Ответ - Множество (-∞;+∞) называется числовой прямой, а любое число - точкой этой прямой. Пусть a - произвольная точка числовой прямой и δ

Положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а.

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным. Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Числовым промежутком называется связанное множество действительных чисел, то есть такое, что если 2 числа принадлежат этому множеству, то все числа заключенные между ними также принадлежат этому множеству. Существует несколько в некотором смысле различных типов непустых числовых промежутков: Прямая, открытый луч, замкнутый луч, отрезок, полуинтервал, интервал

Числовая прямая

Множество всех действительных чиселназывают ещё числовой прямой. Пишут.

На практике нет необходимости различать понятие координатной или числовой прямойв геометрическом смысле и понятие числовой прямой, введённое настоящим определением. Поэтому эти разные понятия обозначаются одним и тем же термином.

Открытый луч

Множество чисел таких, чтоилиназывают открытым числовым лучом. Пишутили соответственно:.

Замкнутый луч

Множество чисел таких, чтоилиназывают замкнутым числовым лучом. Пишутили соответственно:.

Множество чисел таких, чтоназывают числовым отрезком.

Замечание. В определении не оговаривается, что . Предполагается, что случайвозможен. Тогда числовой промежуток превращается в точку.

Интервал

Множество чисел , таких чтоназывают числовым интервалом.

Замечание. Совпадение обозначений открытого луча, прямой и интервала не случайно. Открытый луч можно понимать как интервал, один из концов которого удалён в бесконечность, а числовую прямую - как интервал, оба конца которого удалены в бесконечность.

Полуинтервал

Множество чисел , таких чтоилиназывают числовым полуинтервалом.

Пишут или, соответственно,

3.Функция.График функции. Способы задания функции.

Ответ - Если даны две переменные х и y, то говорят, что переменная y является функцией от переменной х, если задана такая зависимость между этими переменными, которая позволяет для каждого значения ходнозначно определить значение у.

Запись F = у(х) означает, что рассматривается функция, позволяющая для любого значения независимой переменной х (из числа тех, которые аргумент х вообще может принимать) находить соответствующее значение зависимой переменной у.

Способы задания функции.

Функция может быть задана формулой, например:

у = 3х2 – 2.

Функция может быть задана графиком. С помощью графика можно установить, какое значение функции соответствует указанному значению аргумента. Обычно это приближённое значение функции.

4.Основные характеристики функции: монотонность, четность, периодичность.

Ответ - Периодичность Определение. Функция f называется периодичной, если существует такое число
, что f(x+
)=f(x), для всех xD(f). Естественно, что таких чисел существует бесчисленное множество. Наименьшее положительное число ^ Т называется периодом функции. Примеры. А. у = соs х, Т = 2. В. у = tg х, Т =. С. у = {х}, Т = 1. D. у =, эта функция не является периодической. Четность Определение. Функция f называется четной, если для всех х из D(f) выполняется свойство f(-х) = f(х). Если f(-х) = -f(х), то функция называется нечетной. Если ни одно из указанных соотношений не выполняется, то функция называется функцией общего вида. Примеры. А. у = соs (х) - четная; В. у = tg (х) - нечетная; С. у = {х}; y=sin(x+1) – функции общего вида. Монотонность Определение. Функция f: X -> R называется возрастающей (убывающей), если для любых
выполняется условие:
Определение. Функция Х ->R называется монотонной на X, если она на X возрастающая или убывающая. Если f монотонна на некоторых подмножествах из X, то она называется кусочно-монотонной. Пример. у = cos х - кусочно-монотонная функция.

Числовой интервал

Промежуток , открытый промежуток , интервал - множество точек числовой прямой, заключённых между двумя данными числами a и b , то есть множество чисел x , удовлетворяющих условию: a < x < b . Промежуток не включает концов и обозначается (a ,b ) (иногда ]a ,b [ ), в отличие от отрезка [a ,b ] (замкнутого промежутка), включающего концы, то есть состоящего из точек .

