Ретикулярная формация ствола мозга занимает центральное положение в продолговатом мозге, варолиевом мосту, среднем и промежуточном мозге.

Нейроны ретикулярной формации не имеют непосредственных контактов с рецепторами организма. Нервные импульсы при возбуждении рецепторов поступают к ретикулярной формации по коллатералям волокон вегетативной и соматической нервной системы.

Физиологическая роль . Ретикулярная формация ствола мозга оказывает восходящее влияние на клетки коры головного мозга и нисходящее на мотонейроны спинного мозга. Оба эти влияния ретикулярной формации могут быть активирующими или тормозными.

Афферентная импульсация к коре головного мозга поступает по двум путям: специфическому и неспецифическому. Специфический нервный путь обязательно проходит через зрительные бугры и несет нервные импульсы к определенным зонам коры головного мозга, в результате осуществляется какая-либо специфическая деятельность. Например, при раздражении фоторецепторов глаз импульсы через зрительные бугры поступают в затылочную область коры головного мозга и у человека возникают зрительные ощущения.

Неспецифический нервный путь обязательно проходит через нейроны ретикулярной формации ствола мозга. Импульсы к ретикулярной формации поступают по коллатералям специфического нервного пути. Благодаря многочисленным синапсам на одном и том же нейроне ретикулярной формации могут сходиться (конвергировать) импульсы различных значений (световые, звуковые и т. д.), при этом они теряют свою специфичность. От нейронов ретикулярной формации эти импульсы поступают не в какую-то определенную область коры головного мозга, а веерообразно распространяются по ее клеткам, повышая их возбудимость и облегчая тем самым выполнение специфической функции.

В опытах на кошках с вживленными в область ретикулярной формации ствола мозга электродами было показано, что раздражение ее нейронов вызывает пробуждение спящего животного. При разрушении ретикулярной формации животное впадает в длительное сонное состояние. Эти данные свидетельствуют о важной роли ретикулярной формации в регуляции состояния сна и бодрствования. Ретикулярная формация не только оказывает влияние на кору головного мозга, но также посылает в спинной мозг к его двигательным нейронам тормозящие и возбуждающие импульсы. Благодаря этому она участвует в регуляции тонуса скелетной мускулатуры.

В спинном мозге, как уже указывалось, также имеются нейроны ретикулярной формации. Полагают, что они поддерживают на высоком уровне активность нейронов спинного мозга. Функциональное состояние самой ретикулярной формации регулируется корой головного мозга.

Мозжечок

Особенности строения мозжечка . Связи мозжечка с другими отделами центральной нервной системы . Мозжечок - это непарное образование; он располагается позади продолговатого мозга и варолиева моста, граничит с четверохолмиями, сверху прикрыт затылочными долями больших полушарий, В мозжечке различают среднюю часть - червь и расположенные по бокам от него два полушария . Поверхность мозжечка состоит из серого вещества, называемого корой, которая включает тела нервных клеток. Внутри мозжечка располагается белое вещество , представляющее собой отростки этих нейронов.

Мозжечок имеет обширные связи с различными отделами центральной нервной системы за счет трех пар ножек. Нижние ножки соединяют мозжечок со спинным и продолговатым мозгом, средние - с варолиевым мостом и через него с двигательной областью коры головного мозга, верхние -со средним мозгом и гипоталамусом.

Функции мозжечка были изучены на животных, у которых мозжечок удаляли частично или полностью, а также путем регистрации его биоэлектрической активности в покое и при раздражении.

При удалении половины мозжечка отмечается повышение тонуса мышц-разгибателей, поэтому конечности животного вытягиваются, наблюдаются изгиб туловища и отклонение головы в оперированную сторону, иногда качательные движения головой. Часто движения совершаются по кругу в оперированную сторону («манежные движения»). Постепенно отмеченные нарушения сглаживаются, однако сохраняется некоторая неловкость движений.

При удалении всего мозжечка наступают более выраженные двигательные расстройства. В первые дни после операции животное лежит неподвижно с запрокинутой головой и вытянутыми конечностями. Постепенно тонус мышц-разгибателей ослабевает, появляется дрожание мышц, особенно шейных. В дальнейшем двигательные функции частично восстанавливаются. Однако до конца жизни животное остается двигательным инвалидом: при ходьбе такие животные широко расставляют конечности, высоко поднимают лапы, т. е. у них нарушена координация движений.

