Энтропия

Изменение энтальпии системы не может служить единственным критерием самопроизвольного осуществления химической реакции, поскольку многие эндотермические процессы протекают самопроизвольно. Иллюстрацией этого служит растворение некоторых солей (например, NH 4NO 3) в воде, сопровождающееся заметным охлаждением раствора. Необходимо учитывать еще один фактор, определяющий способность самопроизвольно переходить из более упорядоченного к менее упорядоченному (более хаотичному) состоянию.

Энтропия (S ) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Возможность протекания эндотермических процессов обусловлена изменением энтропии, ибо в изолированных системах энтропия самопроизвольно протекающего процесса увеличивается ΔS > 0 (второй закон термодинамики ).

Л. Больцман определил энтропию как термодинамическую вероятность состояния (беспорядок) системы W . Поскольку число частиц в системе велико (число Авогадро N A = 6,02∙10 23), то энтропия пропорциональна натуральному логарифму термодинамической вероятности состояния системы W :

Размерность энтропии 1 моля вещества совпадает с размерностью газовой постоянной R и равна Дж∙моль –1∙K –1. Изменение энтропии *) в необратимых и обратимых процессах передается соотношениями ΔS > Q / T и ΔS = Q / T . Например, изменение энтропии плавления равно теплоте (энтальпии) плавления ΔS пл = ΔH пл/T пл Для химической реакции изменение энтропии аналогично изменению энтальпии

*) термин энтропия был введен Клаузиусом (1865 г.) через отношение Q/T (приведенное тепло).

Здесь ΔS ° соответствует энтропии стандартного состояния. Стандартные энтропии простых веществ не равны нулю. В отличие от других термодинамических функций энтропия идеально кристаллического тела при абсолютном нуле равна нулю (постулат Планка), поскольку W = 1.

Энтропия вещества или системы тел при определенной температуре является абсолютной величиной. В табл. 4.1 приведены стандартные энтропии S ° некоторых веществ.

Соединение


(Дж∙моль –1∙K –1)

Соединение


(Дж∙моль –1∙K –1)

C (т)алмаз

C (т)графит

изо-C 4H 10(г)

Таблица 4.1.

Стандартные энтропии некоторых веществ.

Из табл. 4.1 следует, что энтропия зависит от:

  • Агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).
  • Изотопного состава (H 2O и D 2O).
  • Молекулярной массы однотипных соединений (CH 4, C 2H 6, н-C 4H 10).
  • Строения молекулы (н-C 4H 10, изо-C 4H 10).
  • Кристаллической структуры (аллотропии) – алмаз, графит.

Наконец, рис. 4.3 иллюстрирует зависимость энтропии от температуры.

Следовательно, стремление системы к беспорядку проявляется тем больше, чем выше температура. Произведение изменения энтропии системы на температуру T ΔS количественно оценивает эту тендецию и называется энтропийным фактором .

Задачи и тесты по теме "Химическая термодинамика. Энтропия"

  • Химические элементы. Знаки химических элементов - Первоначальные химические понятия и теоретические представления 8–9 класс

    Уроков: 3 Заданий: 9 Тестов: 1

Этот пост является вольным переводом ответа, который Mark Eichenlaub дал на вопрос What"s an intuitive way to understand entropy? , заданный на сайте Quora

Энтропия. Пожалуй, это одно из самых сложных для понимания понятий, с которым вы можете встретиться в курсе физики, по крайней мере если говорить о физике классической. Мало кто из выпускников физических факультетов может объяснить, что это такое. Большинство проблем с пониманием энтропии, однако, можно снять, если понять одну вещь. Энтропия качественно отличается от других термодинамических величин: таких как давление, объём или внутренняя энергия, потому что является свойством не системы, а того, как мы эту систему рассматриваем. К сожалению в курсе термодинамики её обычно рассматривают наравне с другими термодинамическими функциями, что усугубляет непонимание.

Так что же такое энтропия?

Если в двух словах, то
Энтропия - это то, как много информации вам не известно о системе

Например, если вы спросите меня, где я живу, и я отвечу: в России, то моя энтропия для вас будет высока, всё-таки Россия большая страна. Если же я назову вам свой почтовый индекс: 603081, то моя энтропия для вас понизится, поскольку вы получите больше информации.


Почтовый индекс содержит шесть цифр, то есть я дал вам шесть символов информации. Энтропия вашего знания обо мне понизилась приблизительно на 6 символов. (На самом деле, не совсем, потому что некоторые индексы отвечают большему количеству адресов, а некоторые - меньшему, но мы этим пренебрежём).


Или рассмотрим другой пример. Пусть у меня есть десять игральных костей (шестигранных), и выбросив их, я вам сообщаю, что их сумма равна 30. Зная только это, вы не можете сказать, какие конкретно цифры на каждой из костей - вам не хватает информации. Эти конкретные цифры на костях в статистической физике называют микросостояниями, а общую сумму (30 в нашем случае) - макросостоянием. Существует 2 930 455 микросостояний, которые отвечают сумме равной 30. Так что энтропия этого макросостояния равна приблизительно 6,5 символам (половинка появляется из-за того, что при нумерации микросостояний по порядку в седьмом разряде вам доступны не все цифры, а только 0, 1 и 2).