В записи (a ,b ) , числа a и b называют концами промежутка. Промежуток включает все вещественные числа , промежуток - все числа меньшие a и промежуток - все числа большие a .

Термин промежуток используется в составе сложных терминов:

  • при интегрировании - промежуток интегрирования ,
  • при уточнении корней уравнения - промежуток изоляции
  • при определении сходимости степенных рядов - промежуток сходимости степенного ряда .

Кстати, в английском языке словом interval называется отрезок . А для обозначения понятия интервала используется термин open interval .

Литература

  • Выгодский М. Я. Справочник по высшей математике. М.: «Астрель», «АСТ», 2002

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Числовой интервал" в других словарях:

    От лат. intervallum промежуток, расстояние: В музыке: Интервал отношение высот двух тонов; отношение звуковых частот этих тонов. В математике: Интервал (геометрия) множество точек прямой, заключённых между точками А и В,… … Википедия

    < x < b. Промежуток не включает концов и обозначается (a,b)… … Википедия

    Промежуток, открытый промежуток, интервал множество точек числовой прямой, заключённых между двумя данными числами a и b, то есть множество чисел x, удовлетворяющих условию: a < x < b. Промежуток не включает концов и обозначается (a,b)… … Википедия

    Промежуток, или более точно, промежуток числовой прямой множество вещественных чисел, обладающее тем свойством, что вместе с любыми двумя числами содержит любое, лежащее между ними. С использованием логических символов, это определение… … Википедия

    Напомним определения некоторых основных подмножеств действительных чисел. Если, то множество называется отрезком расширенной числовой прямой R и обозначается через, то есть В случае отрезок … Википедия

    Последовательность Числовая последовательность это последовательность элементов числового пространства. Числовые пос … Википедия

    МИКРОСКОП - (от греч. mikros малый и skopeo смотрю), оптический инструмент для изучения малых предметов, недоступных непосредственному рассмотрению невооруженным глазом. Различают простой М., или лупу, и сложный М., или микроскоп в собственном смысле. Лупа… … Большая медицинская энциклопедия

    ГОСТ Р 53187-2008: Акустика. Шумовой мониторинг городских территорий - Терминология ГОСТ Р 53187 2008: Акустика. Шумовой мониторинг городских территорий оригинал документа: 1 Дневной оценочный уровень звука. 2 Вечерний оценочный максимальный уровень звука. 3 Ночной оценочный уровень звукового давления … Словарь-справочник терминов нормативно-технической документации

    Отрезком может называться одно из двух близких понятий в геометрии и математическом анализе. Отрезок множество точек, к … Википедия

    Коэффициент корреляции - (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… … Энциклопедия инвестора

В) Числовая прямая

Рассмотрим числовую прямую (рис. 6):

Рассмотрим множество рациональных чисел

Каждое рациональное число изображается некоторой точкой на числовой оси. Так, на рисунке отмечены числа .

Докажем, что .

Доказательство. Пусть существует дробь : . Мы вправе считать эту дробь несократимой. Так как , то - число четное: - нечетное. Подставляя вместо его выражение, найдем: , откуда следует, что - четное число. Получили противоречие, которое доказывает утверждение.

Итак, не все точки числовой оси изображают рациональные числа. Те точки, которые не изображают рациональные числа, изображают числа, называемые иррациональными .

Любое число вида , , является либо целым, либо иррациональным.

Числовые промежутки

Числовые отрезки, интервалы, полуинтервалы и лучи называют числовыми промежутками.

Неравенство, задающее числовой промежуток Обозначение числового промежутка Название числового промежутка Читается так:
a ≤ x ≤ b [a; b ] Числовой отрезок Отрезок от a до b
a < x < b (a; b ) Интервал Интервал от a до b
a ≤ x < b [a; b ) Полуинтервал Полуинтервал от a до b , включая a .
a < x ≤ b (a; b ] Полуинтервал Полуинтервал от a до b , включая b .
x ≥ a [a; + ∞ ) Числовой луч Числовой луч от a до плюс бесконечности
x > a (a; + ∞ ) Открытый числовой луч Открытый числовой луч от a до плюс бесконечности
x ≤ a (- ∞; a ] Числовой луч Числовой луч от минус бесконечности до a
x < a (- ∞; a ) Открытый числовой луч Открытый числовой луч от минус бесконечности до a

Представим на координатной прямой числа a и b , а также число x между ними.