Двигательные расстройства при удалении мозжечка были описаны известным итальянским физиологом Лючиани. Основными из них являются: а т о н и я - исчезновение или ослабление мышечного тонуса; а с т е н и я -снижение силы мышечных сокращений. Для такого животного характерно быстро наступающее мышечное утомление; а с т а з и я - потеря способности к слитным тетаническим сокращениям, У животных наблюдаются дрожательные движения конечностей и головы. Собака после удаления мозжечка не может сразу поднять лапы, животное делает ряд колебательных движений лапой, перед тем как ее поднять. Если поставить такую собаку, то тело ее и голова все время качаются из стороны в сторону.

В результате атонии, астении и астазии у животного нарушается координация движений: отмечаются шаткая походка, размашистые, неловкие, неточные движения. Весь комплекс двигательных расстройств при поражении мозжечка получил название мозжечковой атаксии .

Подобные нарушения наблюдаются и у человека при поражении мозжечка.

Через некоторое время после удаления мозжечка, как уже указывалось, все двигательные расстройства постепенно сглаживаются. Если у таких животных удалить моторную область коры головного мозга, то двигательные нарушения вновь усиливаются. Следовательно, компенсация (восстановление) двигательных расстройств при поражении мозжечка осуществляется при участии коры головного мозга, ее моторной области.

Исследованиями Л. А. Орбели было показано, что при удалении мозжечка наблюдается не только падение мышечного тонуса (атония), но и неправильное его распределение (дистония). Л. Л. Орбели установил, что мозжечок влияет и на состояние рецепторного аппарата, а также на вегетативные процессы. Мозжечок оказывает адаптационно-трофическое влияние на все отделы мозга через симпатическую нервную систему, он регулирует обмен веществ в головном мозге и тем самым способствует приспособлению нервной системы к изменяющимся условиям существования.

Таким образом, основными функциями мозжечка являются координация движений, нормальное распределение мышечного тонуса и регуляция вегетативных функций. Свое влияние мозжечок реализует через ядерные образования среднего и продолговатого мозга, через двигательные нейроны спинного мозга. Большая роль в этом влиянии принадлежит двусторонней связи мозжечка с моторной зоной коры головного мозга и ретикулярной формацией ствола мозга.

Особенности строения коры больших полушарий головного мозга.

Кора больших полушарий головного мозга в филогенетическом отношении является высшим и наиболее молодым отделом центральной нервной системы.

Кора мозга состоит из нервных клеток, их отростков и нейроглии. У взрослого человека толщина коры в большинстве областей составляет около 3 мм. Площадь коры больших полушарий благодаря многочисленным складкам и бороздам составляет 2500 см 2 . Для большинства участков коры головного мозга характерно шестислойное расположение нейронов. Кора больших полушарий состоит из 14-17 млрд. клеток. Клеточные структуры коры головного мозга представлены пирамидными, веретенообразными и звездчатыми нейронами.

Звездчатые клетки выполняют главным образом афферентную функцию. Пирамидные и веретенообразные клетки - это преимущественно эфферентные нейроны.

В коре больших полушарий имеются высокоспециализированные нервные клетки, воспринимающие афферентные импульсы от определенных рецепторов (например, от зрительных, слуховых, тактильных и т. д.). Имеются также нейроны, которые возбуждаются нервными импульсами, идущими от разных рецепторов организма. Это так называемые полисенсорные нейроны.

Отростки нервных клеток коры головного мозга связывают ее различные отделы между собой или устанавливают контакты коры больших полушарий с нижележащими отделами центральной нервной системы. Отростки нервных клеток, соединяющие между собой различные участки одного и того же полушария называются ассоциативными , связывающие чаще всего одинаковые участки двух полушарий - комиссуральными и обеспечивающие контакты коры головного мозга с другими отделами центральной нервной системы и через них со всеми органами и тканями тела - проводящими (центробежными). Схема этих путей приведена на рисунке.

Схема хода нервных волокон в больших полушариях головного мозга.

1 - короткие ассоциативные волокна; 2 - длинные ассоциативные волокна; 3 - комиссуральные волокна; 4 - центробежные волокна.

Клетки нейроглии выполняют ряд важных функций: они являются опорной тканью, участвуют в обмене веществ головного мозга, регулируют кровоток внутри мозга, выделяют нейросекрет, который регулирует возбудимость нейронов коры головного мозга.

Функции коры головного мозга.

1) Кора головного мозга осуществляет взаимодействие организма с окружающей средой за счет безусловных и условных рефлексов;

2) она является основой высшей нервной деятельности (поведения) организма;

3) за счет деятельности коры головного мозга осуществляются высшие психические функции: мышление и сознание;

4) кора головного мозга регулирует и объединяет работу всех внутренних органов и регулирует такие интимные процессы, как обмен веществ.