А что если бы я вам сказал, что сумма равна 59? Для этого макросостояния существует всего 10 возможных микросостояний, так что его энтропия равна всего лишь одному символу. Как видите, разные макросостояния имеют разные энтропии.

Пусть теперь я вам скажу, что сумма первых пяти костей 13, а сумма остальных пяти - 17, так что общая сумма снова 30. У вас, однако, в этом случае имеется больше информации, поэтому энтропия системы для вас должна упасть. И, действительно, 13 на пяти костях можно получить 420-ю разными способами, а 17 - 780-ю, то есть полное число микросостояний составит всего лишь 420х780 = 327 600. Энтропия такой системы приблизительно на один символ меньше, чем в первом примере.

Мы измеряем энтропию как количество символов, необходимых для записи числа микросостояний. Математически это количество определяется как логарифм, поэтому обозначив энтропию символом S, а число микросостояний символом Ω, мы можем записать:

Это есть ничто иное как формула Больцмана (с точностью до множителя k, который зависит от выбранных единиц измерения) для энтропии. Если макросостоянию отвечают одно микросостояние, его энтропия по этой формуле равна нулю. Если у вас есть две системы, то полная энтропия равна сумме энтропий каждой из этих систем, потому что log(AB) = log A + log B.

Из приведённого выше описания становится понятно, почему не следует думать об энтропии как о собственном свойстве системы. У системы есть опеделённые внутренняя энергия, импульс, заряд, но у неё нет определённой энтропии: энтропия десяти костей зависит от того, известна вам только их полная сумма, или также и частные суммы пятёрок костей.

Другими словами, энтропия - это то, как мы описываем систему. И это делает её сильно отличной от других величин, с которыми принято работать в физике.

Физический пример: газ под поршнем

Классической системой, которую рассматривают в физике, является газ, находящийся в сосуде под поршнем. Микросостояние газа - это положение и импульс (скорость) каждой его молекулы. Это эквивалентно тому, что вы знаете значение, выпавшее на каждой кости в рассмотренном раньше примере. Макросостояние газа описывается такими величинами как давление, плотность, объём, химический состав. Это как сумма значений, выпавших на костях.

Величины, описывающие макросостояние, могут быть связаны друг с другом через так называемое «уравнение состояния». Именно наличие этой связи позволяет, не зная микросостояний, предсказывать, что будет с нашей системой, если начать её нагревать или перемещать поршень. Для идеального газа уравнение состояния имеет простой вид:

Хотя вы, скорее всего, лучше знакомы с уравнением Клапейрона - Менделеева pV = νRT - это то же самое уравнение, только с добавлением пары констант, чтобы вас запутать. Чем больше микросостояний отвечают данному макросостоянию, то есть чем больше частиц входят в состав нашей системы, тем лучше уравнение состояния её описывают. Для газа характерные значения числа частиц равны числу Авогадро, то есть составляют порядка 10 23 .

Величины типа давления, температуры и плотности называются усреднёнными, поскольку являются усреднённым проявлением постоянно сменяющих друг друга микросостояний, отвечающих данному макросостоянию (или, вернее, близким к нему макросостояниям). Чтобы узнать в каком микросостоянии находится система, нам надо очень много информации - мы должны знать положение и скорость каждой частицы. Количество этой информации и называется энтропией.

Как меняется энтропия с изменением макросостояния? Это легко понять. Например, если мы немного нагреем газ, то скорость его частиц возрастёт, следовательно, возрастёт и степень нашего незнания об этой скорости, то есть энтропия вырастет. Или, если мы увеличим объём газа, отведя поршень, увеличится степень нашего незнания положения частиц, и энтропия также вырастет.

Твёрдые тела и потенциальная энергия

Если мы рассмотрим вместо газа какое-нибудь твёрдое тело, особенно с упорядоченной структурой, как в кристаллах, например, кусок металла, то его энтропия будет невелика. Почему? Потому что зная положение одного атома в такой структуре, вы знаете и положение всех остальных (они же выстроены в правильную кристаллическую структуру), скорости же атомов невелики, потому что они не могут улететь далеко от своего положения и лишь немного колеблются вокруг положения равновесия.

Если кусок металла находится в поле тяготения (например, поднят над поверхностью Земли), то потенциальная энергия каждого атома в металле приблизительно равна потенциальной энергии других атомов, и связанная с этой энергией энтропия низка. Это отличает потенциальную энергию от кинетической, которая для теплового движения может сильно меняться от атома к атому.

Если кусок металла, поднятый на некоторую высоту, отпустить, то его потенциальная энергия будет переходить в кинетическую энергию, но энтропия возрастать практически не будет, потому что все атомы будут двигаться приблизительно одинаково. Но когда кусок упадёт на землю, во время удара атомы металла получат случайное направление движения, и энтропия резко увеличится. Кинетическая энергия направленного движения перейдёт в кинетическую энергию теплового движения. Перед ударом мы приблизительно знали, как движется каждый атом, теперь мы эту информацию потеряли.

