ГОУ ВПО

ДВГУПС

Кафедра “Физика”

Лабораторная работа
На тему: “Проводники в электрическом поле”.

Хабаровск 2016 г.

ТЕМА: ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Цель работы:

1. Определить электроемкость конденсаторов.

2. Экспериментально проверить формулы для параллельного и после­довательного соединения конденсаторов.

3. Определить энергию заряженных конденсаторов.

Приборы и принадлежности : гальванометр; источник тока; панель с вольтметром и переключателями; конденсаторы.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Распределение заряда в заряженном проводнике

Все тела в зависимости от их электрических свойств можно разделить на три группы: проводники, диэлектрики, полупроводники. В незаряженном металлическом проводнике, как и в любом нейтральном теле, суммарный электрический заряд равен нулю, т.е. заряд свободных электронов ком­пенсируется положительными зарядами, связанными с узлами крис­таллической решетки металла. Так как заряд тел определяется недостат­ком или" избытком числа электронов по сравнению с числом их в электри­чески нейтральных телах, то заряжение проводника, т.е. его электризация, сводится к изменению, тем или иным способом, числа содержащихся в нем электронов.

Каким же образом распределяется в проводнике этот избыточный заряд?

Неподвижные заряды одного и того же знака не могут сохраниться в толще заряженного проводника. Силы взаимного отталкивания заставят их удалиться друг от друга на наибольшие расстояния, пока не будет достиг­нута граница проводника с диэлектриком, т.е. на внешнюю поверхность проводника.

Для того, чтобы распределение заряда на проводнике было равновес­ным, вектор электрической индукции (электрического смещения) внутри проводника должен быть равен нулю (в противном случае заряды внутри проводника будут перемещаться и равновесие нарушится):

Тогда и поток вектора индукции через любую замкнутую поверхность расположенную внутри проводника, равен нулю. Следовательно, алгеб­раическая сумма зарядов, охватываемых любой замкнутой поверхностью внутри проводника, также равна нулю, т. е.


Таким образом, внутри проводника суммарный электрический заряд равен нулю. Сообщенный проводнику заряд распределяется только по внешней поверхности проводника.

Количественной характеристикой распределения заряда по поверхно­сти проводника является поверхностная плотность заряда

где S - поверхность проводника, на которой распределен заряд q.



Тело произвольной формы на различных участках поверхности имеет разную плотность заряда. Распределение поверхностной плотности заря­да определяется только формой проводника и не зависит от величины за­ряда. Чем значительнее кривизна выпуклой поверхности заряженного те­ла, тем больше поверхностная плотность заряда.

Вблизи заряженного проводника вектор электрической индукции чис­ленно равен поверхностной плотности заряда, а напряженность прямо пропорциональна поверхностной плотности заряда.

где и - нормальные составляющие вектора электрической индукции и напряженности поля.

Одной из общих задач электростатики является определение электрического поля или потенциала для заданного поверхностного распределения зарядов. Теорема Гаусса (1.11) позволяет сразу написать некоторое частное соотношение для электрического поля. Если на поверхности S с единичной нормалью заряд распределен с поверхностной плотностью , а электрическое поле по обе стороны поверхности равно соответственно (фиг. 1.4), то, согласно теореме Гаусса,

Это соотношение еще не определяет самих полей исключение составляют лишь те случаи, когда нет других источников поля, кроме поверхностных зарядов с плотностью а распределение имеет особо простой вид. Соотношение (1.22) показывает только, что при переходе с «внутренней» стороны поверхности, на которой расположен поверхностный заряд а, на «внешнюю» сторону нормальная составляющая электрического поля испытывает скачок

Используя соотношение (1.21) для линейного интеграла от Е по замкнутому контуру, можно показать, что тангенциальная составляющая электрического поля непрерывна при переходе через поверхность.

Фиг. 1.4. Скачок нормальной составляющей электрического поля при пересечении поверхностного распределения зарядов.

Общее выражение для потенциала, создаваемого поверхностным распределением заряда в произвольной точке пространства (в том числе на самой поверхности S, на которой расположены заряды), можно найти из (1.17), заменяя на

Выражение для электрического поля может быть получено отсюда дифференцированием.

Представляет интерес также задача о потенциале, создаваемом двойным слоем, т. е. распределением диполей по поверхности

Фиг. 1.5. Предельный переход при образовании двойного слоя.