Множество всех чисел, отвечающих условию a ≤ x ≤ b , называется числовым отрезком илипросто отрезком . Обозначается так: [a; b ]-Читается так: отрезок от a до b.

Множество чисел, отвечающих условию a < x < b , называется интервалом . Обозначается так: (a; b )

Читается так: интервал от a до b.



Множества чисел, отвечающих условиям a ≤ x < b или a < x ≤ b , называются полуинтервалами . Обозначения:

Множество a ≤ x < b обозначается так:[a; b ),-читается так: полуинтервал от a до b , включая a .

Множество a < x ≤ b обозначается так:(a; b ],-читается так: полуинтервал от a до b , включая b .

Теперь представим луч с точкой a , справа и слева от которой - множество чисел.

a , отвечающих условию x ≥ a , называется числовым лучом .

Обозначается так: [a; + ∞ )-Читается так: числовой луч от a до плюс бесконечности.

Множество чисел справа от точки a , отвечающих неравенству x > a , называется открытым числовым лучом .

Обозначается так: (a; + ∞ )-Читается так: открытый числовой луч от a до плюс бесконечности.

a , отвечающих условию x ≤ a , называется числовым лучом от минус бесконечности до a .

Обозначается так:(- ∞; a ]-Читается так: числовой луч от минус бесконечности до a .

Множество чисел слева от точки a , отвечающих неравенству x < a , называется открытым числовым лучом от минус бесконечности до a .

Обозначается так: (- ∞; a )-Читается так: открытый числовой луч от минус бесконечности до a .

Множество действительных чисел изображается всей координатной прямой. Его называют числовой прямой . Обозначается она так: (- ∞; + ∞ )

3)Линейные уравнения и неравенства с одной переменной,их решения:

Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.

Решить уравнение - значит найти все его корни или доказать, что корней нет.

Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

При решении уравнений используются следующие свойства:

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.

Если а¹0, то уравнение имеет единственное решение .

Если а=0, b=0, то уравнению удовлетворяет любое значение х.

Если а=0, b¹0, то уравнение не имеет решений, т.к. 0х=b не выполняется ни при одном значении переменной.
Пример 1. Решить уравнение: -8(11-2х)+40=3(5х-4)

Раскроем скобки в обеих частях уравнения, перенесем все слагаемые с х в левую часть уравнения, а слагаемые, не содержащие х, в правую часть, получим:

16х-15х=88-40-12

Пример 2. Решить уравнения:

х3-2х2-98х+18=0;

Эти уравнения не являются линейными, но покажем, как можно решать такие уравнения.

3х2-5х=0; х(3х-5)=0. Произведение равно нулю, если один из множителей равен нулю, получаем х1=0; х2= .

Ответ: 0; .

Разложить на множители левую часть уравнения:

х2(х-2)-9(х-2)=(х-2)(х2-9)=(х-2)(х-3)(х-3), т.е. (х-2)(х-3)(х+3)=0. Отсюда видно, что решениями этого уравнения являются числа х1=2, х2=3, х3=-3.

с) Представим 7х, как 3х+4х, тогда имеем: х2+3х+4х+12=0, х(х+3)+4(х+3)=0, (х+3)(х+4)=0, отсюда х1=-3, х2=- 4.

Ответ: -3; - 4.
Пример 3. Решить уравнение: ½х+1ç+½х-1ç=3.

Напомним определение модуля числа:

Например: ½3½=3, ½0½=0, ½- 4½= 4.