Понимаем второй закон термодинамики

Второй закон термодинамики утверждает, что энтропия (замкнутой системы) никогда не уменьшается. Мы теперь можем понять, почему: потому что невозможно внезапно получить больше информации о микросостояниях. Как только вы потеряли некую информацию о микросостоянии (как во время удара куска металла об землю), вы не можете вернуть её назад.


Давайте вернёмся обратно к игральным костям. Вспомним, что макросостояние с суммой 59 имеет очень низкую энтропию, но и получить его не так-то просто. Если бросать кости раз за разом, то будут выпадать те суммы (макросостояния), которым отвечает большее количество микросостояний, то есть будут реализовываться макросостояния с большой энтропией. Самой большой энтропией обладает сумма 35, и именно она и будет выпадать чаще других. Именно об этом и говорит второй закон термодинамики. Любое случайное (неконтролируемое) взаимодействие приводит к росту энтропии, по крайней мере до тех пор, пока она не достигнет своего максимума.

Перемешивание газов

И ещё один пример, чтобы закрепить сказанное. Пусть у нас имеется контейнер, в котором находятся два газа, разделённых расположенной посередине контейнера перегородкой. Назовём молекулы одного газа синими, а другого - красными.

Если открыть перегородку, газы начнут перемешиваться, потому что число микросостояний, в которых газы перемешаны, намного больше, чем микросостояний, в которых они разделены, и все микросостояния, естественно, равновероятны. Когда мы открыли перегородку, для каждой молекулы мы потеряли информацию о том, с какой стороны перегородки она теперь находится. Если молекул было N, то утеряно N бит информации (биты и символы, в данном контексте, это, фактически, одно и тоже, и отличаются только неким постоянным множителем).

Разбираемся с демоном Максвелла

Ну и напоследок рассмотрим решение в рамках нашей парадигмы знаменитого парадокса демона Максвелла. Напомню, что он заключается в следующем. Пусть у нас есть перемешанные газы из синих и красных молекул. Поставим обратно перегородку, проделав в ней небольшое отверстие, в которое посадим воображаемого демона. Его задача - пропускать слева направо только красных, и справа налево только синих. Очевидно, что через некоторое время газы снова будут разделены: все синие молекулы окажутся слева от перегородки, а все красные - справа.


Получается, что наш демон понизил энтропию системы. С демоном ничего не случилось, то есть его энтропия не изменилась, а система у нас была закрытой. Получается, что мы нашли пример, когда второй закон термодинамики не выполняется! Как такое оказалось возможно?

Решается этот парадокс, однако, очень просто. Ведь энтропия - это свойство не системы, а нашего знания об этой системе. Мы с вами знаем о системе мало, поэтому нам и кажется, что её энтропия уменьшается. Но наш демон знает о системе очень много - чтобы разделять молекулы, он должен знать положение и скорость каждой из них (по крайней мере на подлёте к нему). Если он знает о молекулах всё, то с его точки зрения энтропия системы, фактически, равна нулю - у него просто нет недостающей информации о ней. В этом случае энтропия системы как была равна нулю, так и осталась равной нулю, и второй закон термодинамики нигде не нарушился.

Но даже если демон не знает всей информации о микросостоянии системы, ему, как минимум, надо знать цвет подлетающей к нему молекулы, чтобы понять, пропускать её или нет. И если общее число молекул равно N, то демон должен обладать N бит информации о системе - но именно столько информации мы и потеряли, когда открыли перегородку. То есть количество потерянной информации в точности равно количеству информации, которую необходимо получить о системе, чтобы вернуть её в исходное состояние - и это звучит вполне логично, и опять же не противоречит второму закону термодинамики.

§6 Энтропия

Обычно всякий процесс, при котором система переходит из одного состояния в другое, протекает таким образом, что нельзя провести этот процесс в обратном направлении так, чтобы система проходила через те же промежуточные состояния, и при этом в окружающих телах не произошли какие-либо изменения. Это связано с тем, что в процессе часть энергии рассеивается, например, за счет трения, излучения и т. п. Т. о. практически все процессы в природе необратимы. В любом процессе часть энергии теряется. Для характеристики рассеяния энергии вводится понятие энтропии. (Величина энтропии характеризует тепловое состояние системы и определяет вероятность осуществления данного состояния тела. Чем более вероятно данное состояния, тем больше энтропия.) Все естественные процессы сопровождаются ростом энтропии. Энтропия остается постоянной только в случае идеализированного обратимого процесса, происходящего в замкнутой системе, то есть в системе, в которой не происходит обмен энергией с внешними по отношению к этой системе телами.

Энтропия и ее термодинамический смысл:

Энтропия - это такая функция состояния системы, бесконечно малое изменение которой в обратимом процессе равно отношению бесконечно малого количества теплоты, введенного в этом процессе, к температуре, при которой оно вводилось.

В конечном обратимом процессе изменения энтропии может быть подсчитано по формуле:

где интеграл берется от начального состояния 1 системы до конечного состояния 2.

Поскольку энтропия есть функция состояния, то свойством интеграла является его независимость от формы контура (пути), по которому он вычисляется, следовательно, интеграл определяется только начальным и конечным состояниям системы.

  • В любом обратимом процессе изменения энтропии равно 0

(1)

  • В термодинамике доказывается, что S системы совершающей необратимой цикл возрастает

Δ S > 0 (2)

Выражения (1) и (2) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то её S может вести себя любым образом.