Двойной слой можно представить себе следующим образом: пусть на поверхности S заряд расположен с некоторой плотностью , а на поверхности S, близкой к S, поверхностная плотность в соответствующих (соседних) точках составляет , т. е. равна по величине и противоположна по знаку (фиг. 1.5). Двойной слой, т. е. дипольное распределение с моментом единицы поверхности

получится как предельный переход, при котором S бесконечно близко приближается к S, а поверхностная плртность стремится к бесконечности так, что произведение на расстояние между в соответствующей точке стремится к пределу

Дипольный момент слоя перпендикулярен поверхности S и направлен от отрицательного заряда к положительному.

Чтобы найти потенциал, создаваемый двойным слоем, можно сначала рассмотреть отдельный диполь, а затем перейти к распределению диполей по поверхности. К тому же результату можно прийти, если исходить из потенциала (1.23) для поверхностного распределения заряда, а затем произвести описанный выше предельный переход. Первый способ расчета, пожалуй, проще, но зато второй является полезным упражнением в векторном анализе, так что мы предпочтем здесь именно второй.

Фиг. 1.6. Геометрия двойного слоя.

Пусть единичный вектор нормали направлен от S к S (фиг. 1.6). Тогда потенциал, обусловленный двумя близкими поверхностями S и S, равен

При малых d мы можем разложить выражение в ряд. Рассмотрим общее выражение в котором При этом

Очевидно, это просто разложение в ряд Тейлора в трехмерном случае. Таким образом, переходя к пределу (1.24), получаем для потенциала выражение

Соотношение (1.25) может быть очень просто истолковано геометрически. Заметим, что

где - элемент телесного угла, под которым из точки наблюдения виден элемент площади (фиг. 1.7). Величина положительна, если угол острый, т. е. из точки наблюдения видна «внутренняя» сторона двойного слоя.

Фиг. 1.7. К выводу потенциала двойного слоя. Потенциал в точке Р, создаваемый элементом площади двойного слоя с моментом единицы поверхности D, равен взятому с обратным знаком произведению момента D на телесный угол под которым виден элемент площади из точки Р.

Выражение для потенциала двойного слоя может быть записано в виде

Если поверхностная плотность дипольного момента D постоянна, то потенциал просто равен взятому с обратным знаком произведению дипольного момента на телесный угол, под которым из точки наблюдения видна вся поверхность независимо от ее формы.

При пересечении двойного слоя потенциал претерпевает скачок, равный поверхностной плотности дипольного момента, умноженной на . В этом легко убедиться, если рассмотреть точку наблюдения, приближающуюся бесконечно близко к поверхности S с внутренней стороны. Тогда, согласно (1.26), потенциал на внутренней

стороне будет равен

так как почти весь телесный угол опирается на малый участок поверхности S вблизи точки наблюдения. Аналогично если приближаться к поверхности S с внешней стороны, то потенциал становится равным

знак меняется на обратный из-за изменения знака телесного угла. Таким образом, скачок потенциала при пересечении двойного слоя равен

Это соотношение является аналогом формулы (1.22) для скачка нормальной составляющей электрического поля при пересечении «простого» слоя, т. е. поверхностного распределения заряда. Соотношение (1.27) можно физически интерпретировать как падение потенциала «внутри» двойного слоя. Это падение потенциала может быть вычислено (до перехода к пределу) как произведение напряженности поля между обоими слоями, несущими поверхностный заряд, на расстояние между ними.

В случае равновесного распределения заряды проводника распределяются в тонком поверхностном слое. Так, например, если проводнику сообщить отрицательный заряд, то из-за наличия сил отталкивания элементов этого заряда они рассредоточатся по всей поверхности проводника.

Исследование при помощи пробной пластинки

Для того чтобы на опыте исследовать, как распределяются заряды на внешней поверхности проводника используют так называемую пробную пластинку. Эта пластинка настолько мала, что при соприкосновении с проводником ее можно рассматривать как часть поверхности проводника. Если эту пластинку приложить к заряженному проводнику, то часть заряда ($\triangle q$) перейдет на нее и величина этого заряда будет равна заряду, который находился на поверхности проводника по площади равной площади пластинки ($\triangle S$).

Тогда величина равная:

\[\sigma=\frac{\triangle q}{\triangle S}(1)\]

называется поверхностной плотностью распределения заряда в данной точке.