Таким образом, с появлением коры головного мозга она начинает контролировать все процессы, протекающие в организме, а также всю деятельность человека, т. е. происходит кортиколизация функций. И. П. Павлов, характеризуя значение коры головного мозга, указывал, что она является распорядителем и распределителем всей деятельности животного и человеческого организма.

Функциональное значение различных областей коры головного мозга . Локализация функций в коре головного мозга . Роль отдельных областей коры головного мозга впервые была изучена в 1870 г. немецкими исследователями Фричем и Гитцигом. Они показали, что раздражение различных участков передней центральной извилины и собственно лобных долей вызывает сокращение определенных групп мышц на противоположной раздражению стороне. В дальнейшем была выявлена функциональная неоднозначность различных областей коры. Было обнаружено, что височные доли коры головного мозга связаны со слуховыми функциями, затылочные - со зрительными функциями и т.д. Эти исследования позволили сделать вывод, что разные участки коры больших полушарий ведают определенными функциями. Было создано учение о локализации функций в коре головного мозга.

По современным представлениям, различают три типа зон коры головного мозга: первичные проекционные зоны, вторичные и третичные (ассоциативные).

Первичные проекционные зоны - это центральные отделы ядер анализаторов. В них расположены высокодифференцированные и специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (зрительных, слуховых, обонятельных и др.). В этих зонах происходит тонкий анализ афферентных импульсов различного значения. Поражение указанных зон ведет к расстройствам чувствительных или двигательных функций.

Вторичные зоны - периферические отделы ядер анализаторов. Здесь происходит дальнейшая обработка информации, устанавливаются связи между различными по характеру раздражителями. При поражении вторичных зон возникают сложные расстройства восприятий.

Третичные зоны (ассоциативные ) . Нейроны этих зон могут возбуждаться под влиянием импульсов, идущих от рецепторов различного значения (от рецепторов слуха, фоторецепторов, рецепторов кожи и т. д.). Это так называемые полисенсорные нейроны, за счет которых устанавливаются связи между различными анализаторами. Ассоциативные зоны получают переработанную информацию от первичных и вторичных зон коры больших полушарий. Третичные зоны играют большую роль в формировании условных рефлексов, они обеспечивают сложные формы познания окружающей действительности.

Значение различных областей коры головного мозга . В коре большого мозга выделяют сенсорные, моторные области

Сенсорные области коры . (проекционная кора, корковые отделы анализаторов). Это зоны, в которые проецируются сенсорные раздражители. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от релейных сенсорных ядер таламуса – вентральных задних, латерального и медиального. Сенсорные области коры образованы проекционными и ассоциативными зонами основных анализаторов.

Область кожной рецепции (мозговой конец кожного анализатора) представлена в основном задней центральной извилиной. Клетки этой области воспринимают импульсы от тактильных, болевых и температурных рецепторов кожи. Проекция кожной чувствительности в пределах задней центральной извилины аналогична таковой для двигательной зоны. Верхние участки задней центральной извилины связаны с рецепторами кожи нижних конечностей, средние - с рецепторами туловища и рук, нижние - с рецепторами кожи головы и лица. Раздражение этой.области у человека во время нейрохирургических операций вызывает ощущения прикосновения, покалывания, онемения, при этом никогда не наблюдается выраженных болевых ощущений.

Область зрительной рецепции (мозговой конец зрительного анализатора) расположена в.затылочных долях коры головного мозга обоих полушарий. Эту область следует рассматривать как проекцию сетчатой оболочки глаза.

Область слуховой рецепции (мозговой конец слухового анализатора) локализуется в височных долях коры головного мозга. Сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. При повреждении этой зоны может возникнуть музыкальная и словесная глухота, когда человек слышит, но не понимает значения слов; Двустороннее поражение слуховой области приводит к полной глухоте.

Область вкусовой рецепции (мозговой конец вкусового анализатора) расположена в нижних долях центральной извилины. Эта область получает нервные импульсы от вкусовых рецепторов слизистой оболочки полости рта.

Область обонятельной рецепции (мозговой конец обонятельного анализатора) располагается в передней части грушевидной доли коры головного мозга. Сюда поступают нервные импульсы от обонятельных рецепторов слизистой оболочки носа.

В коре больших полушарий обнаружено несколько зон, ведающих функцией речи (мозговой конец речедвигательного анализатора). В лобной области левого полушария (у праворуких) располагается моторный центр речи (центр Брока). При его поражении речь затруднена или даже невозможна. В височной области находится сенсорный центр речи (центр Вернике). Повреждение этой области приводит к расстройствам восприятия речи: больной не понимает значение слов, хотя способность произносить слова сохранена. В затылочной доле коры головного Мозга имеются зоны, обеспечивающие восприятие письменной (зрительной) речи. При поражении этих областей больной не понимает написанного.