Соотношения (1) и(2) можно представить в виде неравенства Клаузиуса

Δ S ≥ 0

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов) либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояния 2, то изменения энтропии

где dU и δA записывается для конкретного процесса. По этой формуле Δ S определяется с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий. Найдем изменение энтропии в процессах идеального газа.

т.е. изменения энтропии S Δ S 1→2 идеального газа при переходе его из состояния 1 в состояния 2 не зависит от вида процесса.

Т.к. для адиабатического процесса δ Q = 0, то Δ S = 0 => S = const , то есть адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его называют изоэнтропийным.

При изотермическом процессе (T = const ; T 1 = T 2 : )

При изохорном процессе (V = const ; V 1 = V 2 ; )

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропий тел входящих в систему. S = S 1 + S 2 + S 3 + ... Качественным отличием теплового движения молекул от других форм движения является его хаотичность, беспорядочность. Поэтому для характеристики теплового движения необходимо ввести количественную меру степени молекулярного беспорядка. Если рассмотреть какое-либо данное макроскопическое состояния тела с определенными средними значениями параметров, то оно есть нечто иное, как непрерывная смена близких микросостояний, отличающихся друг от друга распределением молекул в разных частях объема и распределяемой энергией между молекулами. Число этих непрерывно сменяющих друг друга микросостояний характеризует степень беспорядочности макроскопического состояния всей системы, w называется термодинамической вероятностью данного микросостояния. Термодинамическая вероятность w состояния системы — это число способов, которыми может быть реализовано данное состояния макроскопической системы, или число микросостояний, осуществляющих данное микросостояния (w ≥ 1, а математическая вероятность ≤ 1 ).

За меру неожиданности события условились принимать логарифм его вероятности, взятый со знаком минус: неожиданность состояния равна = -

Согласно Больцману, энтропия S системы и термодинамическая вероятность связаны между собой следующим образом:

где - постоянная Больцмана (). Таким образом, энтропия определяется логарифмом числа состояния, с помощью которых может быть реализовано данное микросостояние. Энтропия может рассматриваться как мера вероятности состояния т/д системы. Формула Больцмана позволяет дать энтропии следующее статистическое толкования. Энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний реализующих данное микросостояние, тем больше энтропия. В состоянии равновесия системы - наиболее вероятного состояния системы - число микросостояний максимально, при этом максимальна и энтропия.

Т.к. реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии - принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным, до тех пор, пока вероятность состояния не станет максимальной.

§7 Второе начало термодинамики

Первое начало термодинамики, выражая закон сохранения энергии и превращения энергии, не позволяет установить направление протекания т/д процессов. Кроме того, можно представить множество процессов, не противоречащих I началу т/д, в которых энергия сохраняется, а в природе они не осуществляются. Возможные формулировки второго начало т/д:

1) закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимой процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает Δ S ≥ 0 (необратимый процесс) 2) Δ S ≥ 0 (S = 0 при обратимом и Δ S ≥ 0 при необратимом процессе)

В процессах, происходящих в замкнутой системе, энтропия не убывает.

2) Из формулы Больцмана S = , следовательно, возрастание энтропии означает переход системы из менее вероятного состояния в более вероятное.

3) По Кельвину: не возможен круговой процесс, единственным результатом которого является превращения теплоты, полученной от нагревателя в эквивалентную ей работу.

4) По Клаузиусу: не возможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Для описания т/д систем при 0 К используют теорему Нернста-Планка (третье начало т/д): энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к 0 К

Из теоремы Нернста-Планка следует, что C p = C v = 0 при 0 К

§8 Тепловые и холодильные машины.

Цикл Карно и его к.п.д.

Из формулировки второго начала т/д по Кельвину следует, что вечный двигатель второго рода невозможен. (Вечный двигатель - это периодически действующий двигатель, совершающий работу за счет охлаждения одного источника теплоты.)

Термостат - это т/д система, которая может обмениваться теплотой с телами без изменения температуры.

Принцип действия теплового двигателя: от термостата с температурой Т 1 - нагревателя, за цикл отнимается количество теплоты Q 1 , а термостату с температурой Т 2 (Т 2 < Т 1) -холодильнику, за цикл передается количество теплоты Q 2 , при этом совершается работа А = Q 1 - Q 2

Круговым процессом или циклом называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме состояний цикл изображается замкнутой кривой. Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1-2) и сжатия (2-1), работа расширения положительна А 1-2 > 0, т.к. V 2 > V 1 , работа сжатия отрицательна А 1-2 < 0, т.к. V 2 < V 1 . Следовательно, работа совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой 1-2-1. Если за цикл совершается положительная работа (цикл по часовой стрелке), то цикл называется прямым, если - обратный цикл (цикл происходит в направлении против часовой стрелки).

Прямой цикл используется в тепловых двигателях - периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл используется в холодильных машинах - периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, следовательно, полное изменение внутренней энергии равно нулю. Тогда І начало т/д для кругового процесса

Q = Δ U + A = A ,

Т. е. работа, совершаемая за цикл равна количеству полученной извне теплоты, но

Q = Q 1 - Q 2

Q 1 - количество теплоты, полученное системой,

Q 2 - количество теплоты, отданное системой.