Разряжая пробную пластинку через электрометр можно судить о величине поверхностной плотности заряда. Так, например, если зарядить проводящий шар, то можно увидеть, с помощью вышеприведенного метода, что в состоянии равновесия поверхностная плотность заряда на шаре одна и та же во всех его точках. То есть заряд по поверхности шара распределяется равномерно. Для проводников более сложной формы распределение заряда сложнее.

Поверхностная плотность проводника

Поверхность любого проводника является эквипотенциальной, но в общем случае плотность распределения заряда может очень сильно отличаться в разных точках. Поверхностная плотность распределения заряда зависит от кривизны поверхности. В разделе, который был посвящен описанию состояния проводников в электростатическом поле, мы установили, что напряженность поля около поверхности проводника перпендикулярна поверхности проводника в любой его точке и равна по модулю:

где ${\varepsilon }_0$ -- электрическая постоянная, $\varepsilon $ -- диэлектрическая проницаемость среды. Следовательно,

\[\sigma=E\varepsilon {\varepsilon }_0\ \left(3\right).\]

Чем больше кривизна поверхности тем, тем больше напряженность поля. Следовательно, на выступах плотность заряда особенно велика. Вблизи углублений в проводнике эквипотенциальные поверхности расположены реже. Следовательно, напряженность поля и плотность зарядов в этих местах меньше. Плотность зарядов при заданном потенциале проводника определяется кривизной поверхности. Она растет с увеличением выпуклости и убывает с увеличением вогнутости. Особенно большая плотность заряда на остриях проводников. Так, напряженность поля на острие может быть настолько велика, что может возникать ионизация молекул газа, который окружает проводник. Ионы газа противоположного знака заряда (относительно заряда проводника) притягиваются к проводнику, нейтрализуют его заряд. Ионы того же знака отталкиваются от проводника, «тянут» за собой нейтральные молекулы газа. Такое явление называют электрическим ветром. Заряд проводника уменьшается в результате процесса нейтрализации, он как бы стекает с острия. Такое явление называют истечением заряда с острия.

Мы уже говорили, что когда мы вносим проводник в электрическое поле, происходит разделение положительных зарядов (ядер) и отрицательных (электронов). Такое явление носит название электростатической индукции. Заряды, которые появляются в результате, называют индуцированными. Индуцированные заряды создают дополнительное электрическое поле.

Поле индуцированных зарядов направлено в сторону противоположную направлению внешнего поля. Поэтому заряды, которые накапливаются на проводнике, ослабляют внешнее поле.

Перераспределение зарядов идет, пока не выполнены условия равновесия зарядов для проводников. Такие как: равенство нулю напряженности поля везде внутри проводника и перпендикулярность вектора напряженности заряженной поверхности проводника. Если в проводнике есть полость, то при равновесном распределении индуцированного заряда поле внутри полости равно нулю. На этом явлении основана электростатическая защита. Если какой-либо прибор хотят защитить от воздействия внешних полей, его окружают проводящим экраном. В таком случае внешнее поле компенсируется внутри экрана возникающими на его поверхности индуцированными зарядами. Такой может быть не обязательно сплошным, но и в виде густой сетки.

Задание: Бесконечно длинная нить, заряженная с линейной плотностью $\tau $, расположена перпендикулярно бесконечно большой проводящей плоскости. Расстояние от нити до плоскости $l$. Если продолжить нить до пересечения с плоскостью, то в месте пересечения получим некоторую точку А. Составьте формулу зависимости поверхностной плотности $\sigma \left(r\right)\ $индуцированных зарядов на плоскости от расстояния до точки А.

Рассмотрим некоторую точку В на плоскости. Бесконечно длинная заряженная нить в точке В создает электростатическое поле, в поле находится проводящая плоскость, на плоскости образуются индуцированные заряды, которые в свою очередь создают поле, которое ослабляет внешнее поле нити. Нормальная составляющая поля плоскости (индуцированных зарядов) в точке В будет равна нормальной составляющей поля нити в этой же точке, если система находится в равновесии. Выделим на нити элементарный заряд ($dq=\tau dx,\ где\ dx-элементарный\ кусочек\ нити\ $), найдем в точке В напряжённость, создаваемую этим зарядом ($dE$):

Найдем нормальную составляющую элемента напряженности поля нити в точке В:

где $cos\alpha $ выразим как:

Выразим расстояние $a$ по теореме Пифагора как:

Подставим (1.3) и (1.4) в (1.2), получим:

Найдем интеграл от (1.5) где пределы интегрирования от $l\ (расстояние\ до\ ближайшего\ конца\ нити\ от\ плоскости)\ до\ \infty $:

С другой стороны, мы знаем, что поле равномерно заряженной плоскости равно:

Приравняем (1.6) и (1.7), выразим поверхностную плотность заряда:

\[\frac{1}{2}\cdot \frac{\sigma}{\varepsilon {\varepsilon }_0}=\frac{\tau }{4\pi {\varepsilon }_0\varepsilon }\cdot \frac{1}{{\left(r^2+x^2\right)}^{{1}/{2}}}\to \sigma=\frac{\tau }{2\cdot \pi {\left(r^2+x^2\right)}^{{1}/{2}}}.\]

Ответ: $\sigma=\frac{\tau }{2\cdot \pi {\left(r^2+x^2\right)}^{{1}/{2}}}.$

Пример 2

Задание: Рассчитайте поверхностную плотность заряда, который создается около поверхности Земли, если напряженность поля Земли равна 200$\ \frac{В}{м}$.

Будем считать, что диэлектрическая проводимость воздуха $\varepsilon =1$ как у вакуума. За основу решения задачи примем формулу для расчёта напряженности заряженного проводника:

Выразим поверхностную плотность заряда, получим:

\[\sigma=E{\varepsilon }_0\varepsilon \ \left(2.2\right),\]

где электрическая постоянная нам известна и равна в СИ ${\varepsilon }_0=8,85\cdot {10}^{-12}\frac{Ф}{м}.$

Проведем вычисления:

\[\sigma=200\cdot 8,85\cdot {10}^{-12}=1,77\cdot {10}^{-9}\frac{Кл}{м^2}.\]

Ответ: Поверхностная плотность распределения заряда поверхности Земли равна $1,77\cdot {10}^{-9}\frac{Кл}{м^2}$.

Все вещества в соответствии с их способностью проводить электрический ток подразделяются на проводники, диэлектрики и полупроводники. Проводниками называют вещества, в которых электрически заряженные частицы - носители заряда - способны свободно перемещаться по всему объему вещества. К проводникам относятся металлы, растворы солей, кислот и щелочей, расплавленные соли, ионизированные газы.

Ограничим рассмотрение твердыми металлическими проводниками, имеющими кристаллическую структуру. Эксперименты показывают, что при очень малой разности потенциалов, приложенной к проводнику, содержащиеся в нем электроны проводимости, приходят в движение и перемещаются по объему металлов практически свободно.

В отсутствие внешнего электростатического поля электрические поля положительных ионов и электронов проводимости взаимно скомпенсированы, так что напряженность внутреннего результирующего поля равна нулю.

При внесении металлического проводника во внешнее электростатическое поле с напряженностью Е 0 на ионы и свободные электроны начинают действовать кулоновские силы, направленные в противоположные стороны. Эти силы вызывают смещение заряженных частиц внутри металла, причем в основном смещаются свободные электроны, а положительные ионы, находящиеся в узлах кристаллической решетки, практически не меняют своего положения. В результате внутри проводника возникает электрическое поле с напряженностью Е " .

Смещение заряженных частиц внутри проводника прекращается тогда, когда суммарная напряженность поля Е в проводнике, равная сумме напряженностей внешнего и внутреннего полей, станет равной нулю:

Представим выражение, связывающее напряженность и потенциал электростатического поля, в следующем виде:

где Е - напряженность результирующего поля внутри проводника; n - внутренняя нормаль к поверхности проводника. Из равенства нулю результирующей напряженности Е следует, что в пределах объема проводника потенциал имеет одно и то же значение:

Полученные результаты позволяют сделать три важных вывода:

  • 1. Во всех точках внутри проводника напряженность поля, т. е. весь объем проводника эквипотенциален.
  • 2. При статическом распределении зарядов по проводнику вектор напряженности Ена его поверхности должен быть направлен по нормали к поверхности

3. Поверхность проводника также эквипотенциальна, так как для любой точки поверхности

3. Проводники во внешнем электростатическом поле

Если проводнику сообщить избыточный заряд, то этот заряд распределится по поверхности проводника. Действительно, если внутри проводника выделить произвольную замкнутую поверхность S, то поток вектора напряженности электрического поля через эту поверхность должен быть равен нулю. В противном случае внутри проводника будет существовать электрическое поле, что приведет к перемещению зарядов. Следовательно, для того, чтобы выполнялось условие

суммарный электрический заряд внутри этой произвольной поверхности должен равняться нулю.