В теменной области коры больших полушарий не обнаружены мозговые концы анализаторов, ее относят к ассоциативным зонам. Среди нервных клеток теменной области найдено большое количество полисенсорных нейронов, которые способствуют установлению связей между различными анализаторами и играют большую роль в формировании рефлекторных дуг условных рефлексов

Моторные области коры Представление о роли двигательной коры большого мозга двояко. С одной стороны, было показано, что электрическое раздражение некоторых корковых зон у животных вызывает движение конечностей противоположной стороны тела, что говорило о том, что кора непосредственно участвует в реализации двигательных функций. В то же время признано, что двигательная область является анализаторной, т.е. представляет собой корковый отдел двигательного анализатора.

Мозговой отдел двигательного анализатора представлен передней центральной извилиной и расположенными вблизи нее участками лобной области. При ее раздражении возникают разнообразные сокращения скелетной мускулатуры на противоположной стороне. Установлено соответствие между определенными зонами передней центральной извилины и скелетной мускулатурой. В верхних участках этой зоны проецируется мускулатура ног, в средних - туловища, в нижних - головы.

Особый интерес представляет собственно лобная область, которая достигает у человека наибольшего развития. При поражении лобных областей у человека нарушаются сложные двигательные функции, обеспечивающие трудовую деятельность и речь, а также приспособительные, поведенческие реакции организма.

Любая функциональная зона коры головного мозга находится и в анатомическом, и в функциональном контакте с другими зонами коры больших полушарий, с подкорковыми ядрами, с образованиями промежуточного мозга и ретикулярной формации, что обеспечивает совершенство выполняемых ими функций.

1. Структурно-функциональные особенности ЦНС в антенатальном периоде.

У плода количество нейронов ДНС достигает максимума к 20-24-й неделе и остается в постнатальном периоде без резкого снижения до пожилого возраста. Нейроны имеют малые размеры и суммарную площадь синаптической мембраны.

Аксоны развиваются раньше дендритов, отростки нейронов интенсивно растут и ветвятся. Наблюдается увеличение длины, диаметра и миелинизации аксонов к концу антенатального периода.

Филогенетически старые пути миелинизируются раньше, чем филогенетически новые; например, вестибулоспинал ьные пути с 4-го месяца внугриугробного развития, руброспинальные пути с 5-8-го месяца, пирамидные пути после рождения.

Nа- и К-каналы равномерно распределены в мембране миелиновых и немиелиновых волокон.

Возбудимость, проводимость, лабильность нервных волокон значительно ниже, чем у взрослых людей.

Синтез большинства медиаторов начинается в период внутриутробного развития. Гамма-аминомасляная кислота в антенатальном периоде является возбуждающим медиатором и через Са2-механизм оказывает морфогенные эффекты - ускоряет рост аксонов и дендрвтов, синаптогенез, экспрессию питорецепторов.

К моменту рождения заканчивается процесс дифференциации нейронов ядер продолговатого и среднего мозга, моста.

Имеется структурно-функциональная незрелость глиальных клеток.

2. Особенности ЦНС в периоде новорожденности.

> Возрастает степень миелинизации нервных волокон, их количество составляет 1/з уровня взрослого организма (например, полностью миелинизирован руброспинальный путь).

> Уменьшается проницаемость клеточных мембран для ионов. Нейроны имеют более низкую амплитуду МП - около 50 мВ (у взрослых примерно 70 мВ).

> На нейронах синапсов меньше, чем у взрослых, мембрана нейрона имеет рецепторы к синтезируемым медиаторам (ацетилхолину, ГАМ К, серотонину, норадреналину в дофамину). Содержание медиаторов в нейронах мозга новорожденных низкое в составляет 10-50% медиаторов у взрослых.

> Отмечается развитие шипикового аппарата нейронов и аксошипиковых синапсов; ВПСП и ТПСП имеют большую длительность и меньшую амплитуду, чем у взрослых. Количество тормозных синапсов на нейронах меньше, чем у взрослых.

> Повышается возбудимость корковых нейронов.

> Исчезает (точнее, резко уменьшается) митотическая активность и возможность регенерации нейронов. Продолжается пролиферация и функциональное созревание глиоцитов.

З. Особенности ЦНС в грудном возрасте.

