - протона и ядра 17 О.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Вильсона камера" в других словарях:

    Прибор для наблюдения следов (треков) заряж. ч ц. Основан на конденсации пересыщенного пара на ионах, образующихся вдоль траектории заряж. ч цы. Ч цы могут либо испускаться источником, помещённым внутри камеры, либо попадать в неё извне. Треки… … Физическая энциклопедия

    Первый трековый детектор заряженных частиц. Изобретена Ч. Вильсоном в 1912. Действие Вильсона камеры основано на конденсации пересыщенного пара (образовании мелких капелек жидкости) на ионах, возникающих вдоль следа (трека) заряженной частицы. В… … Большой Энциклопедический словарь

    Первый трековый детектор заряженных частиц. Изобретена Ч. Вильсоном в 1912. Действие камеры Вильсона основано на конденсации пересыщенного пара (образовании мелких капелек жидкости) на ионах, возникающих вдоль следа (трека) заряженной частицы.… … Энциклопедический словарь

    Камера Вильсона один из первых в истории приборов для регистрации следов (треков) заряженных частиц. Изобретена шотландским физиком Чарлзом Вильсоном между 1910 и 1912 гг. Принцип действия камеры использует явление конденсации перенасыщенного… … Википедия

    Первый трековый детектор заряженных частиц. Изобретена Ч. Вильсоном в 1912. Действие В. к. осн. на конденсации пересыщенного пара (образовании мелких капелек жидкости) на ионах, возникающих вдоль следа (трека) заряж. частицы. В дальнейшем… … Естествознание. Энциклопедический словарь

    - (туманная камера), прибор, служащий для идентификации заряженных частиц. Камера была изобретена в 1880 х гг. английским физиком Чарльзом Вильсоном с целью изучения атомной радиации и усовершенствовалась на протяжении нескольких десятилетий.… … Научно-технический энциклопедический словарь

    - (позднелат. camera комната, келья) какая либо закрывающаяся комната либо замкнутое пространство либо устройство, важной частью которого является замкнутая полость: Камера кессон, изолированный от окружающего водоема герметичными… … Википедия

    камера Вильсона - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN Wilson chambercloud chamber … Справочник технического переводчика

Камера Вильсона - трековый детектор элементарных заряженных частиц, в котором трек (след) частицы образует цепочка мелких капелек жидкости вдоль траектории её движения.

Принцип работы первой камеры Вильсона. На нитке 1 подвешены шарики 2 и 3. Нитку пережигали, одновременно открывая вентиль 4. Шарики, падая, замыкали последовательно контакты 5 и 6, подключенные к источникам высокого напряжения - батареям лейденских банок. Включалась рентгеновская трубка 7, ионизирующая своим излучением газ в камере, и спустя сотые доли секунды в разряднике 8 возникала искра, освещающая треки. Их снимал фотоаппарат 9. Так без малого сто лет назад начались исследования микромира.

Действие камеры Вильсона основано на явлении конденсации пересыщенного пара, т.e. на образовании мелких капелек жидкости на каких-либо центрах конденсации, например на ионах, образующихся вдоль следа быстрой заряженной частицы. Капли жидкости вырастают до размеров достаточных для наблюдения (10-3 -10-4 см) и фотографирования при хорошем освещении.

Пространственное разрешение камеры Вильсона обычно 0.3 мм.

Рис. 3.

Для исследования частиц с малой энергией камеры заполняют газом при давлении меньше атмосферного. Для исследования частиц высоких энергий камеру наполняют газом до давлений в десятки атм. Рабочей средой чаще всего является смесь паров воды и спирта под давлением 0.1-2 атмосферы (водяной пар конденсируется главным образом на отрицательных ионах, пары спирта - на положительных ионах). Широко варьируются размеры и форма камер, материалы их стенок.

Камера Вильсона сыграла важную роль в изучении строения вещества. На протяжении нескольких десятилетий этот детектор был практически единственным визуальным методом регистрации ядерных излучений. Однако в последние годы камера Вильсона уступила место пузырьковым и искровым камерам.