Напряженность электрического поля вблизи поверхности заряженного проводника можно определить, используя теорему Гаусса. Для этого выделим на поверхности проводника малую произвольную площадку dS и, считая ее за основание, построим на ней цилиндр с образующей dl (рис. 3.1). На поверхности проводника вектор Е направлен по нормали к этой поверхности. Поэтому поток вектора Е через боковую поверхность цилиндра из-за малости dl равен нулю. Поток этого вектора через нижнее основание цилиндра, находящееся внутри проводника, также равен нулю, так как внутри проводника электрическое поле отсутствует. Следовательно, поток вектора Е через всю поверхность цилиндра равен потоку через его верхнее основание dS " :

где Е n - проекция вектора напряженности электрического поля на внешнюю нормаль n к площадке dS.

По теореме Гаусса, этот поток равен алгебраической сумме электрических зарядов, охватываемых поверхностью цилиндра, отнесенной к произведению электрической постоянной и относительной диэлектрической проницаемости среды, окружающей проводник. Внутри цилиндра находится заряд

где - поверхностная плотность зарядов. Следовательно

т. е. напряженность электрического поля вблизи поверхности заряженного проводника прямо пропорциональна поверхностной плотности электрических зарядов, находящихся на этой поверхности.

Экспериментальные исследования распределения избыточных зарядов на проводниках различной формы показали, что распределение зарядов на внешней поверхности проводника зависит только от формы поверхности: чем больше кривизна поверхности (чем меньше радиус кривизны), тем больше поверхностная плотность заряда.

Вблизи участков с малыми радиусами кривизны, особенно около острия, из-за высоких значений напряженности происходит ионизация газа, например, воздуха. В результате одноименные с зарядом проводника ионы движутся в направлении от поверхности проводника, а ионы противоположного знака к поверхности проводника, что приводит к уменьшению заряда проводника. Это явление получило название стекания заряда. электрический ток проводник статический

На внутренних поверхностях замкнутых полых проводников избыточные заряды отсутствуют.

Если заряженный проводник привести в соприкосновение с внешней поверхностью незаряженного проводника, то заряд будет перераспределяться между проводниками до тех пор, пока их потенциалы не станут равными.

Если же тот же заряженный проводник касается внутренней поверхности полого проводника, то заряд передается полому проводнику полностью.

Эта особенность полых проводников была использована американским физиком Робертом Ван-де-Граафом для создания в 1931г. электростатического генератора, в котором высокое постоянное напряжение создается посредством механического переноса электрических зарядов. Наиболее совершенные электростатические генераторы позволяют получать напряжение величиной до 15-20 МВ.

В заключение отметим еще одно явление, присущее только проводникам. Если незаряженный проводник поместить во внешнее электрическое поле, то его противоположные части в направлении поля будут иметь заряды противоположных знаков. Если, не снимая внешнего поля, проводник разделить, то разделенные части будут иметь разноименные заряды. Это явление получило название электростатической индукции.

1. Электростатика -- это раздел физики, где изучаются свойства и взаимодействия неподвижных относительно инерциальной системы отсчета электрически заряженных тел или частиц, которые имеют электрический заряд.

Основание электростатики положили работы Кулона, хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш. Самую существенную часть электростатики составляет теория потенциала, созданная Грином и Гауссом.

2. Все вещества в соответствии с их способностью проводить электрический ток подразделяются на проводники, диэлектрики и полупроводники. Проводниками называют вещества, в которых электрически заряженные частицы - носители заряда - способны свободно перемещаться по всему объему вещества. К проводникам относятся металлы, растворы солей, кислот и щелочей, расплавленные соли, ионизированные газы.

Во всех точках внутри проводника напряженность поля, т. е. весь объем проводника эквипотенциален.

При статическом распределении зарядов по проводнику вектор напряженности Ена его поверхности должен быть направлен по нормали к поверхности

в противном случае под действием касательной к поверхности проводника компоненты напряженности заряды должны перемещаться по проводнику.