Созревание ЦНС быстро прогрессирует. Наиболее интенсивная миелинизация нейронов ЦНС происходит в конце первого года после рождения (например, к 6 мес завершается миелинизация нервных волокон полушарий мозжечка).

Возрастает скорость проведения возбуждения по аксонам.

Наблюдается уменьшение продолжительности ПД нейронов, укорачиваются абсолютная и относительная рефрактерные фазы (длительность абсолютной рефрактерности 5-8 мс, относительной 4О-бО мс в раннем постнатальном онтогенезе, у взрослых соответственно 0,5-2,О и 2-10 мс).

Кровоснабжение мозга у детей относительно больше, чем у взрослых.

4. Особенности развития ЦНС в другие возрастные периоды.

1) Структурно-функциональные изменения в нервных волокнах:

Увеличение диаметров осевых цилиндров (к 4-9 годам). Миелинизация во всех периферических нервных волокнах близка к завершению к 9 годам, а пирамидных путей заканчивается к 4 годам;

Ионные каналы концентрируются в области перехватов Ранвье, расстояние между перехватами увеличивается. Непрерывное проведение возбуждения сменяется сальтаторным, скорость его проведения после 5-9 лет почти не отличается от скорости у взрослых (50-70 м/с);

Отмечается низкая лабильность нервных волокон у детей первых лет жизни; с возрастом она увеличивается (у детей 5- 9 лет приближается к норме взрослых - 300- 1 000 импульсов).

2) Структурно-функциональные изменения в синапсах:

Значительное созревание нервных окончаний (нервно-мышечных синапсов) происходит к 7-8 годам;

Увеличиваются терминальные разветвления аксона и суммарная площадь его окончаний.

Профильный материал для студентов педиатрического факультета

1. Развитие головного мозга в постнатальном периоде.

В постнатальном периоде ведущую роль в развитии головного мозга играют потоки афферентной импульсации по различным сенсорным системам (роль информационно обогащенной внешней среды). Отсутствие этих внешних сигналов, особенно в критические периоды, может приводить замедлению соэреваняя, недоразвитию функции или даже к ее отсутствию

Критический период в постнатального развитии характеризуется интенсивным морфофункциональным созреванием головного мозга и пиком образования НОВЫХ связей между нейронами.

Общей закономерностью развития мозга человека является гетерохронность созрсвания: фвлогенетически более старые отделы развиваются раньше, чем более молодые.

Продолговатый мозг новорожденного в функциональном отношении развит больше, чем другие отделы: действуют ПОЧТИ все его центры - дыхания, регуляции сердца и сосудов, сосания, глотания, кашля, чиханья, несколько позже начинает Функционировать Центр жевания В регуляции мышечного тонуса снижена активность вестибулярных ядер (снижен тонус Разгибателей) К 6 годам в этих Центрах завершаются дифференцировка нейронов миелинизация волокон, совершенствуется координационная деятельность Центров

Средний мозг у новорожденных в функциональном отношении является менее созревшим. Например, ориентировочный рефлекс и деятельность центров, управляющих движением глаз и ИХ осуществляются в грудном возрасте. Функция Черного вещества в составе стриопаллидарной системы достигает совершенства к 7 годам.

Мозжечок у новорожденного в структурно-функциональном отношении развит недостаточно в течение грудного возраста происходит его усиленный рост и дифференцировка нейронов, увеличиваются связи Мозжечка с другими моторными центрами. Функциональное созревание Мозжечка в основном начинается с 7 лет и завершается к 16 годам.

Созревание промежуточного мозга включает развитие сенсорных ядер таламуса и центров гипоталамуса

Функция сенсорных ядер таламуса осуществляется уже у Новорожденного, что Позволяет Ребенку различать вкусовые, температурные, тактильные и болевые ощущения. Функции неспецифических ядер таламуса и восходящей активирующей ретикулярной формации ствола мозга в первые месяцы жизни развиты слабо, что обусловливает короткое время его бодрствования в течение суток. Ядра таламуса окончательно функционально развиваются к 14 годам.

Центры гипоталамуса у новорожденного развиты слабо, что приводит к несовершенству процессов терморегуляции, регуляции водно-электролитного и других видов обмена, потребностно-мотивационной сферы. Большинство гипоталамических центров функционально созревают к 4 годам. Наиболее поздно (к 16 годам) начинают функционировать половые гипоталамические центры.

К моменту рождения базальные ядра имеют разную степень функциональной активности. Филогенетически более старая структура - бледный шар - функционально хорошо сформирована, тогда как функция полосатого тела проявляется к концу 1 года. В связи с этим движения новорожденных и грудных детей генерализованы, плохо координированы. По мере развития стриопалидарной системы ребенок выполняет все более точные и координированные движения, создает двигательные программы произвольных движений. Структурно-функциональное созревание базальных ядер завершается к 7 годам.

