Наук, предполагая изучение различных форм живых существ, их строение, развитие, функционирование, являет собой структуру достаточно обширную. Каждая ее ветвь преследует определенные цели, исследует конкретные вопросы. Вместе с этим, биологические науки тесно связаны друг с другом.

Многоплановость структуры обусловлена не только разнообразием видов и форм жизни, но и многообразием методов их изучения.

Еще в древности сложились основные биологические науки: зоология, ботаника, анатомия и Впоследствии сформировались такие крупные разделы, как гидробиология (изучающая обитателей воды) и микробиология (исследующая микроорганизмы), выделенные в соответствии с

От крупных ветвей отходят узкоспециализированные биологические науки. Так, например, зоология (изучающая животных) включает в себя териологию, изучающую млекопитающих, протозоологию - простейших, малакологию - моллюсков, акарологию - клещей, энтомологию - насекомых, ихтиологию - рыбообразных. Структура ботаники содержит такие биологические науки, как дендрология (о деревьях, кустарниках), бриология (о мхах), лихенология (о лишайниках), микология (о грибах) и прочие.

Существует и более глубокое подразделение дисциплин. Так, распределение организмов по категориям и их разнообразие изучают систематические биологические науки. Дисциплина, исследующая органический мир современности, носит название неонтологии. Наука о существовавших ранее формах жизни именуется палеонтологией.

Другое направление классификации дисциплин предполагает разделение по проявлениям и свойствам живого. Так, различные функции организмов изучает физиология, вопросы о наследственности - генетика, закономерности в поведении животных - этология. Особенности индивидуального развития исследует эмбриология, в более широком смысле - биология развития. Вместе с этим каждая дисциплина подразделяется на более частные. Например, морфология, изучающая формы, классифицируется на сравнительную, функциональную и прочие отрасли. Одновременно имеет место и взаимное проникновение, и слияние узких различных дисциплин биологии, с формированием сложных сочетаний. Так, например, существуют такие отрасли, как гистофизиология, цитогенетика и прочие.

Строение систем и органов макроскопически изучает анатомия, микроскопическую структуру тканей - гистология, строение ядра клетки - кариология, клетки в целом - цитология. Вместе с тем, кариология, цитология и гистология кроме исследования строения определенных структур занимаются исследованием их биохимических свойств и функций.

В биологии выделяют дисциплины, связанные с применением тех или иных методов изучения. Так, например, существует биохимия, исследующая процессы жизнедеятельности химическими способами, Биофизика, устанавливающая физические закономерности. Следует отметить, что эти две дисциплины часто переплетаются друг с другом, применяются в комплексе для изучения того или иного явления.

Отдельное место занимает такая дисциплина, как биометрия. В ее основе применяется математический метод обработки биологических данных. С использованием этой отрасли становится возможным описание единичных процессов и явлений, установление более общих биологических закономерностей.

Необходимо отметить, что в биологии одинаково важны как теоретические, так и практические исследования. Первые позволяют революционизировать многие сферы практической деятельности, например, техническую биологию или промышленную микробиологию. Вместе с этим, отрасли практической биологии обогащают теорию новыми знаниями.

Определение 1

Биология - это естественная наука, которая включает изучение жизни и живых организмов, включая их физическую и химическую структуру, функцию, развитие и эволюцию.

Современная биология - это обширная область, состоящая из многих отраслей. Несмотря на широкий охват и сложность науки, существуют определенные объединяющие концепции, которые объединяют ее в единую, согласованную область. В целом, биология распознает клетку как основную единицу жизни, гены как основную единицу наследственности и эволюцию как двигатель, который продвигает создание новых видов. Также понятно, что все организмы выживают, потребляя и трансформируя энергию и регулируя их внутреннюю среду.

Субдисциплины биологии

Субдисциплины биологии определяются масштабом изучения жизни, изучаемыми организмами и методами их изучения. Выделяют такие основные субдисциплины биологии:

  1. Молекулярная биология - изучение к молекулярной основы биологической активности между биомолекулами в различных системах клетки, включая взаимодействие между ДНК, РНК и белками и их биосинтезом, а также регулирование этих взаимодействий.
  2. Цитология (клеточная биология) - наука, изучающая живые клетки, их составные части - органеллы, а также вопросы их строения, функционирования, размножения, старения и смерти.
  3. Генетика - наука, о закономерностях наследственности и изменчивости.
  4. Анатомия - это учение об макроскопических формах, таких как структурные органы и систем органов.