Д.В. Скобельцын усовершенствовал камеру Вильсона, поместив её в мощное магнитное поле, параллельно оси камеры. По искривлению траектории можно судить о знаке заряда, а если известны заряд и масса частицы, то по радиусу кривизны траектории можно определить скорость и энергию частицы. Если температура жидкости выше температуры кипения при данном давлении, а жидкость не вскипает, то такую жидкость называют перегретой. Это состояние не стабильно, оно разрушается, если создать в жидкости центры парообразования. Идея создания пузырьковой камеры принадлежит английскому ученому Глезеру (1952 год). Если через камеру, содержащую перегретую жидкость, пролетает частица большой энергии, то на ионах, образовавшихся на пути этой частицы, возникают пузырьки пара и дают след траектории частицы, который можно сфотографировать.

Рис. 4.

Быстрые заряженные частицы производят на зерна фотоэмульсии такое же воздействие, как и кванты света. Так как плотность вещества эмульсии во много раз превышает плотность воздуха, то след, оставленный быстрой частицей в эмульсии в тысячи раз короче, чем в воздухе. Поэтому для исследования частиц очень большой энергии применяются стопки, состоящие из листков эмульсии. Метод толстослойных фотоэмульсий был предложен советскими учеными Мысовским и Ждановым.

Для исследования распределения заряженных частиц по скоростям используются черенковские счетчики, основанные регистрации излучения Вавилова-Черенкова, возникающего при движении в среде заряженной частицы, имеющей скорость, большую скорости света в данной среде.

Биологические методы регистрации излучений.

Для регистрации ионизирующих излучений используют также биологические методы. Величину дозы оценивают по уровню летальности живых организмов, степени лейкомии, количеству хромосомных аберраций, изменению окраски и гиперемии кожи, выпадению волос, появлению в выделениях дезоксицитидина и др. Биологические методы не очень точны и менее чувствительны по сравнению с физическими методами. Однако они незаменимы в случае определения относительной биологической эффективности тяжелых частиц с большой энергией, а также при учете индивидуальных различий радиочувствительности.

Расчетные методы регистрации излучений.

В расчетных методах дозу излучения определяют путем математических вычислений. Это единственно возможный метод для определения дозы от инкорпорированных радионуклидов. Математический метод широко применяют для определения поглощенной и интегральной доз, исходя из экспозиционной и терапевтической доз от закрытых радиоактивных препаратов.

Дозиметрические приборы позволяют определять экспозиционную или поглощенную дозы излучения или мощность доз. Они предназначены для оценки радиационной обстановки в жилых, рабочих помещениях и на местности. Эти приборы просты в эксплуатации. К такому типу приборов относятся сигнализаторы-индикаторы, позволяющие выявить и оценивать мощность гамма-излучений с помощью световой и звуковой индикации. Измерители-индикаторы позволяют выявить радиоактивное загрязнение и одновременно измерять мощность гамма излучения. В общем случае оценку мощности гамма-излучения проводят на высоте 1 метр от поверхности земли и в 30 метрах от строений. Если снять заднюю крышку дозиметра можно измерить плотность потока бета-излучения, пользуясь пересчетной формулой, указанной в техническом описании прибора.

При своей простоте дозиметры позволяют определять уровень загрязнения лишь качественно.

Например, если дозиметр показывает 10 мкР/ч (0,1 мкЗв/ч) на расстоянии 5 см от одного килограмма продукта, это соответствует удельной активности 3500 Бк/кг, что свидетельствует об очень высоком уровне радиоактивного загрязнения.

Для более точных измерений применяют радиометры. Исследуемые пробы (продукты, почва, вода) помещают в отдельный сосуд, который изолирован от внешнего излучения, что позволяет зафиксировать даже незначительную величину излучения. Одним из наиболее удобных радиометров является Беккерель-монитор "Berthold", который позволяет определить загрязненность продуктов питания с точностью до 2 %.

К наиболее распространенным отечественным приборам радиационного контроля, которыми пользуется население, относятся:

Дозиметр "Сосна" - позволяет определить мощность экспозиционной дозы гамма-излучения и плотность потока бета-излучения. Имеет звуковую сигнализацию. Схожие характеристики имеет дозиметр "Белла".

Дозиметр-радиометр "Припять" измеряет степень радиоактивного загрязнения поверхностей продуктов.

Дозиметр-радиометр РКСБ-104 также измеряет уровень радиации и загрязненность объектов радионуклидами.

Существуют и другие приборы с подобными функциями.

ионизирующий детектор гейгер пузырьковый

Табл. 1. Единицы дозиметрии

Камера Вильсона.