Термический к.п.д. для кругового процесса равен отношению работы, совершенной системой, к количеству теплоты, подведенному к системе:

Чтобы η = 1, должно выполняться условие Q 2 = 0, т.е. тепловой двигатель должен иметь один источник теплоты Q 1 , но это противоречит второму началу т/д.

Процесс обратный происходящему в тепловом двигателе, используется в холодильной машине.

От термостата с температурой Т 2 отнимается количество теплоты Q 2 и передается термостату с температурой T 1 , количество теплоты Q 1 .

Q = Q 2 - Q 1 < 0, следовательно A < 0.

Без совершения работы нельзя отбирать теплоту от менее нагретого тела и отдавать ее более нагретому.

Основываясь на втором начале т/д, Карно вывел теорему.

Теорема Карно: из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей (Т 1) и холодильников (Т 2), наибольшим к.п.д. обладают обратимые машины. К.П.Д. обратимых машин при равных Т 1 и Т 2 равны и не зависят от природы рабочего тела.

Рабочее тело - тело, совершающее круговой процесс и обменивающиеся энергией с другими телами.

Цикл Карно - обратимый наиболее экономичный цикл, состоящий из 2-х изотерм и 2-х адиабат.

1-2-изотермическое расширения при Т 1 нагревателя; к газу подводится теплота Q 1 и совершается работа

2-3 - адиабат. расширение, газ совершает работу A 2-3 >0 над внешними телами.

3-4-изотермическое сжатие при Т 2 холодильника; отбирается теплота Q 2 и совершается работа ;

4-1-адиабатическое сжатие, над газом совершается работа A 4-1 <0 внешними телами.

При изотермическом процессе U = const , поэтому Q 1 = A 12

1

При адиабатическом расширении Q 2-3 = 0, и работа газа A 23 совершается за счет внутренней энергии A 23 = - U

Количество теплоты Q 2 , отданное газом холодильнику при изотермическом сжатии равно работе сжатия А 3-4

2

Работа адиабатического сжатия

Работа, совершаемая в результате кругового процесса

A = A 12 + A 23 + A 34 + A 41 = Q 1 + A 23 - Q 2 - A 23 = Q 1 - Q 2

и равна площади кривой 1-2-3-4-1.

Термический к.п.д. цикла Карно

Из уравнения адиабаты для процессов 2-3 и 3-4 получим

Тогда

т.е. к.п.д. цикла Карно определяется только температурами нагревателя и холодильника. Для увеличения к.п.д. нужно увеличивать разность Т 1 - Т 2 .