Замечание 1

Некоторые биологические науки возникли в результате процесса дифференциации, постепенного отделения, что способствовало углублению исследований в соответствующих направлениях.

Молекулярная биология

Замечание 2

Молекулярная биология - это изучение биологии на молекулярном уровне. Это поле перекрывается с другими областями биологии, особенно с генетикой и биохимией. Молекулярная биология - это исследование взаимодействий различных систем внутри клетки, включая взаимосвязь синтеза ДНК, РНК и белка и то, как эти взаимодействия регулируются.

Большая часть молекулярной биологии является количественной, и в последнее время большая часть этой науки была с математикой и информатикой - в области биоинформатики и вычислительной биологии. В начале 2000-х годов изучение структуры и функции генов, молекулярной генетики, было одним из наиболее заметных областей молекулярной биологии.

Все большее количество других областей биологии сосредоточено на молекулах, либо непосредственно изучая взаимодействия в своей собственной области, такие как в клеточной биологии и биологии развития, или косвенно, где молекулярные методы используются для определения исторических характеристик популяций или видов, как в областях эволюционной биологии таких как популяционная генетика и филогенетика. Существует также давняя традиция изучения биомолекул «с нуля» в биофизике.

Цитология

Цитология (клеточная биология), изучает структурные и физиологические свойства клеток, включая их внутреннее поведение, взаимодействие с другими клетками и с их окружением. Клеточная биология объясняет структуру, организацию содержащихся в ней органелл, их физиологические свойства, метаболические процессы, пути сигнализации, жизненный цикл и взаимодействие с окружающей средой. Это делается как на микроскопическом, так и на молекулярном уровне, поскольку он охватывает прокариотические клетки и эукариотические клетки.

Знание компонентов клеток и способов работы клеток имеет фундаментальное значение для всех биологических наук; это также важно для исследований в биомедицинских областях, таких как рак и другие заболевания. Понимание структуры и функции клеток является фундаментальным для всех биологических наук. Сходства и различия между типами клеток особенно актуальны для молекулярной биологии.

Генетика

Определение 2

Генетика - это наука о генах, наследственности и вариации организмов.

Гены кодируют информацию, необходимую клеткам для синтеза белков, которые, в свою очередь, играют центральную роль в влиянии на окончательный фенотип организма. Генетика предоставляет инструменты исследования, используемые при исследовании функции конкретного гена, или анализ генетических взаимодействий. Внутри организмов генетическая информация физически представлена как хромосомы, внутри которой она представленаопределенной последовательностью аминокислот, в частности молекул ДНК.

Генетика обычно считается областью биологии, что часто пересекается со многими другими науками о жизни и тесно связана с изучением информационных систем.

Отцом генетики является Грегор Мендель, ученый конца XIX века и августинский монарх. Мендель изучал «наследство признаков», образцы в способе передачи черт от родителей к потомству. Он заметил, что организмы (растения гороха) наследуют черты посредством дискретных «единиц наследования». Этот термин, который все еще используется сегодня, представляет собой несколько двусмысленное определение того, что называется геном. Таким образом Мендель открыл некоторые основные принципы гинетики:

  1. принцип единообразия гибридов первого поколения
  2. принцип расщепления признаков
  3. принцип независимого наследования признаков

Наследование генов и механизмы молекулярного наследования по-прежнему являются первичными принципами генетики, но современная генетика расширилась за пределы изучения наследования до изучения функций и поведения генов. Изучаются структура и функция гена, вариации и распределение в контексте клетки, организма (например, доминирования) и в контексте популяции. Генетика породила ряд подобластей, включая эпигенетику и популяционную генетику. Организмы, изученные в широком поле, охватывают область жизни, включая бактерии, растения, животных и людей.