Камера Вильсона (рис. 38.1) была изобретена шотландским физиком Ч.Вильсоном в 1910–1912 гг. и являлась одним из первых приборов для регистрации заряженных частиц. В основе действия камеры лежит свойство конденсации капелек воды на ионах, образовавшихся вдоль трека (следа) частицы. Появление камеры Вильсона не только позволило увидеть треки частиц, но и сделало возможным «распознавание» этих частиц (заряд, энергия), а также дало много нового материала, который послужил основанием для некоторых важных открытий.

Рисунок 38.1.

Принцип работы камеры Вильсона довольно прост. Известно, что если парциальное давление водяного пара превышает его давление насыщения при данной температуре, то может образоваться туман и выпасть роса. Показатель перенасыщения S – это отношение парциального давления к давлению насыщения при данной температуре. Для самопроизвольной конденсации пара в чистом воздухе нужны большие показатели перенасыщения (S ~ 10), но если в воздухе присутствуют посторонние частицы, способные служить центрами конденсации, то образование микрокапелек может начаться и при меньших значениях S.

Частицы, образующиеся при радиоактивном распаде, обладают достаточной энергией для ионизации большого числа молекул газа, составляющего среду. Образующиеся при пролете частицы ионы эффективно притягивают молекулы воды вследствие несимметричности распределения заряда в этих молекулах. Таким образом, частица, высвободившаяся при радиоактивном распаде, пролетая перенасыщенную среду, должна оставлять за собой след из капелек воды. Его можно увидеть и заснять на фотопластинку в камере Вильсона.


Камера Вильсона представляет собой цилиндр, заполненный парами спирта и воды. В камере имеется поршень, при быстром опускании которого вследствие адиабатического расширения температура падает, и пары приобретают способность легко конденсироваться (показатель перенасыщения 1 < S < 10). Влетающие через отверстие в камере частицы вызывают ионизацию молекул среды, то есть появление туманного следа – трека частицы. Вследствие того, что частицы обладают разными энергиями, размерами и зарядами, треки от различных частиц выглядят по-разному. Например, трек электрона выглядит тоньше и прерывистей, чем трек, полученный при пролете значительно более массивной альфа-частицы.

Принцип действия приборов для регистрации элементарных частиц. Любое устройство, регистрирующее элементарные частицы или движущиеся атомные ядра, подобно заряженному ружью с взведенным курком. Небольшое усилие при нажатии на спусковой крючок ружья вызывает эффект, не сравнимый с затраченным усилием, - выстрел.

Регистрирующий прибор - это более или менее сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу. В настоящее время используется множество различных методов регистрации частиц.

В зависимости от целей эксперимента и условий, в которых он проводится, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.

Газоразрядный счетчик Гейгера. Счетчик Гейгера - один из важнейших приборов для автоматического подсчета частиц.

Счетчик (рис. 13.1) состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Действие счетчика основано на ударной ионизации. Заряженная частица (электрон, -частица и т. д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.

Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный paзряд, необходимо погасить. Это происходит автоматически. Так как в момент появления импульса тока падение напряжения на нагрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается - настолько, что разряд прекращается.

Счетчик Гейгера применяется в основном для регистрации электронов и -квантов (фотонов большой энергии).

В настоящее время созданы счетчики, работающие на и пых принципах.

Камера Вильсона. Счетчики позволяют лишь регистрировать факт прохождения через них частицы и фиксировать некоторые ее характеристики. В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать окном в микромир, т. е. мир элементарных частиц и состоящих из них систем.

Принцип действия камеры Вильсона основан на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создает вдоль своей траектории движущаяся заряженная частица.

Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению (рис. 13.2). При резком опускании поршня, вызванном уменьшением давления под ним, пар в камере адиабатно расширяется. Вследствие этого происходит охлаждение, и пар становится перенасыщенным. Это -неустойчивое состояние пара: он легко конденсируется, если в сосуде появляются центры конденсации. Центрами

конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру сразу после расширения пара, то на ее пути появляются капельки воды. Эти капельки образуют видимый след пролетевшей частицы - трек (рис. 13.3). Затем камера возвращается в исходное состояние, и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима варьируется от нескольких секунд до десятков минут.

Информация, которую дают треки в камере Вильсона, значительно богаче той, которую могут дать счетчики. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека - ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщины. Советские физики П. Л. Капица и Д. В. Скобельцын предложили помещать камеру Вильсона в однородное магнитное поле.