Кора больших полушарий в раннем онтогенезе в структурно-функциональном отношении созревает более поздно. Наиболее рано развивается моторная и сенсорная кора, созревание которых заканчивается на З-м году жизни (слуховой и зрительной коры несколько позже). Критический период в развитии ассоциативной коры наступает в возрасте 7 лет в продолжается до пубертатного периода. В это же время интенсивно формируются корково-подкорковые взаимосвязи. Кора больших полушарий обеспечивает кортикализацию функций организма, регуляцию произвольных движений, создание в реализацию двигательных стереотипов, высшие психофизиологические процессы. Подробно созревание и реализация функций коры больших полушарий изложены в профильных материалах для студентов педиатрического факультета в теме 11, т. 3, темах 1-8.

Гематоликворный и гематоэнцефалический барьеры в постнатальном периоде имеют ряд особенностей.

В раннем постнатальном периоде в сосудистых сплетениях желудочков головного мозга формируются крупные вены, Которые могут депонировать значительное количество крови 14 тем самым участвовать в регуляции внутричерепного давления.

Кора больших полушарий головного мозга , слой серого вещества толщиной 1-5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468-1670 см2.

Строение коры . Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними. Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80-90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры - афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон. Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением.Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику Наиболее крупные подразделения территории коры - древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2-3 слоями; новая кора состоит, как правило, из 6-7 слоев клеток; межуточные формации - переходные структуры между полями старой и новой коры, а также древней и новой коры - из 4-5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры - вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные - горизонтальные - пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя.

Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений - нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры - комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая - на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Второй комплекс клеток новой коры - слой - ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V - выход из коры в подкорку, а среднеклеточный слой III - ассоциативный, связывающий между собой различные корковые зоны

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой - кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний. Новая кора - совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов.В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных - третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры - её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры . Кора - продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.

Кора большого мозга представлена равномерным слоем серого вещества толщиною 1,3-4,5 мм, состоящим более чем из 14 млрд. нервных клеток. Благодаря складчатости коры ее поверхность достигает больших размеров - около 2200 см 2 .

Толща коры состоит из шести слоев клеток, которые различают при специальной окраске и исследовании под микроскопом. Клетки слоев различны по форме и размерам. От них в глубь мозга отходят отростки.

Было установлено, что разные участки - поля коры полушарий различаются по строению и функциям. Таких полей (называемых еще зонами, или центрами) выделяют от 50 до 200. Строгих границ между зонами коры большого мозга не существует. Они составляют аппарат, обеспечивающий прием, переработку приходящих сигналов и ответную реакцию на поступившие сигналы.

В задней центральной извилине, позади от центральной борозды, располагается зона кожной и суставно-мышечной чувствительности . Здесь воспринимаются и анализируются сигналы, возникающие при касании к нашему телу, при воздействии на него холода или тепла, болевых воздействиях.


В противоположность этой зоне - в передней центральной извилине, спереди от центральной борозды, расположена двигательная зона . В ней выявлены участки, которые обеспечивают движения нижних конечностей, мышц туловища, рук, головы. При раздражении этой зоны электротоком возникают сокращения соответствующих групп мышц. Ранения или другие повреждения коры двигательной зоны влекут за собой паралич мышц тела.

В височной доле находится слуховая зона . Сюда поступают и здесь анализируются импульсы, возникающие в рецепторах улитки внутреннего уха. Раздражения участков слуховой зоны вызывают ощущения звуков, а при поражении их болезнью утрачивается слух.

Зрительная зона расположена в коре затылочных долей полушарий. При ее раздражении электрическим током во время операций на мозге человек испытывает ощущения вспышек света и темноты. При поражении ее какой-либо болезнью ухудшается и теряется зрение.

Вблизи боковой борозды расположена вкусовая зона , где анализируются и формируются ощущения вкуса на основании сигналов, возникающих в рецепторах языка. Обонятельная зона расположена в так называемом обонятельном мозге, у основания полушарий. При раздражении этих зон во время хирургических операций или при воспалении люди ощущают запах или вкус каких-либо веществ.

Чисто речевой зоны не существует. Она представлена в коре височной доли, нижней лобной извилине слева, участках теменной доли. Их поражения болезнями сопровождаются расстройствами речи.