Генетические процессы работают в сочетании с окружающей средой и опытом организма, чтобы влиять на развитие и поведение, часто называемое природой против воспитания. Внутриклеточная или внеклеточная среда клетки или организма может включать или выключать транскрипцию гена. Классический пример - два семена генетически идентичной кукурузы, один из которых расположен в умеренном климате и один в засушливом климате. В то время как средняя высота двух кукурузных стеблей может быть генетически определена как равная, таковая в засушливом климате только возрастает до половины высоты в умеренном климате из-за нехватки воды и питательных веществ в окружающей среде.

Науки изучающие биологию

Акарология - наука изучающая клещей.

Анатомия - раздел биологии и конкретно морфологии, изучающий строение тела организмов и их частей на уровне выше клеточного.

Альголо́гия - раздел биологии, изучающий водоросли. Ранее все водоросли относили к растениям, а потому альгологию рассматривали как раздел ботаники.

Антропология - биологическая наука о происхождении и эволюции физической организации человека и человеческих рас.

Арахналогия наука изучающая пауков.

Бактериология (от греч. bakteria- палочка и logos-слово), наука о мельчайших, невидимых простым глазом.

Биогеография – это наука о географическом распространении и размещении на Земле организмов и их сообществ.

Биоинформа́тика - совокупность методов и подходов, включающих в себя: математические методы компьютерного анализа в сравнительной геномике (геномнаябиоинформатика).

Биометрия предполагает систему распознавания людей по одной или более физических или поведенческих черт. В области информационных технологий биометрические данные используются в качестве формы управления идентификаторами доступа и контроля доступа.

Био́ника (от др.-греч. βίον - живущее) - прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги.

Биоспелеология, спелеобиология - раздел биологии, занимающийся изучением организмов, обитающих в пещерах.

Биофизика - это наука о физических процессах, протекающих в биологических системах разного уровня организации, и о влиянии на биологические объекты различных физических факторов. Биофизика призвана выявлять связи между физическими механизмами, лежащими в основе организации живых объектов, и биологическими особенностями их жизнедеятельности.

Биохи́мия (биологи́ческая, или физиологи́ческая хи́мия) - наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности.

Ботаника - наука о растениях.

Биомеха́ника - раздел естественных наук, изучающий на основе моделей и методов механики механические свойства живых тканей, отдельных органов и систем, или организма в целом, а также происходящие в них механические явления.

Биоценология (от биоценоз и …логия), центральный раздел экологии, изучающий закономерности жизни организмов в биоценозах, их популяционную структуру, потоки энергии и круговорот веществ.

Бриология (греч., от bryon - мох, и logos - слово) наука изучающая мхи.

Вирусология - раздел микробиологии, изучающий вирусы (от латинского слова virus - яд).

Гельмитология - наука изучающая глисты.

Гене́тика - наука о закономерностях наследственности и изменчивости.

Геоботаника - раздел биологии на стыке ботаники, географии и экологии. Это наука о растительности Земли, о совокупности растительных сообществ (фитоценозов), их составе, структуре.

Герпетология. (от греч. herpeton - пресмыкающееся и...логия), раздел зоологии, изучающий пресмыкающихся и земноводных.

Гидробиология - наука о жизни и биологических процессах в воде, одна из биологических дисциплин.

Гистоло́гия - раздел биологии, изучающий строение, жизнедеятельность и развитие тканей живых организмов.

Дендрология" - раздел ботаники, предметом изучения которого являются древесные растения: помимо деревьев, это также кустарники, полукустарники, кустарнички, древовидные лианы, а также стелющееся древесные растения.

Зоология (от др.-греч. ζῷον - животное + λόγος - учение) - биологическая наука, изучающая представителей царства животных. Зоология изучает физиологию, анатомию, эмбриологию, экологию, филогению животных.

Ихтиология (от греч. ichthýs - рыба и...Логия) раздел зоологии позвоночных, изучающий рыб, их строение, функции их органов, образ жизни на всех стадиях развития, распространение рыб во времени и пространстве, их систематику, эволюцию.

Колеоптероло́гия (от Coleoptera, Жуки, и греч. -λογία, …логия) - раздел энтомологии, изучающий жуков (насекомых из отряда жёсткокрылых, лат. Coleoptera).

Ксенобиология - подраздел синтетической биологии, изучающий создание и управление биологическими устройствами и системами.

Лепидоптерология - раздел энтомологии, изучающий представителей отряда Чешуекрылые насекомые (бабочки).