Поверхность проводника также эквипотенциальна, так как для любой точки поверхности

Мы видели, что поверхность проводника, как нейтрального, так и заряженного, является эквипотенциальной поверхностью (§ 24) и внутри проводника напряженность поля равна нулю (§ 16). То же относится и к полому проводнику: поверхность его есть поверхность эквипотенциальная и поле внутри полости равно нулю, как бы сильно ни был заряжен проводник, если, конечно, внутри полости нет изолированных от проводника заряженных тел.

Этот вывод был наглядно продемонстрирован английским физиком Майклом Фарадеем (1791-1861), обогатившим науку рядом крупнейших открытий. Его опыт состоял в следующем. Большая деревянная клетка была оклеена листами станиоля (оловянной бумагой), изолирована от Земли и сильно заряжена при помощи электрической машины. В клетку помещался сам Фарадей с очень чувствительным электроскопом. Несмотря на то, что с внешней поверхности клетки при приближении к ней тел, соединенных с Землей, вылетали искры, указывая этим на большую разность потенциалов между клеткой и Землей, электроскоп внутри клетки не показывал никакого отклонения (рис. 53). Видоизменение этого опыта показано на рис. 54. Если сделать из металлической сетки замкнутую полость и привесить листочки бумаги с внутренней и внешней сторон полости, то обнаружим, что отклоняются лишь наружные

Рис. 53. Опыт Фарадея

Рис. 54. Видоизменение опыта Фарадея. Металлическая клетка заряжена. Листочки бумаги снаружи отклоняются, указывая на наличие заряда на внешних поверхностях стен клетки. Внутри клетки заряда нет, листочки бумаги не отклоняются

Рис. 55. Исследование распределения заряда в проводнике 1 при помощи пробной пластинки 2. Внутри полости проводника заряда нет

листочки. Это показывает, что электрическое поле существует только в пространстве между клеткой и окружающими ее предметами, т. е. снаружи клетки; внутри же клетки поле отсутствует. При зарядке любого проводника заряды распределяются в нем так, что электрическое поле внутри него исчезает и разность потенциалов между любыми точками обращается в нуль. Посмотрим, каким образом для этого должны разместиться заряды.

Зарядим полый проводник, например полый изолированный шар 1 (рис. 55), имеющий небольшое отверстие. Возьмем маленькую металлическую пластинку 2 укрепленную на изолирующей ручке («пробную пластинку») коснемся ею какого-либо места внешней поверхности шара и затем приведем в соприкосновение с электроскопом. Листки электроскопа разойдутся на некоторый угол, указывая этим, что пробная пластинка при соприкосновении с шаром зарядилась. Если мы, однако, коснемся пробной пластинкой внутренней поверхности шара, то пластинка будет оставаться незаряженной, как бы сильно ни был заряжен шар Почерпнуть заряды можно только с внешней поверхности проводника, а с внутренней это оказывается невозможным. Более того, если мы предварительно зарядим пробную пластинку и коснемся ею внутренней поверхности проводника, то весь заряд перейдет на этот проводник. Это происходит независимо от того, какой заряд уже имелся на проводнике. В § 19 мы подробно разъяснили это явление. Итак, в состоянии равновесия заряды распределяются только на внешней поверхности проводника. Конечно, если бы мы повторили с полым проводником опыт, изображенный на рис. 45, касаясь проводника концом проволоки, ведущей к электрометру, то убедились бы, что вся поверхность проводника, как внешняя, так и внутренняя, есть поверхность одного потенциала: распределение зарядов по внешней поверхности проводника есть результат действия электрического поля. Только тогда, когда весь заряд перейдет на поверхность проводника, установится равновесие, т. е. внутри проводника напряженность поля сделается равной нулю и все точки проводника (внешняя поверхность, внутренняя поверхность и точки в толще металла) будут иметь один и тот же потенциал.

Таким образом, проводящая поверхность вполне защищает область, которую она окружает, от действия электрического поля, созданного зарядами, расположенными на этой поверхности или вне ее. Линии внешнего поля оканчиваются на этой поверхности, в проводящем слое они не могут проходить, и внутренняя полость оказывается свободной от поля. Поэтому такие металлические поверхности называются электростатическими защитами. Интересно отметить, что даже поверхность, сделанная из металлической сетки, может служить защитой, если только сетка достаточно густа.

31.1. В центре полого изолированного металлического шара находится заряд. Отклонится ли заряженный грузик, подвешенный на шелковой нити и помещенный вне шара? Разберите подробно, что при этом происходит. Что будет, если шар заземлен?