В данном уравнении под знаком модуля стоят числа х-1 и х+1. Если х меньше, чем –1, то число х+1 отрицательное, тогда ½х+1½=-х-1. А если х>-1, то ½х+1½=х+1. При х=-1 ½х+1½=0.

Таким образом,

Аналогично

а) Рассмотрим данное уравнение½х+1½+½х-1½=3 при х£-1, оно равносильно уравнению -х-1-х+1=3, -2х=3, х= , это число принадлежит множеству х£-1.

b) Пусть -1 < х £ 1, тогда данное уравнение равносильно уравнению х+1-х+1=3, 2¹3 уравнение не имеет решения на данном множестве.

с) Рассмотрим случай х>1.

х+1+х-1=3, 2х=3, х= . Это число принадлежит множеству х>1.

Ответ: х1=-1,5; х2=1,5.
Пример 4. Решить уравнение:½х+2½+3½х½=2½х-1½.

Покажем краткую запись решения уравнения, раскрывая знак модуля «по промежуткам».

х £-2, -(х+2)-3х=-2(х-1), - 4х=4, х=-2Î(-¥; -2]

–2<х£0, х+2-3х=-2(х-1), 0=0, хÎ(-2; 0]

0<х£1, х+2+3х=-2(х-1), 6х=0, х=0Ï(0; 1]

х>1, х+2+3х=2(х-1), 2х=- 4, х=-2Ï(1; +¥)

Ответ: [-2; 0]
Пример 5. Решить уравнение: (а-1)(а+1)х=(а-1)(а+2), при всех значениях параметра а.

В этом уравнении на самом деле две переменных, но считают х–неизвестным, а а–параметром. Требуется решить уравнение относительно переменной х при любом значении параметра а.

Если а=1, то уравнение имеет вид 0×х=0, этому уравнению удовлетворяет любое число.

Если а=-1, то уравнение имеет вид 0×х=-2, этому уравнению не удовлетворяет ни одно число.

Если а¹1, а¹-1, тогда уравнение имеет единственное решение .

Ответ: если а=1, то х – любое число;

если а=-1, то нет решений;

если а¹±1, то .

Б)Линейные неравенства с одной переменной.

Если переменной х придать какое-либо числовое значение, то мы получим числовое неравенство, выражающее либо истинное, либо ложное высказывание. Пусть, например, дано неравенство 5х-1>3х+2. При х=2 получим 5·2-1>3·2+2 – истинное высказывание (верное числовое высказывание); при х=0 получаем 5·0-1>3·0+2 – ложное высказывание. Всякое значение переменной, при котором данное неравенство с переменной обращается в верное числовое неравенство, называется решением неравенства. Решить неравенство с переменной – значит найти множество всех его решений.

Два неравенства с одной переменной х называются равносильными, если множества решений этих неравенств совпадают.

Основная идея решения неравенства состоит в следующем: мы заменяем данное неравенство другим, более простым, но равносильным данному; полученное неравенство снова заменяем более простым равносильным ему неравенством и т.д.

Такие замены осуществляются на основе следующих утверждений.

Теорема 1. Если какой-либо член неравенства с одной переменной перенести из одной части неравенства в другую с противоположным знаком, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

Теорема 2. Если обе части неравенства с одной переменной умножить или разделить на одно и то же положительное число, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

Теорема 3. Если обе части неравенства с одной переменной умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится неравенство, равносильное данному.

Линейным называется неравенство вида ax+b>0 (соответственно ax+b<0, ax+b³0, ax+b£0), где а и b – действительные числа, причем а¹0. Решение этих неравенств основано на трех теоремах равносильности изложенных выше.

Пример 1. Решить неравенство: 2(х-3)+5(1-х)³3(2х-5).

Раскрыв скобки, получим 2х-6+5-5х³6х-15,












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Базовый учебник. Алгебра 8 класс: учебник для общеобразовательных учреждений./ Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков, С.Б. Суворова; под ред. С.А. Теляковского. – 15-е изд., дораб. – М.: Просвещение, 2007. ISBN 978-5-09-015964-7.