Лихеноло́гия (от греч. λειχήν - лишай, лишайник) - наука о лишайниках, раздел ботаники.

Миколо́гия (от др.-греч. μύκης - гриб) - раздел биологии, наука о грибах.

Мирмеколо́гия (от др.-греч. μύρμηξ «муравей» и λόγος «учение») - наука, изучающая муравьёв.

Палеонтоло́гия (от др.-греч. παλαιοντολογία) - наука об организмах, существовавших в прошлые геологические периоды и сохранившихся в виде ископаемых останков, а также следов их жизнедеятельности.

Палиноло́гия - комплекс отраслей наук (в первую очередь, ботаники), связанных с изучением пыльцевых зёрен и спор.

Радиационная биология или радиобиология - наука, изучающая действие ионизирующих и неионизирующих излучений на биологические объекты.

Систематика в биологии - это наука, которая классифицирует организмы на основе их внешнего сходства и родства.

Спонгиология наука о губках.

Таксоно́мия - учение о принципах и практике классификации и систематизации.

Териоло́гия - раздел зоологии, изучающий млекопитающих.

Токсиколо́гия - наука, изучающая ядовитые (токсичные) вещества, потенциальную опасность их воздействия на организмы и экосистемы, механизмы токсического действия, а также методы диагностики.

Феноло́гия (от греч. φαινόμενα - явления) - система знаний и совокупность сведений о сезонных явлениях природы, сроках их наступления и причинах, определяющих эти сроки.

Физиоло́гия (от греч. φύσις - природа и λόγος - знание) - наука о сущности живого, жизни в норме и при патологиях, то есть о закономерностях функционирования и регуляции биологических систем разного уровня организации.

Фитопатология (фито - растение и патология) - наука о болезнях растений, вызванных патогенами (инфекционные болезни) и экологическими факторами (физиологические факторы).

Цитоло́гия (греч. κύτος «клетка» и λόγος - «учение», «наука») - раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.

Биологическая эволю́ция (от лат. evolutio - «развёртывание») - естественный процесс развития живой природы, сопровождающийся изменением генетического состава популяций, формированием адаптаций.

Эмбриология - это наука, изучающая развитие зародыша: эмбриогенез.

Эндокриноло́гия - наука о строении и функции желез внутренней секреции (эндокринных желез), вырабатываемых ими продуктах (гормонах), о путях их образования и действия на организм животных и человека; а также о заболеваниях.

Энтомология - раздел зоологии, изучающий насекомых.

Этоло́гия - полевая дисциплина зоологии, изучающая генетически обусловленное поведение (инстинкты) животных, в том числе людей.

В древности люди, собирая различные растения, охотясь на зверей и птиц, накапливали знания о них. Эти знания передавались из поколения в поколение и со временем послужили основой древнейшим биологическим наукам- ботанике и зоологии.

Люди болели, получали раны от зверей, врагов. Чтобы вылечиться, необходимо было знать анатомию человека, лекарственные средства. Так появились зачатки еще одной древней биологической науки - медицины.

Человек стал возделывать землю, приручать и одомашнивать зверей и птиц, выводить новые сорта растений и породы животных. Впоследствии из его наблюдений и знаний сложились основы сельскохозяйственных наук.

По мере роста человеческих знаний, расширения хозяйственных потребностей росла и развивалась семья биологических наук. Постоянное расширение и углубление биологических исследований со временем привело к делению древнейших биологических наук на новые самостоятельные науки, а некоторые из них, в свою очередь, разделились на новые направления. Например, ботаника подразделяется на альгологию - науку о водорослях, микологию - о грибах, лихенологию - о лишайниках, дендрологию - о древесных растениях, науку о высших и низших растениях и т. д.

В зависимости от целей познания изучаемых организмов применяются различные формы и методы исследований.

Появились новые биологические науки, связанные с новыми методами исследования,- биохимия растений и животных, биофизика , радиобиология и др. Изучение живых организмов на разных уровнях - целого организма, его органов, клеток, групп организмов - также породило новые биологические науки - молекулярную биологию, биогеоценологию.