******************************************************* ******************************************************

  • 3.3. Вращение твердого тела вокруг неподвижной оси, его момент инерции и кинетическая энергия.
  • 3.4. Момент импульса. Закон сохранения момента импульса. Второй закон динамики для вращательного движения.
  • Лекция № 4
  • 4.1. Описание движения жидкости и газа. Вязкость жидкостей и газов.
  • 4.2. Уравнение неразрывности.
  • 4.3. Уравнение Бернулли и выводы из него
  • Лекция №5
  • 5.1. Гармонические колебания.
  • 5.2. Сложение гармонических колебаний.
  • 5.3. Сложение перпендикулярных колебаний.
  • 5.4. Дифференциальное уравнение колебаний.
  • 5.5. Энергетические соотношения в колебательных процессах.
  • 5.6. Колебания математического и физического маятников
  • 5.7. Уравнение вынужденных колебаний. Резонанс
  • Лекция №6
  • 6.1.Волны в упругих средах и их виды. Фронт волны, плоские и сферические волны.
  • 6.2. Энергия волны
  • 6.3. Упругие волны в твердом теле
  • Лекция №7
  • 7.1. Основные положения мкт.
  • Агрегатные состояния вещества
  • 7.2. Опытные законы идеального газа
  • Закон Авогадро
  • 7.3. Уравнение состояния идеального газа
  • 7.4. Основное уравнение молекулярно-кинетической теории идеального газа.
  • 7.5. Закон Максвелла для распределения молекул по скоростям.
  • 7.6. Барометрическая формула. Распределение Больцмана
  • Лекция №8
  • 8.2. Столкновения молекул и явления переноса в идеальном газе
  • 8.3. Среднее число столкновений и среднее время свободного пробега молекул
  • 8.4.Средняя длина свободного пробега молекул
  • 8.5. Диффузия в газах
  • 8.6. Вязкость газов
  • 8.7. Теплопроводность газов
  • 8.8. Осмос. Осмотическое давление
  • Лекция №9
  • 9.1.Распределение энергии по степеням свободы молекул
  • 9.2. Внутренняя энергия
  • 9.3. Работа газа при его расширении
  • 9.4. Первое начало термодинамики
  • 9.5. Теплоемкость. Уравнение Майера
  • 9.6. Адиабатный процесс
  • 9.7. Политропический процесс
  • 9.8. Принцип действия тепловой машины. Цикл Карно и его кпд.
  • 9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.
  • 9.10. Второе начало термодинамики и его статистический смысл.
  • Лекция №10
  • 10.1. Реальные газы, уравнение Ван-дер-Ваальса.
  • Уравнение Ван-дер-Ваальса неплохо качественно описывает поведение газа при сжижении, но непригодно к процессу затвердевания.
  • 10.2.Основные характеристики и закономерности агрегатных состояний и фазовых переходов.
  • Фазовые переходы второго рода. Жидкий гелий. Сверхтекучесть
  • 10.3. Поверхностное натяжение жидкости. Давление Лапласа.
  • 10.4. Капиллярные явления
  • 10.5. Твёрдые тела
  • Дефекты в кристаллах
  • Тепловые свойства кристаллов
  • Жидкие кристаллы
  • Лекция №11
  • 11.1. Электрические свойства тел. Электрический заряд. Закон сохранения заряда
  • 11.2. Закон Кулона
  • 11.3. Электростатическое поле. Напряженность электрического поля. Силовые линии поля.
  • 11.4. Электрический диполь
  • 11.5. Поток вектора напряженности. Теорема Остроградского-Гаусса
  • 11.6. Работа сил электростатического поля по перемещению зарядов.
  • 11.6. Потенциал. Разность потенциалов. Потенциал точечного заряда, диполя, сферы.
  • 11.7. Связь между напряженностью электрического поля и потенциалом
  • 11.8. Типы диэлектриков. Поляризация диэлектриков.
  • 11.9. Теорема Остроградского-Гаусса для поля в диэлектрике. Связь векторов - сме­щения, - напряженности и - поляризованности
  • 11.10. Проводники в электростатическом поле
  • 11.11. Проводник во внешнем электростатическом поле. Электрическая емкость
  • 11.12. Энергия заряженного проводника, системы проводников и конденсатора
  • Лекция №12
  • 12.1. Электрический ток. Сила и плотность тока.
  • 12.3. Закон Ома для однородного участка цепи. Сопротивление проводников.
  • 12.4. Закон Ома для неоднородного участка цепи
  • 12.5. Закон Джоуля – Ленца. Работа и мощность тока.
  • 12.6. Правила Кирхгофа
  • Лекция №13
  • 13.1. Классическая теория электропроводности металлов
  • 13.2. Термоэлектронная эмиссия. Электрический ток в вакууме.
  • 13.3. Электрический ток в газах. Виды газового разряда.
  • Самостоятельный газовый разряд и его типы
  • Лекция №14
  • 14.1. Магнитное поле. Магнитное взаимодействие токов. Закон Ампера. Вектор магнитной индукции.
  • 14.2. Закон Био-Савара-Лапласа. Магнитное поле прямолинейного и кругового токов.
  • 14.3. Циркуляция вектора магнитной индукции. Поле соленоида и тороида
  • 14.4. Магнитный поток. Теорема Гаусса
  • 14.5. Работа перемещения проводника и рамки с током в магнитном поле
  • 14.6. Действие магнитного поля на движущийся заряд. Сила Лоренца
  • 14.7. Магнитное поле в веществе. Намагниченность и напряженность магнитного поля.
  • 14.8. Закон полного тока для магнитного поля в веществе
  • 14.9. Виды магнетиков
  • Лекция 15
  • 15.1. Явление электромагнитной индукции.
  • 15.2. Явление самоиндукции
  • 15.3. Энергия магнитного поля
  • 15.4. Электромагнитная теория Максвелла.
  • 1) Первое уравнение Максвелла
  • 2) Ток смешения. Второе уравнение Максвелла
  • 3)Третье и четвертое уравнения Максвелла
  • 4)Полная система уравнений Максвелла в дифференциальной форме
  • 15.5. Переменный ток
  • Лекция № 16
  • 16.1. Основные законы геометрической оптики. Полное внутренне отражение света.
  • 16.2. Отражение и преломление света на сферической поверхности. Линзы.
  • 16.3. Основные фотометрические величины и их единицы
  • 17.1.Интерференция света. Когерентность и монохроматичность световых волн. Оптическая длина пути и оптическая разность хода лучей.
  • 17.2. Способы получения интерференционных картин.
  • 17.3. Интерференция в тонких пленках.
  • 17.4. Просветление оптики
  • 17.5. Дифракция света и условия ее наблюдения. Принцип Гюйгенса-Френеля. Дифракционная решетка. Дифракция на пространственной решетке. Формула Вульфа-Бреггов
  • 17.6. Дифракция Френеля от простейших преград.
  • 17.7. Дифракция в параллельных лучах (дифракция Фраунгофера)
  • 17.8. Дифракция на пространственных решетках. Формула Вульфа-Бреггов.
  • 17.9. Поляризация света. Естественный и поляризованный свет.
  • 17.10. Поляризация света при отражении и преломлении. Закон Брюстера.
  • 17.11.Поляризация при двойном лучепреломлении.
  • 17.12. Вращение плоскости поляризации.
  • 17.13. Дисперсия света. Поглощение (абсорбция) света.
  • Лекция №18
  • 18.1. Квантовая природа излучения. Тепловое излучение и его характеристики. Закон Кирхгофа. Законы Стефана-Больцмана и Вина.
  • 18.2.Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта. Уравнение Эйнштейна для фотоэффекта.
  • 18.3. Масса и импульс фотона. Давление света. Эффект Комптона.
  • Лекция №19
  • 19.2.Линейчатый спектр атома водорода.
  • 19.3. Постулаты Бора. Опыты Франка и Герца.
  • Лекция №20
  • 20.1.Атомное ядро.
  • 20.2.Ядерные силы.
  • 20.3.Энергия связи ядер. Дефект массы.
  • 20.4.Реакции деления ядер.
  • 2.5.Термоядерный синтез.
  • 20.6.Радиоактивность. Закон радиоактивного распада.
  • План-график самостоятельной работы
  • План-график проведения лабораторно-практических занятий
  • Перечень вопросов для подготовки к коллоквиуму Механика
  • Формулы
  • Определения
  • Вопросы к экзамену
  • Правила и образец оформления лабораторной работы
  • 9.9. Энтропия. Физический смысл энтропии. Энтропия и вероятность.

