Представляющих каждый из них, очень много, но лидирующее положение, несомненно, занимают оксиды. У одного химического элемента может быть сразу несколько разных бинарных соединений с кислородом. Такое свойство имеет и медь. У нее существует три оксида. Давайте рассмотрим их детальнее.

Оксид меди (I)

Его формула - Cu 2 O. В некоторых источниках данное соединение могут называть гемиоксидом меди, оксидом димеди или закисью меди.

Свойства

Является кристаллическим веществом, имеющим коричнево-красный цвет. Этот оксид не растворяется в воде и этиловом спирте. Может плавиться, не разлагаясь, при температуре чуть больше 1240 о С. Данное вещество не взаимодействует с водой, но может переводиться в раствор, если участниками реакции с ним будут концентрированные хлоровородная кислота, щелочь, азотная кислота, гидрат аммиака, соли аммония, серная кислота.

Получение оксида меди (I)

Его можно получить, нагрев металлическую медь, или в такой среде, где кислород имеет малую концентрацию, а также в токе некоторых оксидов азота и вместе с оксидом меди (II). Кроме того, он может стать продуктом реакции термического разложения последнего. Оксид меди (I) получится и в том случае, если нагреть сульфид меди (I) в токе кислорода. Есть и другие, более сложные способы его получения (например, восстановление одного из гидроксидов меди, ионный обмен любой соли одновалентной меди с щелочью и т.п.), но их практикуют только в лабораториях.

Применение

Нужен в качестве пигмента, когда окрашивают керамику, стекло; компонента красок, которые защищают подводную часть судна от обрастания. Используется также как фунгицид. Без него не обходятся и меднозакисные вентили.

Оксид меди (II)

Его формула - CuO. Во многих источниках может встречаться под названием окиси меди.

Свойства

Это высший оксид меди. Вещество имеет вид черных кристаллов, которые почти не растворяются в воде. Взаимодействует с кислотой и при этой реакции образует соответствующую соль двухвалентной меди, а также воду. При его сплавлении с щелочью продукты реакции представлены купратами. Разложение оксида меди (II) происходит при температуре около 1100 о С. Аммиак, монооксид углерода, водород и уголь способны извлекать из этого соединения металлическую медь.

Получение

Его можно получить при нагревании металлической меди в воздушной среде при одном условии - температура нагревания должна быть ниже 1100 о С. Также оксид меди (II) может получиться, если нагреть карбонат, нитрат, двухвалентный гидроксид меди.

Применение

С помощью данного оксида окрашивают в зеленый или синий цвет эмаль и стекло, а также производят медно-рубиновую разновидность последнего. В лаборатории этим оксидом обнаруживают восстановительные свойства веществ.

Оксид меди (III)

Его формула - Cu 2 O 3 . Имеет традиционное название, которое звучит, наверное, немного необычно - окисел медь.

Свойства

Имеет вид красных кристаллов, не растворяющихся в воде. Разложение этого вещества происходит при температуре 400 о С, продукты данной реакции - оксид меди (II) и кислород.

Получение

Его можно получить, окисляя двухвалентный гидроксид меди с помощью пероксидисульфата калия. Необходимое условие реакции - щелочная среда, в которой она должна происходить.

Применение

Данное вещество само по себе не используется. В науке и промышленности более широкое распространение находят продукты его разложения - оксид меди (II) и кислород.

Заключение

Вот и все оксиды меди. Их несколько из-за того, что медь имеет переменную валентность. Существуют и другие элементы, у которых есть по несколько оксидов, но о них поговорим в другой раз.

Для получения металлов из оксидов используются различные восстановители. Использование водорода позволяет получать активные металлы, не восстанавливаемые оксидом углерода (II). Также этот способ применяется для получения металлов с низким содержанием примесей, например, для химической лаборатории. Стоимость этого способа довольно высока. В качестве примера можно привести реакцию восстановления меди из оксида меди (II) при нагревании в струе водорода:

CuO + H 2 = Cu + H 2 O

С указанием степени окисления элементов:

Cu +2 O + H 2 0 = Cu 0 + H 2 +1 O

Хотя реакция обратимая, но проведение ее в токе водорода, и, как следствие, удаление паров воды из зоны реакции позволяет сместить равновесие вправо и добиться полного восстановления меди.

Железо, поступающее в школьную лабораторию, часто на этикетке имеет надпись: «Восстановлено водородом»:

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

Способ восстановления металлов алюминием получил название «алюминотермия» или «алюмотермия». Алюминий является еще более активным восстановителем. Этим способом получают хром, марганец:

2Al + Cr 2 O 3 = Al 2 O 3 + 2Cr

При реакции оксида железа (III) с порошком алюминия (смесь необходимо поджечь магниевой лентой) выделяется много тепла:

2Al + Fe 2 O 3 = Al 2 O 3 + 2Fe

Алюминотермией получают некоторое количество кальция. Обратите внимание, что в электрохимическом ряду напряжений кальций находится левее алюминия, но это не делает невозможным данный способ - не следует забывать, что ряд напряжений говорит о возможности или невозможности протекания реакций только в растворах .

Оксид углерода (II) применяется наиболее широко. Например, при выплавке чугуна в доменной печи восстановителями являются кокс и образующийся оксид углерода(II). Суммарное уравнение получения железа из красного железняка:

Fe 2 O 3 + 3CO = 2Fe + 3CO 2

Чистые металлы в современной технике используются сравнительно редко. Чистые медь и алюминий применяются для изготовления электрических проводов. Цинк, никель, хром, золото наносятся на поверхность стальных изделий для защиты от коррозии и придания красивого внешнего вида.

Сплавы обладают более высокой прочностью. Легкие сплавы на основе алюминия, например, дуралюмины (содержат медь и магний) - особенно широко применяются в изготовлении летательных аппаратов, автомобилей, скоростных судов.