Биологические науки имеют огромное значение для человека. Без их развития практически невозможен прогресс ни одной отрасли современного хозяйства. Например, развитие микробиологии много дало для пищевой, фармацевтической, медицинской промышленности, сельского хозяйства.

От прогресса биологических наук зависит решение важнейших вопросов нашего времени- охраны природы, повышения продуктивности растений, животных, почвы , создания безотходных типов производства, замкнутых биологических систем для длительных космических полетов и т. д.

Современные биологические науки сосредоточили свои усилия на решении нескольких главных проблем.

Одна из них-изучение строения и функций молекул, из которых построены живые организмы, процессов их образования, взаимодействия, реакции на внешние воздействия.

Другая важная проблема - познание процессов, происходящих в клетках организма, что дает возможность управлять ими. Управление этими процессами, а следовательно, развитием и состоянием самого организма, законами наследственности и изменчивости зависит от знания индивидуального и исторического развития организмов с учетом всего их многообразия и сложности существующих взаимосвязей в природе. Чтобы понять современные биологические процессы, историю формирования существующих жизненных форм и связей, возможных их изменений в будущем,необходимо продолжать исследования о происхождении жизни на Земле.

Бурное развитие хозяйственной деятельности человека, рост населения земного шара поставили перед всеми биологическими науками задачу изучения взаимоотношений между биосферой и человечеством, чтобы создать надежную систему охраны природы, разработать безвредную технологию производства, обеспечить благоприятные условия жизни для людей на Земле.


Следующее: БИОЛОГИЧЕСКИЕ ЧАСЫ
Предыдущее: БИОЛОГИЧЕСКАЯ ОЛИМПИАДА
Интересное:

Биология (от греческих слов βίος - жизнь и λόγος - наука) - совокупность наук о живой природе. Биология изучает все проявления жизни, строение и функции живых существ и их сообществ, распространение, происхождение и развитие живых организмов, связи их друг с другом и с неживой природой.

Для живой природы характерны разные уровни организации ее структур, между которыми существует сложное соподчинение. Все живые организмы вместе с окружающей средой образуют биосферу , которая складывается из биогеоценозов. В них, в свою очередь, входят биоценозы , состоящие из популяций . Популяции составляют отдельные особи. Особи многоклеточных организмов состоят из органов и тканей , образованных различными клетками. Для каждого уровня организации жизни характерны свои закономерности. Жизнь на каждом уровне изучают соответствующие отрасли современной биологии.

Для изучения живой природы биологи применяют различные методы: наблюдение, позволяющее описать то или иное явление; сравнение, которое дает возможность установить закономерности, общие для разных явлений в живой природе; эксперимент, или опыт, когда исследователь сам искусственно создает ситуацию, помогающую выявить те или иные свойства биологических объектов. Исторический метод позволяет на основе данных о современном органическом мире и его прошлом познавать процессы развития живой природы. Кроме этих основных методов применяется много других.

    Римский врач и естествоиспытатель Клавдий Гален.

    Ученый, врач-анатом и хирург эпохи Возрождения Андреас Везалий.

    Английский врач и ученый Уильям Гарвей рассказывает о своих опытах по кровообращению английскому королю Карлу I.

    Микроскоп Роберта Гука (60-е гг. XVII в.).

    Так выглядели срезы пробки под микроскопом Р. Гука. Это было первое изображение клеток.

    Рисунки растительных клеток, сделанные голландским биологом XVII в. Антони ван Левенгуком.

Биология берет свое начало в глубокой древности. Описания животных и растений, сведения об анатомии и физиологии человека и животных были необходимы для практической деятельности людей. Одними из первых попытки осмыслить и привести в систему явления жизни, обобщить накопленные биологические знания и представления сделали древнегреческие, а позже древнеримские ученые и врачи Гиппократ, Аристотель, Гален и другие. Эти воззрения, развитые учеными эпохи Возрождения , положили начало современным ботанике и зоологии, анатомии и физиологии и другим биологическим наукам.

В XVI-XVII вв. в научных исследованиях наряду с наблюдением и описанием стал широко применяться эксперимент. В это время блестящих успехов достигает анатомия. В трудах известных ученых XVI в. А. Везалия и М. Сервета были заложены основы представлений о строении кровеносной системы животных. Это подготовило великое открытие XVII в. - учение о кровообращении, созданное англичанином У. Гарвеем (1628). Через несколько десятилетий итальянец М. Мальпиги открыл при помощи микроскопа капилляры, что позволило понять путь крови от артерий к венам.