31.2. Почему пороховые склады для защиты от удара молний окружают со всех сторон заземленной металлической сеткой? Почему введенные в такое здание водопроводные трубы должны быть также хорошо заземлены?

Тем обстоятельством, что заряды распределяются на внешней поверхности проводника, часто пользуются на практике. Когда желают полностью перенести заряд какого-нибудь проводника на электроскоп (или электрометр), то к электроскопу присоединяют по возможности замкнутую металлическую полость и вводят заряженный проводник внутрь этой полости. Проводник полностью разряжается, и весь его заряд переходит на электроскоп. Это приспособление в честь Фарадея называют «фарадеевым цилиндром», так как на практике эта полость чаще всего выполняется в виде металлического цилиндра. Мы уже пользовались этим свойством фарадеева цилиндра (стакана) в опыте, изображенном на рис. 9, и подробно разъяснили его в § 19.

Ван-де-Грааф предложил использовать свойства фарадеева цилиндра для получения очень высоких напряжений. Принцип действия его генератора показан на рис. 56. Бесконечная лента 1 из какого-нибудь изолирующего материала, например шелка, движется при помощи мотора на двух роликах и одним своим концом заходит внутрь полого, изолированного от Земли металлического шара 2. Вне шара лента при помощи кисточки 3 заряжается каким-либо источником, например батареей или электрической машиной 4, до напряжения 30-50 кВ относительно Земли, если второй полюс батареи или машины заземлен. Внутри шара 2 заряженные участки ленты касаются кисточки 5 и полностью отдают шару свой заряд, который сейчас же перераспределяется по внешней поверхности шара. Благодаря этому ничто не препятствует непрерывному переносу заряда на шар. Напряжение между шаром 2 и Землей непрерывно увеличивается. Таким образом можно получить напряжение в несколько миллионов вольт. Подобные машины применяли в опытах по расщеплению атомных ядер.

Рис. 56. Принцип устройства генератора Ван-де-Граафа

Для того чтобы ответить на вопрос о распределении заряда в проводнике, нам надо уточнить некоторые свойства силовых линий электростатического поля. Напомним, что силовая линия электрического поля (в том числе и электростатического) - это воображаемая линия в пространстве, проведенная так, чтобы касательная к ней в каждой точке совпадала с вектором напряженности электрического поля в этой точке. Опыт изучения электростатических полей дает основание заключить, что силовые линии этих полей непрерывны и не замкнуты, они могут начинаться только на положительных зарядах и оканчиваться только на отрицательных и не могут начинаться (заканчиваться) в точке пространства, где нет зарядов. При графическом изображении поля некоторой системы зарядов число силовых линий, начинающихся или заканчивающихся на каком-либо заряде, пропорционально модулю этого заряда. Отсюда следует, что из любого заряда обязательно выходят (или входят в него) силовые линии.

После сказанного о силовых линиях возвратимся к вопросу о распределении заряда в проводнике. Выделим мысленно произвольный достаточно малый объем ΔV внутри проводника (рис. 1). Предположим, что этот объем имеет заряд (для определенности, положительный). Тогда из выделенного объема будут выходить силовые линии, т. е. вблизи него будет существовать электрическое поле. Но поля внутри проводника нет. Поэтому выделенный объем должен быть нейтрален. А поскольку этот объем взят нами в произвольном месте внутри проводника, то можно утверждать, что вся «внутренность» проводника нейтральна и, следовательно, весь заряд проводника находится на его поверхности.

Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действовать электростатическое поле, в результате чего они начнут перемещаться. Перемещение зарядов (ток) продолжается до тех пор, пока не установится равновесное распределение зарядов, при котором электростатическое поле внутри проводника обращается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напряженность поля во всех точках внутри проводника равна нулю:

Отсутствие поля внутри проводника означает, согласно (85.2), что потенциал во всех точках внутри проводника постоянен (j = const), т. е. поверхность проводника в электростатическом поле является эквипотенциальной (см. § 85). Отсюда же следует, что вектор напряженности поля на внешней поверхности проводника направлен по нормали к каждой точке его поверхности. Если бы это было не так, то под действием касательной составляющей Е заряды начали бы по поверхности проводника переме­щаться, что, в свою очередь, противоречило бы равновесному распределению зарядов.