Первая и вторая сигнальные системы

Неоценима роль коры большого мозга в совершенствовании первой сигнальной системы и развитии второй. Эти понятия разработаны И.П.Павловым. Под сигнальной системой в целом понимают всю совокупность процессов нервной системы, осуществляющих восприятие, переработку информации и ответную реакцию организма. Она связывает организм с внешним миром.

Первая сигнальная система

Первая сигнальная система обусловливает восприятие посредством органов чувств чувственно-конкретных образов. Она является основой для образования условных рефлексов. Эта система существует как у животных, так и у человека.

В высшей нервной деятельности человека развилась надстройка в виде второй сигнальной системы. Она свойственна только человеку и проявляется словесным общением, речью, понятиями. С появлением этой сигнальной системы стали возможными отвлеченное мышление, обобщение бесчисленных сигналов первой сигнальной системы. По И.П.Павлову, слова превратились в «сигналы сигналов».

Вторая сигнальная система

Возникновение второй сигнальной системы стало возможным благодаря сложным трудовым взаимоотношениям между людьми, так как эта система является средством общения, коллективного труда. Словесное общение не развивается вне общества. Вторая сигнальная система породила отвлеченное (абстрактное) мышление, письмо, чтение, счет.

Слова воспринимаются и животными, но совершенно отлично от людей. Они воспринимают их как звуки, а не их смысловое значение, как люди. Следовательно, у животных нет второй сигнальной системы. Обе сигнальные системы человека взаимосвязаны. Они организуют поведение человека в широком смысле слова. Причем вторая изменила первую сигнальную систему, так как реакции первой стали в значительной мере зависеть от социальной среды. Человек стал в состоянии управлять своими безусловными рефлексами, инстинктами, т.е. первой сигнальной системой.

Функции коры мозга

Знакомство с наиболее важными физиологическими функциями коры большого мозга свидетельствует о необычайном ее значении в жизнедеятельности. Кора вместе с ближайшими к ней подкорковыми образованиями является отделом центральной нервной системы животных и человека.

Функции коры головного мозга - осуществление сложных рефлекторных реакций, составляющих основу высшей нервной деятельности (поведения) человека. Не случайно у него она получила наибольшее развитие. Исключительным свойством коры являются сознание (мышление, память), вторая сигнальная система (речь), высокая организация труда и жизни в целом.

ГЛАВА 7. КОРА БОЛЬШОГО МОЗГА И ВЫСШИЕ ПСИХИЧЕСКИЕ ФУНКЦИИ. СИНДРОМЫ ПОРАЖЕНИЯ

ГЛАВА 7. КОРА БОЛЬШОГО МОЗГА И ВЫСШИЕ ПСИХИЧЕСКИЕ ФУНКЦИИ. СИНДРОМЫ ПОРАЖЕНИЯ

В нейропсихологии под высшими психическими функциями понимаются сложные формы сознательной психической деятельности, осуществляемые на основе соответствующих мотивов, регулируемые соответствующими целями и программами и подчиняющиеся всем закономерностям психической деятельности.

К высшим психическим функциям (ВПФ) относят гнозис (познавание, знание), праксис, речь, память, мышление, эмоции, сознание и др. ВПФ основаны на интеграции всех отделов мозга, а не только коры. В частности, большую роль в формировании эмоциональноволевой сферы играет «центр пристрастий» - миндалевидное тело, мозжечок и ретикулярная формация ствола.

Структурная организация коры большого мозга. Кора большого мозга представляет собой многослойную нейронную ткань общей площадью примерно 2200 см 2 . На основании формы и расположения клеток по толщине коры в типичном случае выделяют 6 слоев (с поверхности вглубь): молекулярный, наружный зернистый, наружный пирамидный, внутренний зернистый, внутренний пирамидный, слой веретеновидных клеток; некоторые из них можно разделить на два или более вторичных слоев.

В коре полушарий большого мозга подобное шестислойное строение является характерным для неокортекса (изокортекса). Более древний тип коры аллокортекс - в основном трехслойный. Он расположен в глубине височных долей и с поверхности мозга не виден. В состав аллокортекса входит старая кора - архикортекс (зубчатая фасция, аммонов рог и основание гиппокампа), древняя кора - палеокортекс (обонятельный бугорок, диагональная область, прозрачная перегородка, периамигдалярная область и перипириформная область) и производные коры - ограда, миндалины и прилежащее ядро.