Создание микроскопа расширило возможности изучения живых существ. Открытия следовали одно за другим. Английский физик Р. Гук открывает клеточное строение растений, а голландец А. Левенгук - одноклеточных животных и микроорганизмы.

В XVIII в. было накоплено уже много знаний о живой природе. Назрела необходимость классифицировать все живые организмы, привести их в систему. В это время закладываются основы науки систематики . Важнейшим достижением в этой области была «Система природы» шведского ученого К. Линнея (1735).

Дальнейшее развитие получила физиология - наука о жизнедеятельности организмов, их отдельных систем, органов и тканей и процессах, протекающих в организме.

Англичанин Дж. Пристли показал в опытах на растениях, что они выделяют кислород (1771-1778). Позже швейцарский ученый Ж. Сенебье установил, что растения под действием солнечного света усваивают углекислый газ и выделяют кислород (1782). Это были первые шаги на пути исследования центральной роли растений в преобразовании веществ и энергии в биосфере Земли, первый шаг в новой науке - физиологии растений.

А. Лавуазье и другие французские ученые выяснили роль кислорода в дыхании животных и образовании животного тепла (1787-1790). В конце XVIII в. итальянский физик Л. Гальвани открыл «животное электричество», что привело в дальнейшем к развитию электрофизиологии. В это же время итальянский биолог Л. Спалланцани провел точные опыты, опровергавшие возможность самозарождения организмов.

В XIX в. в связи с развитием физики и химии в биологию проникают новые методы исследования. Богатейший материал для изучения природы дали сухопутные и морские экспедиции в малодоступные прежде районы Земли. Все это привело к формированию многих специальных биологических наук.

На рубеже века возникла палеонтология, изучающая ископаемые остатки животных и растений - свидетельства последовательного изменения - эволюции форм жизни в истории Земли. Основоположником ее был французский ученый Ж. Кювье .

Большое развитие получила эмбриология - наука о зародышевом развитии организма. Еще в XVII в. У. Гарвей сформулировал положение: «Все живое из яйца». Однако лишь в XIX в. эмбриология стала самостоятельной наукой. Особая заслуга в этом принадлежит ученому-естествоиспытателю К. М. Бэру , открывшему яйцо млекопитающих и обнаружившему общность плана строения зародышей животных разных классов.

В результате достижений биологических наук в первой половине XIX в. широко распространилась идея родства живых организмов, их происхождения в ходе эволюции. Первую целостную концепцию эволюции - происхождения видов животных и растений в результате их постепенного изменения от поколения к поколению - предложил Ж. Б. Ламарк .

Крупнейшим научным событием века стало эволюционное учение Ч. Дарвина (1859). Теория Дарвина оказала огромное влияние на все дальнейшее развитие биологии. Делаются новые открытия, подтверждающие правоту Дарвина, в палеонтологии (В. О. Ковалевский), в эмбриологии (А. О. Ковалевский), в зоологии, ботанике, цитологии, физиологии. Распространение эволюционной теории на представления о происхождении человека привело к созданию новой отрасли биологии - антропологии. На основе эволюционной теории немецкие ученые Ф. Мюллер и Э. Геккель сформулировали биогенетический закон .

Еще одно выдающееся достижение биологии XIX в. - создание немецким ученым Т. Шванном клеточной теории , доказавшей, что все живые организмы состоят из клеток. Тем самым была установлена общность не только макроскопического (анатомического), но и микроскопического строения живых существ. Так возникла еще одна биологическая наука - цитология (наука о клетках) и как следствие ее - учение о строении тканей и органов - гистология.

В результате открытий французского ученого Л. Пастера (микроорганизмы являются причиной спиртового брожения и вызывают многие болезни) самостоятельной биологической дисциплиной стала микробиология. Работы Пастера окончательно опровергли представления о самозарождении организмов. Исследование микробной природы холеры птиц и бешенства млекопитающих привело Пастера к созданию иммунологии как самостоятельной биологической науки. Существенный вклад в ее развитие внес в конце XIX в. русский ученый И. И. Мечников .