    Рассматривая КПД тепловой машины, работающей по циклу Карно, можно отметить, что отношение температуры холодильника к температуре нагревателя равно отношению величин количества теплоты, отданного рабочим телом холодильнику, и количества теплоты, принятой от нагревателя. Это значит, что для идеальной тепловой машины, работающей по циклу Карно, выполняется и такое соотношение:
    . ОтношениеЛоренц назвалприведённой теплотой . Для элементарного процесса приведённая теплота будет равна . Значит, при реализации цикла Карно (а он является обратимым циклическим процессом) приведённая теплота остаётся неизменной и ведёт себя как функция состояния, тогда, как известно, что количество теплоты является функцией процесса.

    Используя первое начало термодинамики для обратимых процессов,
    и деля обе части этого равенства на температуру, получим:

    (9-41)

    Выразим из уравнения Менделеева - Клапейрона
    , подставим в уравнение (9-41) и получим:

    (9-42)

    Учтём, что
    , а
    , подставим их в уравнение (9-42) и получим:

    (9-43)

    Правая часть этого равенства является полным дифференциалом, следовательно, при обратимых процессах и приведённая теплота тоже является полным дифференциалом, что является признаком функции состояния.

    Функция состояния, дифференциалом которой является , называетсяэнтропией и обозначается S . Таким образом, энтропия – функция состояния. После введения энтропии формула (9-43) будет иметь вид:

    , (9-44)

    где dS – приращение энтропии. Равенство (9-44) справедливо только для обратимых процессов и удобно для расчёта изменения энтропии при конечных процессах:

    (9-45)

    Если система обратимым путём совершает круговой процесс (цикл), то
    , а, следовательно,S=0, то S = const.

    Выражая количество теплоты через приращение энтропии для элементарного процесса, и подставляя его в уравнение для первого начала термодинамики, получим новый вид записи этого уравнения, которое принято называть основным термодинамическим тождеством:

    (9-46)

    Таким образом, для расчёта изменения энтропии при обратимых процессах удобно использовать приведённую теплоту.

    В случае необратимых неравновесных процессов
    , а для необратимых круговых процессов выполняетсянеравенство Клаузиуса :

    (9-47)

    Рассмотрим, что происходит с энтропией в изолированной термодинамической системе.

    В изолированной термодинамической системе при любом обратимом изменении состояния её энтропия не изменится. Математически это можно записать так: S = const.

    Рассмотрим, что происходит с энтропией термодинамической системы при необратимом процессе. Предположим, что переход из состояния 1 в состояние 2 по путиL 1 обратим, а из состояния 2 в состояние 1 по пути L 2 – необратим (рис.9.13).

    Тогда справедливо неравенство Клаузиуса (9-47). Запишем выражение для правой части этого неравенства, соответствующее нашему примеру:

    .

    Первое слагаемое в этой формуле может быть заменено на изменение энтропии, так как этот процесс обратимый. Тогда неравенство Клаузиуса можно записать в виде:

    .

    Отсюда
    . Так как
    , то окончательно можно записать:

    (9-48)

    Если система изолирована, то
    , а неравенство (9-48) будет иметь вид:

    , (9-49)

    то есть энтропия изолированной системы при необратимом процессе возрастает. Рост энтропии продолжается не беспредельно, а до определённого максимального значения, характерного для данного состояния системы. Это максимальное значение энтропии соответствует состоянию термодинамического равновесия. Рост энтропии при необратимых процессах в изолированной системе означает, что энергия, которой обладает система, становится менее доступной для преобразования в механическую работу. В состоянии равновесия, когда энтропия достигает максимального значения, энергия системы не может быть преобразована в механическую работу.

    Если же система не изолирована, то энтропия может как убывать, так и возрастать в зависимости от направления теплообмена.

    Энтропия как функция состояния системы, может служить таким же параметром состояния, как температура, давление, объём. Изображая тот или иной процесс на диаграмме (Т,S), можно дать математическую интерпретацию количества теплоты, как площади фигуры под кривой, изображающей процесс. На рис.9.14 приведена диаграмма для изотермического процесса в координатах энтропия – температура.

    Энтропия может быть выражена через параметры состояния газа – температуру, давление, объём. Для этого из основного термодинамического тождества (9-46) выразим приращение энтропии:

    .