Если проводнику сообщить некоторый заряд Q, то нескомпенсированные заряды располагаются только на поверхности проводника. Это следует непосредственно из теоремы Гаусса (89.3), согласно которой заряд Q, находящийся внутри проводника в некотором объеме, ограниченном произвольной замкнутой поверхностью, равен

так как во всех точках внутри поверхности D= 0.

Найдем взаимосвязь между напряженностью Е поля вблизи поверхности заряжен­ного проводника и поверхностной плотностью s зарядов на его поверхности. Для этого применим теорему Гаусса к бесконечно малому цилиндру с основаниями DS , пересека­ющему границу проводник - диэлектрик. Ось цилиндра ориентирована вдоль вектора Е (рис. 141). Поток вектора электрического смещения через внутреннюю часть цилинд­рической поверхности равен нулю, так как внутри проводника Е 1 (а следовательно, и D 1) равен нулю, поэтому поток вектора D сквозь замкнутую цилиндрическую поверхность определяется только потоком сквозь наружное основание цилиндра. Со­гласно теореме Гаусса (89.3), этот поток (D DS ) равен сумме зарядов (Q=s DS), охваты­ваемых поверхностью: D DS=s DS т.е.

где e - диэлектрическая проницаемость среды, окружающей проводник.

Таким образом, напряженность электростатического поля у поверхности провод­ника определяется поверхностной плотностью зарядов. Можно показать, что соот­ношение (92.2) задает напряженность электростатического поля вблизи поверхности проводника любой формы.

Если во внешнее электростатическое поле внести нейтральный проводник, то свободные заряды (электроны, ионы) будут перемещаться: положительные - по полю, отрицательные - против поля (рис. 142, а). На одном конце проводника будет скап­ливаться избыток положительного заряда, на другом - избыток отрицательного. Эти заряды называютсяиндуцированными. Процесс будет происходить до тех пор, пока напряженность поля внутри проводника не станет равной нулю, а линии напряжен­ности вне проводника - перпендикулярными его поверхности (рис. 142, б). Таким образом, нейтральный проводник, внесенный в электростатическое поле, разрывает часть линий напряженности; они заканчиваются на отрицательных индуцированных зарядах и вновь начинаются на положительных. Индуцированные заряды распределяются на внешней поверхности проводника. Явление перераспределения поверхностных зарядов на проводнике во внешнем электростатическом поле называется электростати­ческой индукцией .

Из рис. 142, б следует, что индуцированные заряды появляются на проводнике вследствие смещения их под действием поля, т. е. s является поверхностной плот­ностью смещенных зарядов. По (92.1), электрическое смещение D вблизи проводника численно равно поверхностной плотности смещенных зарядов. Поэтому вектор D по­лучил название вектора электрического смещения.

Таккак в состоянии равновесия внутри проводника заряды отсутствуют, то созда­ние внутри него полости не повлияет на конфигурацию расположения зарядов и тем самым на электростатическое поле. Следовательно, внутри полости поле будет отсут­ствовать. Если теперь этот проводник с полостью заземлить, то потенциал во всех точках полости будет нулевым, т. е. полость полностью изолирована от влияния внешних электростатических полей. На этом основанаэлектростатическая защи­та - экранирование тел, например измерительных приборов, от влияния внешних электростатических полей. Вместо сплошного проводника для защиты может быть использована густая металлическая сетка, которая, кстати, является эффективной при наличии не только постоянных, но и переменных электрических полей.

Свойство зарядов располагаться на внешней поверхности проводника используется для устройстваэлектростатических генераторов, предназначенных для накопления бо­льших зарядов и достижения разности потенциалов в несколько миллионов вольт. Электростатический генератор, изобретенный американским физиком Р. Ван-де-Граафом (1901-1967), состоит из шарообразного полого проводника 1 (рис. 143), укре­пленного на изоляторах 2 . Движущаяся замкнутая лента 3 из прорезиненной ткани заряжается от источника напряжения с помощью системы остриев 4, соединенных с одним из полюсов источника, второй полюс которого заземлен. Заземленная пласти­на 5 усиливает стекание зарядов с остриев на ленту. Другая система остриев 6 снимает заряды с ленты и передает их полому шару, и они переходят на его внешнюю поверхность. Таким образом, сфере передается постепенно большой заряд и удается достичь разности потенциалов в несколько миллионов вольт. Электростатические генераторы применяются в высоковольтных ускорителях заряженных частиц, а также в слаботочной высоковольтной технике.