Во второй половине XIX в. многие ученые пытались умозрительно решить загадку наследственности , раскрыть ее механизм. Но только Г. Менделю удалось установить на опыте закономерности наследственности (1865). Так были заложены основы генетики, ставшей самостоятельной наукой уже в XX в.

В конце XIX в. большие успехи сделаны в биохимии. Швейцарский врач Ф. Мишер открыл нуклеиновые кислоты (1869), выполняющие, как было установлено в дальнейшем, функции хранения и передачи генетической информации. К началу XX в. было выяснено, что белки состоят из аминокислот , соединенных друг с другом, как показал немецкий ученый Э. Фишер, пептидными связями.

Физиология в XIX в. развивается в разных странах мира. Особенно существенными были работы французского физиолога К. Бернара, создавшего учение о постоянстве внутренней среды организма - гомеостазе . В Германии прогресс физиологии связан с именами И. Мюллера, Г. Гельмгольца, Э. Дюбуа-Реймона. Гельмгольц развил физиологию органов чувств, Дюбуа-Реймон стал основоположником изучения электрических явлений в физиологических процессах. Выдающийся вклад в развитие физиологии в конце XIX - начале XX в. внесли русские ученые: И. М. Сеченов , Н. Е. Введенский , И. П. Павлов , К. А. Тимирязев .

Генетика сформировалась как самостоятельная биологическая наука, изучающая наследственность и изменчивость живых организмов. Еще из работ Менделя следовало, что существуют материальные единицы наследственности, впоследствии названные генами . Это открытие Менделя было оценено лишь в начале XX в. в результате исследований Х. Де Фриза в Голландии, Э. Чермака в Австрии, К. Корренса в Германии. Американский ученый Т. Морган , исследуя гигантские хромосомы мухи дрозофилы, пришел к выводу, что гены находятся в клеточных ядрах , в хромосомах . Он, а также другие ученые разработали хромосомную теорию наследственности. Тем самым генетика в значительной мере объединилась с цитологией (цитогенетика) и стал понятен биологический смысл митоза и мейоза.

С начала нашего века началось быстрое развитие биохимических исследований во многих странах мира. Основное внимание было уделено путям превращения веществ и энергии во внутриклеточных процессах. Было установлено, что эти процессы в принципе одинаковы у всех живых существ - от бактерий до человека. Универсальным посредником в превращении энергии в клетке оказалась аденозинтрифосфорная кислота(АТФ) . Советский ученый В. А. Энгельгардт открыл процесс образования АТФ при поглощении клетками кислорода. Открытие и исследование витаминов , гормонов , установление состава и строения всех основных химических компонентов клетки выдвинули биохимию на одно из ведущих мест в ряду биологических наук.

Еще на рубеже XIX и XX вв. профессор Московского университета А. А. Колли поставил вопрос о молекулярном механизме передачи признаков по наследству. Ответ на вопрос дал в 1927 г. советский ученый Н. К. Кольцов , выдвинув матричный принцип кодирования генетической информации (см. Транскрипция , Трансляция).

Матричный принцип кодирования был разработан советским ученым Н. В. Тимофеевым-Ресовским и американским ученым М. Дельбрюком.

В 1953 г. американец Дж. Уотсон и англичанин Ф. Крик использовали этот принцип при анализе молекулярной структуры и биологических функций дезоксирибонуклеиновой кислоты (ДНК). Так на основе биохимии, генетики и биофизики возникла самостоятельная наука - молекулярная биология.

В 1919 г. в Москве был основан первый в мире Институт биофизики. Эта наука исследует физические механизмы преобразования энергии и информации в биологических системах. Существенная проблема биофизики - выяснение роли различных ионов в жизни клетки. В этом направлении работали американский ученый Ж. Лёб, советские исследователи Н. К. Кольцов, Д. Л. Рубинштейн. Эти исследования привели к установлению особой роли биологических мембран . Неравновесное распределение ионов натрия и калия по обе стороны мембраны клетки, как показали английские ученые А. Л. Ходжкин, Дж. Экле и А. Ф. Хаксли, является основой распространения нервного импульса.