Магнитное поле действует на движущуюся заряженную частицу с определенной силой (силой Лоренца). Эта сила искривляет траекторию частицы, не изменяя модуля ее скорости. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы к ее массе. Если известна одна из этих величин, то можно вычислить другую. Например, по заряду частицы и кривизне ее трека можно найти массу частицы.

Пузырьковая камера. В 1952 г. американским ученым Д. Глейзером было предложено использовать для обнаружения треков частиц перегретую жидкость. В такой жидкости на ионах (центрах парообразования), образующихся при движении быстрой заряженной частицы, появляются пузырьки пара, дающие видимый трек. Камеры данного типа были названы пузырьковыми.

В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то, что температура жидкости несколько выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой, и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженые частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара (рис. 1.4.4). И качестве жидкости используются главным образом жидкий водород и пропан. Длительность рабочего цикла пузырьковой камеры невелика - около 0,1 с.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.

Треки в камере Вильсона и пузырьковой камере - один из главных источников информации о поведении и свойствах частиц.

Наблюдение следов элементарных частиц производит сильное впечатление, создает ощущение непосредственного соприкосновения с микромиром.

ЧЕРЕНКОВСКИЙ СЧЁТЧИК детектор для регистрации заряж. ч-ц, в к-ром используется Черенкова Вавилова излучение. При движении заряж. ч-цы в среде со скоростью v, превышающей фазовую скорость света c/n в данной среде (n - показатель преломления среды), ч-ца излучает в направлении, составляющем угол q с её траекторией. Угол q связан со скоростью ч-цы v и показателем преломления среды га соотношением: cosq=c/vn=1/bn, b=v/c. (1) Интенсивность W черенковского излучения на 1 см пути заряж. ч-цы в интервале длин волн от l1 до l2 выражается соотношением:


Похожая информация.


ВИЛЬСОНА КАМЕРА, трековый детектор частиц. Создана Ч. Т. Р. Вильсоном в 1912 году. В Вильсона камере следы (треки) заряженных частиц становятся видимыми благодаря конденсации пересыщенного пара на ионах, образованных движущейся заряженной частицей в газе. Возникшие на ионах капли жидкости вырастают до больших размеров, и при достаточно сильном освещении их можно сфотографировать. Пересыщение достигается быстрым (почти адиабатическим) расширением смеси газа и пара и определяется отношением давления р 1 пара к давлению р 2 насыщенных паров при температуре, устанавливающейся после расширения. Величина пересыщения, необходимая для образования капель на ионах, зависит от природы пара и знака заряда иона. Так, водяной пар конденсируется преимущественно на отрицательных ионах, пары этилового спирта - на положительных. В Вильсона камере чаще используют смесь воды и спирта, в этом случае требуемое пересыщение р 1 /р 2 ≈1,62, что является минимальным из всех возможных значений.

Исследуемые частицы могут либо испускаться помещаемым внутри камеры источником, либо попадать в камеру через прозрачное для них окно. Природу и свойства исследуемых частиц можно установить по длине пробега и импульсу частиц. Для измерения импульсов частиц Вильсона камеру помещают в магнитное поле; для образования вторичных частиц в Вильсона камере располагают пластины из плотного материала, оставляя между ними зазоры для наблюдения следов частиц.

Вильсона камера может использоваться в так называемом управляемом режиме, когда она приводится в действие пусковым устройством, срабатывающим при попадании в неё исследуемой частицы. Полное время цикла обычной Вильсона камеры ≥ 1 мин. Оно складывается из времени, нужного для медленного (очищающего) расширения, времени, необходимого для прекращения движения газа, и времени диффузии пара в газе. В качестве источников света при фотографировании треков частиц используют импульсные лампы большой мощности.

С помощью Вильсона камеры сделан ряд открытий в ядерной физике, физике элементарных частиц. Наиболее яркие из них связаны с исследованиями космических лучей: открытие широких атмосферных ливней (1929), позитрона (1932), обнаружение следов мюонов, открытие странных частиц. В 1950-60-х годах Вильсона камера была практически полностью вытеснена пузырьковой камерой, обладающей большим быстродействием и поэтому более пригодной к работе на современных ускорителях заряженных частиц.

Лит.: Дас Гупта Н., Гош С. Камера Вильсона и ее применения в физике. М., 1947; Вильсон Дж. Камера Вильсона. М., 1954; Принципы и методы регистрации элементарных частиц. М., 1963.