Дидактическая цель урока: создание условий для осознанного изучения нового материала и включение знаний учащихся в процесс познания.

Цели урока:

  • Образовательные :
    • ввести понятие числового промежутка;
    • формировать умения работать с числовыми промежутками;
    • изображать на координатной прямой промежуток и множество чисел, удовлетворяющих неравенству;
    • прививать навыки графической культуры.
  • Воспитательные :
    • воспитание интереса к математике через использование и применение ИКТ;
    • создание условий для формирования коммуникативных навыков.
  • Развивающие :
    • совершенствование умственной деятельности: анализ, синтез, классификация;
    • развитие способности самостоятельно решать учебные задачи, развитие любознательности учащихся, познавательного интереса к предмету;

Задачи урока:

  • Знать:
    • понятия: числовой промежуток, числовой луч, открытый числовой луч;
    • обозначение числовых промежутков, их названия.
  • Уметь:
    • изображать числовые промежутки на координатной прямой;
    • записывать числовые промежутки на математическом языке.
  • Научиться делать самоанализ урока.

Приобретаемые навыки детей:

  • умение анализировать, сравнивать, сопоставлять, делать соответствующие выводы;
  • развитие логического мышления, памяти, речи, пространственного воображения;
  • повышение уровеня восприятия, осмысления и запоминания;
  • воспитание внимательного отношения к окружающим, друг к другу, учебной дисциплины;
  • умение подводить итоги своей работы, анализировать свою деятельность;

Тип урока: урок изучения нового материала и первичного закрепления.

Формы организации работы детей: индивидуальная, фронтальная, парная.

Формы организации работы учителя:

  • используется словесно-иллюстративный метод, репродуктивный метод, практический метод, проблемный метод, беседа-сообщение;
  • проверка ранее изученного материала, организация восприятия новой информации;
  • постановка цели занятия перед учащимися;
  • обобщение изучаемого на уроке и введение его в систему ранее усвоенных знаний.

Оборудование: компьютер, мультимедийный проектор, экран, ПК, линейка, карандаш, набор цветных карандашей, Презентация .

Структура и ход урока:

Этапы урока

Деятельность учителя

Деятельность ученика

Организационный момент (1 мин.) Учитель проверяет готовность к уроку Учащиеся определяют готовность к уроку
Проверка домашнего задания и актуализация знаний. (1 мин.) Проверяем домашнее задание.
Слово консультантам.
(на каждом ряду есть ответственные учащиеся, которые перед началом урока проверяют наличие выполненного домашнего задания).
Открывают тетради. Докладывают о выполнении домашнего задания учащимися. (В случае отсутствия домашнего задания, учащимся даётся консультация после уроков)
Устный счёт (6 мин.)
Слайды 2, 3, 4, 5.
1. Сложите почленно неравенства:

– 5 < 24 и 15 < 35;
– 42 < 0 и – 6 < – 1;
9 > – 25 и – 2 > – 5;
78 > 33 и – 22 > – 23;
32 > – 1 и 14 > 7.

2. Умножьте почленно:

5 < 24 и 8 < 10;
44,2 < 0 и 5 < 49;
9 > 5 и 4 > 3;
5 > 3,5 и 6 > 2;
2 > 1 и 4 > 3.

3. Прочитайте неравенство и назовите несколько значений переменной, удовлетворяющее данному неравенству:

x < – 4; x > 8; – 2 < x < 2.

4. Между какими целыми числами заключено число?

Ответы учащихся:

10 < 59
– 48 < – 1
7 > – 30
56 > 10
46 > 6

40 < 240
21 < 0
36 > 15
30 > 7
8 > 3.

Учащиеся читают и называют значения переменной Х, удовлетворяющее данному неравенству.

Называют целые числа между которыми заключено число.