Сплавы на основе железа - чугун и сталь - основные конструкционные материалы современной техники. Чугун, благодаря более низкой стоимости, устойчивости к коррозии, хорошим литейным качествам широко применяется для изготовления станков, печных плит, декоративных садовых решеток и пр.

Сталь хорошо обрабатывается и обладает высокой прочностью. Добавление в сталь легирующих добавок позволяет придавать ей особые свойства: высокую твердость, устойчивость к коррозии (нержавеющие стали), кислотам (кислотоупорные), высоким температурам (жаропрочные) и т. д.

Сплавы на основе меди - латуни и бронзы - обладают хорошей теплопроводностью, устойчивостью к коррозии (в том числе в морской воде), красивым внешним видом. Применяются для изготовления радиаторов, в судостроении, для декоративных целей.

Сплавы олова и свинца - припо́и - обладают более низкой температурой плавления, чем олово и свинец в отдельности. Используются при пайке.

Восстановление водородом оксида меди (II)

Сухую пробирку с небольшим количеством оксида меди (II) укрепите в лапке штатива в слегка наклонном положении так, чтобы дно ее было немного приподнято (зачем?).

Соберите прибор для получения водорода (рис. 5), состоящий из банки с разбавленным раствором серной кислоты, пробирки с отверстием в дне, вставленной в пробку, закрывающую банку (нижняя часть пробирки наполнена кусочками цинка), газоотводной трубки (с зажимом), служащей для отвода газа из пробирки.

Опустите пробирку с цинком в серную кислоту и, сняв зажим, убедитесь в чистоте выделяющегося водорода. После этого пропустите водород в пробирку с оксидом меди (II) сначала при комнатной температуре, а затем при нагревании. Наблюдайте изменения, происходящие с оксидом меди (II), и выде­ление капель на стенках пробирки. Когда весь оксид меди (II) прореагирует, прекратите нагревание и дайте содержимому пробирки охладиться в токе водорода. Объясните наблюдаемые явления и напишите уравнение реакции.

1. Зачем требуется охлаждать реакционную пробирку до комнатной температуры перед отключением тока водорода?

2. Как установить окончание восстановления оксида металла?

3. Оксиды каких металлов могут быть восстановлены водородом (при 200-500°С)?

Рис. 5. Восстановление оксида меди (II) водородом

Восстановление перманганата калия атомарным водородом (в момент выделения)

В разбавленный раствор серной кислоты добавьте несколько капель раствора перманганата калия и разлейте смесь в две пробирки. В одну из них бросьте кусочек цинка, в другую пропустите водород из аппарата Киппа. Сравните скорость изменения цвета раствора в пробирках. Объясните разницу в скорости изменения цвета. Напишите уравнение реакций.

ТРЕБОВАНИЯ К СОДЕРЖАНИЮ И ОФОРМЛЕНИЮ ОТЧЕТА

Отчет должен быть оформлен в соответствии с общими требованиями к текстовым документам (СТО 1.701-2010).

По каждому опыту необходимо описать наблюдаемые явления и сделать теоретическое объяснение в выводе.

Уравнения реакций должны быть составлены в молекулярном и ионном виде (коэффициенты в уравнениях ОВР расставляйте с помощью метода ионно-электронного баланса).

ВОПРОСЫ И ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ

1. Почему температура пламени гремучего газа выше, чем температура пламени водорода, горящего на воздухе?

2. Приведите примеры, показывающие отличие химической активности мо­лекулярного и атомарного водорода.

3. Сколько граммов воды получится при взрыве 6 л гремучего газа (при н.у.)?

4. Какой газ и в каком количестве (сколько граммов) не полностью войдет в реакцию при взрыве смеси, состоящей из 0,36 г водорода и 3,26 г кис­лорода?

5. Может ли существовать ион Н + ?

6. Гидрид кальция используют в лабораторной практике для восстановления металлов из оксидов. Напишите уравнение реакции восстановления высшего оксида ниобия.

7. Сколько литров водорода выделится при разложении водой 5,5 г гидрида кальция при температуре 17°С и 101,3 кПа?

8. Сколько гидрида кальция должно прореагировать с водой, чтобы вы­делившимся водородом восстановить 20 г оксида меди (II)?

ЛИТЕРАТУРА

1. Ахметов, Н.С. Общая и неорганическая химия: Учеб.для вузов / Н. С. Ахметов. – 7-е изд.,стер. – М.: Высшая школа, 2008. – 742 с.

2. Ахметов, Н.С. Лабораторные и семинарские занятия по общей и неорганической химии: Учеб.пособие для студентов ун-тов,хим.-технол.и пед.вузов / Н. С. Ахметов, М. К. Азизова, Л. И. Бадыгин. – 5-е изд.,испр. – М.: Высшая школа, 2003 (2002). – 366 с.

3. Гельфман, М.И. Неорганическая химия: Учеб.для вузов / М. И. Гельфман, В. П. Юстратов. – 2-е изд.,стер. – СПб.: Лань, 2009. – 527 с.

4. Практикум по неорганической химии: Учебное пособие для студ. высш. уч. заведений / В.А. Алешин, К.М. Дунаев, А.И. Жиров и др; под ред. Ю.Д. Третьякова. – М.: Издательский центр «Академия», 2004. – 384 с.

5. Неорганическая химия: В 3 т. / Под ред. Ю.Д. Третьякова. Т. 2: Химия непереходных элементов: Учебник для студ. высш. учеб. Заведений / А.А. Дроздов, В.П. Зломанов, Г.Н. Мазо, Ф.М. Спиридонов. – М.: Издательский центр «Академия», 2004. – 388 с.