Значительных успехов добились науки, изучающие индивидуальное развитие организмов - Онтогенез. Были разработаны, в частности, методы искусственного партеногенеза .

В первой половине XX в. советский ученый В. И. Вернадский создал учение о биосфере Земли. В это же время В. Н. Сукачев заложил основы представлений о биогеоценозах.

Изучение взаимодействия отдельных особей и их совокупностей с окружающей средой привело к формированию экологии - науки о закономерностях взаимоотношений организмов со средой обитания (термин «экология» предложил в 1866 г. немецкий ученый Э. Геккель).

Самостоятельной биологической наукой стала этология, изучающая поведение животных .

В XX в. получила дальнейшее развитие теория биологической эволюции. Благодаря развитию палеонтологии и сравнительной анатомии было выяснено происхождение большинства крупных групп органического мира, вскрыты морфологические закономерности эволюции (советский ученый А. Н. Северцов). Огромное значение для развития эволюционной теории имел синтез генетики и дарвинизма (работы советского ученого С. С. Четверикова , английских ученых С. Райта, Р. Фишера, Дж. Б. С. Холдейна), приведший к созданию современного эволюционного учения. Ему посвящены труды американских ученых Ф. Г. Добржанского, Э. Майра, Дж. Г. Симпсона, англичанина Дж. Хаксли, советских ученых И. И. Шмальгаузена , Н. В. Тимофеева-Ресовского , немецкого ученого Б. Ренша.

Физиология растений добилась успехов в познании природы фотосинтеза , изучении участвующих в нем пигментов , и прежде всего хлорофилла.

С выходом человека в космическое пространство появилась новая наука - космическая биология. Основная задача ее - жизнеобеспечение людей в условиях космического полета, создание искусственных замкнутых биоценозов на космических кораблях и станциях, поиск возможных проявлений жизни на других планетах, а также подходящих условий для ее существования.

В 70-е гг. возникла новая отрасль молекулярной биологии - генная инженерия , задача которой - активная и целенаправленная перестройка генов живых существ, их конструирование, т. е. управление наследственностью. В результате этих работ стало возможным введение генов, взятых из одних организмов или даже искусственно синтезированных, в клетки других организмов (например, введение гена, кодирующего синтез инсулина у животных, в клетки бактерий). Стала возможной гибридизация клеток разных видов - клеточная инженерия. Разработаны методы, позволяющие выращивать организмы из отдельных клеток и тканей (см. Культура клеток и тканей). Это открывает огромные перспективы в размножении копий - клонов ценных индивидуумов.

Все эти достижения имеют чрезвычайно важное практическое значение - они стали основой новой отрасли производства - биотехнологии . Уже сейчас осуществляется биосинтез лекарств, гормонов, витаминов, антибиотиков в промышленных масштабах. А в будущем таким путем мы сможем получить основные компоненты пищи - углеводы , белки , липиды . Использование солнечной энергии по принципу фотосинтеза растений в биоинженерных системах разрешит проблему обеспечения энергией основных потребностей людей.

Значение биологии в наши дни неизмеримо возросло и в связи с проблемой сохранения биосферы из-за бурного развития промышленности, сельского хозяйства, роста населения Земли. Появилось важное практическое направление биологических исследований - изучение среды обитания человека в широком смысле и организация на этой основе рациональных способов ведения народного хозяйства, охраны природы .

Другое важнейшее практическое значение биологических исследований - использование их в медицине. Именно успехи и открытия в биологии определили современный уровень медицинской науки. С ними связан и дальнейший прогресс медицины. О многих задачах биологии, связанных со здоровьем людей, вы прочтете в нашей энциклопедии (см. Иммунитет , Бактериофаг , Наследственность и др.).

Биология в наши дни становится реальной производительной силой. По уровню биологических исследований можно судить о материально-техническом развитии общества.

Накоплению знаний в новых и классических областях биологии способствует применение новых методов и приборов, например появление электронной микроскопии.

Растет число биологических научно-исследовательских институтов, биостанций, а также заповедников и национальных парков, играющих важную роль как «природные лаборатории».

Большое число биологов разных специальностей готовят высшие учебные заведения (см. Биологическое образование). Многие из вас пополнят в будущем многочисленный отряд специалистов, перед которым стоят задачи решения важных биологических проблем.