Целеполагание (2 мин.)
Слайд 6.
Сегодня на уроке мы должны научиться изображать неравенства в виде промежутков и записывать их обозначениями. Нам потребуется линейка, карандаш и цветные карандаши, если у кого они есть. Готовят инструменты
Изучение нового материала. (10 мин.)
Слайд 7
Слайды 8, 9
Слайды 10, 11
Изучение нового материала сопровождается показом презентации

1. Ввод понятия числового промежутка.
2. Обозначение числовых промежутков.
3. Пересечение и объединение множеств.

Слушают объяснение учителя и делают записи в рабочих тетрадях.

Физминутка (1 мин.) Самое время заняться гимнастикой, чтобы голова и тело отдохнули от работы!
1. Вытяни руки перед собой и покрути кистями то в одну, то в другую сторону. Сделай 3 раза.
2. Надави пальцами рук друг на друга, отожми, а потом вновь надави и задержи пальцы в таком состоянии секунд 5-7.
3. Покрутите головой, 3 раза в одну сторону, три раза в другую.
4. Закрой рукой глаз, скрути корпус в одну сторону, а потом в другую. Сделай 3 раза.
Выполняют указанные предписания на месте.
Дежурный по классу ведёт физминутку
Освоение учащимися новой информации (5 мин.) Работаем с информацией из учебника
Стр. 173, таблица.
Запоминают обозначение и название числовых промежутков.
Первичное закрепление знаний (14 мин.) 1. №812 (а, б, е, ж);
2. №815;
3. №816;
4. №825 (а, б);
5. №827 (а, б).
У доски и в тетрадях.
Контроль и проверка знаний (2 мин.) №813 Один ученик у доски, остальные проверяют правильность его ответа и запись числового промежутка.
Рефлексия (1 мин.) Ребята, ответьте, пожалуйста, на следующие вопросы:

– Что было самое интересное на уроке?
– Что было самое трудное на уроке?

Ответы с места
Подведение итогов урока (1 мин.) Итак, подведём итоги урока. Ребята, ответьте, пожалуйста, на вопрос:
– Какие новые числовые промежутки вы сегодня узнали?
Отвечают на вопрос: Открытый луч,
Замкнутый луч,
Отрезок,
Интервал,
Полуинтервал.
Домашнее задание (2 мин.) п.33, стр. 173, знать обозначение и название числовых промежутков.
№814, №816 (в, г), №825 (в).
Знакомятся с домашним заданием, записывают в дневник

Среди числовых множеств, то есть множеств , объектами которых являются числа, выделяют так называемые числовые промежутки . Их ценность в том, что очень легко вообразить множество, соответствующее указанному числовому промежутку, и наоборот. Поэтому с их помощью удобно записывать множество решений неравенства.

В этой статье мы разберем все виды числовых промежутков. Здесь мы дадим их названия, введем обозначения, изобразим числовые промежутки на координатной прямой, а также покажем, какие простейшие неравенства им соответствуют. В заключение наглядно представим всю информацию в виде таблицы числовых промежутков.

Навигация по странице.

Виды числовых промежутков

Каждому числовому промежутку присущи четыре неразрывно связанные между собой вещи:

  • название числового промежутка,
  • отвечающее ему неравенство или двойное неравенство,
  • обозначение,
  • и его геометрический образ в виде изображения на координатной прямой.

Любой числовой промежуток может быть задан любым из трех последних по списку способов: либо неравенством, либо обозначением, либо его изображением на координатной прямой. Причем по данному способу задания, например, по неравенству, с легкостью восстанавливаются и другие (в нашем случае обозначение и геометрический образ).

Переходим к конкретике. Опишем все числовые промежутки с указанных выше четырех сторон.

Таблица числовых промежутков

Итак, в предыдущем пункте мы определили и описали следующие числовые промежутки:

  • открытый числовой луч;
  • числовой луч;
  • интервал;
  • полуинтервал.

Для удобства сведем все данные о числовых промежутках в таблицу. Занесем в нее название числового промежутка, соответствующее ему неравенство, обозначение и изображение на координатной прямой. Получаем следующую таблицу числовых промежутков :


Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.