    Проинтегрируем это выражение и получим:

    (9-50)

    Изменение энтропии можно выразить и через другую пару параметров состояния – давление и объём. Для этого нужно выразить температуры начального и конечного состояний из уравнения состояния идеального газа через давление и объём и подставить в (9-50):

    (9-51)

    При изотермическом расширении газа в пустоту Т 1 =Т 2 , а значит первое слагаемое в формуле (9-47) обнулится и изменение энтропии будет определяться только вторым слагаемым:

    (9-52)

    Несмотря на то, что во многих случаях для расчёта изменения энтропии удобно использовать приведённую теплоту, ясно, что приведённая теплота и энтропия – разные, не тождественные понятия.

    Выясним физический смысл энтропии . Для этого используем формулу (9-52), для изотермического процесса, при котором не изменяется внутренняя энергия, а всевозможные изменения характеристик обусловлены лишь изменением объёма. Рассмотрим связь объёма, занимаемого газом в равновесном состоянии, с числом пространственных микросостояний частиц газа. Число микросостояний частиц газа, с помощью которых реализуется данное макросостояние газа как термодинамической системы, можно подсчитать следующим образом. Разобьём весь объём на элементарные кубические ячейки со стороной d~10 –10 м (порядка величины эффективного диаметра молекулы). Объём такой ячейки будет равен d 3 . В первом состоянии газ занимает объём V 1 , следовательно, число элементарных ячеек, то есть число мест N 1 , которые могут занимать молекулы в этом состоянии будет равно
    . Аналогично для второго состояния с объёмомV 2 получим
    . Следует отметить, что изменение положений молекул соответствует новому микросостоянию. Не всякое изменение микросостояния приведёт к изменению макросостояния. Предположим, молекулы могут заниматьN 1 мест, тогда обмен местами любых молекул в этих N 1 ячейках не приведёт к новому макросостоянию. Однако, переход молекул в другие ячейки, приведёт к изменению макросостояния системы. Число микросостояний газа, соответствующих данному макросостоянию, можно подсчитать, определив число способов размещения частиц этого газа по элементарным ячейкам. Для упрощения расчётов рассмотрим 1 моль идеального газа. Для 1 моля идеального газа формула (9-52) будет иметь вид:

    (9-53)

    Число микросостояний системы, занимающей объём V 1 , обозначим через Г 1 и определим, подсчитав число размещений N A (число Авогадро) молекул, которые содержатся в 1 моле газа, по N 1 ячейкам (местам):
    . Аналогично подсчитаем число микросостояний Г 2 системы, занимающей объём V 2:
    .

    Число микросостояний Г i , с помощью которых можно реализовать i- тое макросостояние, называется термодинамической вероятностью данного макросостояния. Термодинамическая вероятность Г ≥ 1.

    Найдём отношение Г 2 /Г 1:

    .

    Для идеальных газов число свободных мест гораздо больше числа молекул, то есть N 1 >>N A и N 2 >>N A . . Тогда, учитывая выражение чисел N 1 и N 2 через соответствующие объёмы, получим:

    Отсюда можно выразить отношение объёмов через отношение термодинамических вероятностей соответствующих состояний:

    (9-54)

    Подставим (9-54) в (9-53) и получим:
    . Учитывая, что отношение молярной газовой постоянной и числа Авогадро, есть постоянная Больцманаk , а также то, что логарифм отношения двух величин равен разности логарифмов этих величин, получим:. Отсюда можно заключить, что энтропияi- того состояния S i определяется логарифмом числа микросостояний, посредством которых реализуется данное макросостояние:

    (9-55)

    Формула (9-55) называется формулой Больцмана , впервые получившего её и понявшего статистический смысл энтропии , как функции беспорядка . Формула Больцмана имеет более общее значение, чем формула (9-53), то есть может быть использована не только для идеальных газов, и позволяет раскрыть физический смысл энтропии. Чем более упорядочена система, тем меньше число микросостояний, посредством которых осуществляется данное макросостояние, тем меньше энтропия системы. Рост энтропии в изолированной системе, где происходят необратимые процессы, означает движение системы в направлении наиболее вероятного состояния, которым является состояние равновесия. Можно сказать, что энтропия является мерой беспорядка системы; чем больше беспорядка в ней, тем выше энтропия. В этом заключается физический смысл энтропии .

    Можно отметить, что отношение температуры холодильника к температуре нагревателя равно отношению величины количества теплоты, отданного рабочим телом холодильнику, к величине количества теплоты, принятого от нагревателя. Это значит, что для идеальной тепловой машины, работающей по циклу Карно, выполняется и такое соотношение: . Отношение Лоренц назвал приведённой теплотой . Для элементарного процесса приведённая теплота будет равна . Значит, при реализации цикла Карно (а он является обратимым циклическим процессом) приведённая теплота остаётся неизменной и ведёт себя как функция состояния, тогда, как известно, что количество теплоты является функцией процесса.

    Используя первое начало термодинамики для обратимых процессов, и деля обе части этого равенства на температуру, получим:

    (3.70)

    Теплота не может самопроизвольно перейти от более холодного тела к более нагретому без каких-либо других изменений в системе.