Функциональная организация коры большого мозга. Современные представления о локализации высших психических функций в коре большого мозга сводятся к теории о системной динамической локализации. Это означает, что психическая функция соотносится мозгом как определенная многокомпонентная и многозвеньевая система, различные звенья которой связаны с работой различных мозговых структур. Основоположник данного представления крупнейший

невролог А.Р. Лурия писал, что «высшие психические функции как сложные функциональные системы не могут быть локализованы в узких зонах мозговой коры или в изолированных клеточных груп- пах, а должны охватывать сложные системы совместно работающих зон, каждая из которых вносит свой вклад в осуществление сложных психических процессов и которые могут располагаться в совершенно различных, иногда далеко отстоящих друг от друга участках мозга».

Положение о «функциональной многозначности» мозговых структур поддерживал и И.П. Павлов, который выделял в коре полушарий большого мозга «ядерные зоны анализаторов», «рассеянную периферию» и отводил последней роль структуры, имеющей пластическую функцию.

Два полушария человека неодинаковы по функции. Полушарие, где расположены центры речи, называется доминантным, у правшей - это левое полушарие. Другое полушарие называется субдоминантным (у правшей - правое). Такое разделение называется латерализацией функций и детерминируется генетически. Поэтому переученный левша пишет правой рукой, но до конца жизни остается левшой по типу мышления.

Корковый отдел анализатора состоит из трех отделов.

Первичные поля - специфические ядерные зоны анализатора (например, 17 поле по Бродману - при его поражении возникает гомонимная гемианопсия).

Вторичные поля - периферические ассоциативные поля (например, 18-19 поля - при их поражении могут быть зрительные галлюцинации, зрительные агнозии, метаморфопсии, затылочные приступы).

Третичные поля - сложные ассоциативные поля, зоны перекрытия нескольких анализаторов (например, 39-40 поля - при их поражении возникают апраксия, акалькулия, при поражении 37 поля - астереогноз).

В 1903 г. германский анатом, физиолог, психолог и психиатр К. Бродман (Korbinian Brodmann, 1868-1918) опубликовал описание 52 цитоархитектонических полей коры. Параллельно и согласованно с исследованиями К. Бродмана в том же 1903 г. германские психоневрологи супруги О. Фогт и С. Фогт (Oskar Vogt, 1870-1959; Cecile Vogt, 1875-1962) на основании анатомо-физиологических исследований дали описание 150 миелоархитектонических полей коры большого мозга. Позже на основании исследований структуры

Рис. 7.1. Карта цитоархитектонических полей коры большого мозга человека (Институт мозга):

а - наружная поверхность; б - внутренняя; в - передняя; г - задняя поверхность. Цифрами обозначены поля

головного мозга, в основу которых был положен эволюционный принцип, сотрудники Института мозга СССР (основан в 1920-х гг. в Москве приглашенным для этих целей О. Фогтом) создали подробные карты цитомиелоархитектонических полей мозга человека (рис. 7.1).

7.1. Зоны и поля коры большого мозга

В коре большого мозга различают функциональные зоны, каждая из которых включает несколько полей Бродмана (всего 53 поля).

1-я зона - двигательная - представлена центральной извилиной и лобной зоной впереди нее (4, 6, 8, 9 поля Бродмана). При ее раздражении возникают различные двигательные реакции; при ее разрушении - нарушения двигательных функций: адинамия, парез, паралич (соответственно ослабление, резкое снижение, исчезновение

движений). В двигательной зоне участки, ответственные за иннервацию различных групп мышц, представлены неодинаково. Зона, участвующая в иннервации мышц нижней конечности, представлена в верхнем отделе 1-й зоны; мышц верхней конечности и головы - в нижнем отделе 1-й зоны. Наибольшую площадь занимает проекция мимической мускулатуры, мышц языка и мелких мышц кисти руки.

2-я зона - чувствительная - участки коры головного мозга кзади от центральной борозды (1, 2, 3, 5, 7 поля Бродмана). При раздражении этой зоны возникают парестезии, при ее разрушении - выпадение поверхностной и части глубокой чувствительности. В верхних отделах постцентральной извилины представлены корковые центры чувствительности для нижней конечности противоположной стороны, в средних отделах - для верхней, а в нижних - для лица и головы.

1-я и 2-я зоны тесно связаны друг с другом в функциональном отношении. В двигательной зоне много афферентных нейронов, получающих импульсы от проприорецепторов, - это мотосенсорные зоны. В чувствительной зоне много двигательных элементов - это сенсомоторные зоны, которые отвечают за возникновение болевых ощущений.

3-я зона - зрительная - затылочная область коры головного мозга (17, 18, 19 поля Бродмана). При разрушении 17 поля возникает выпадение зрительных ощущений (корковая слепота). Различные участки сетчатки неодинаково проецируются в 17 поле Бродмана и имеют различное расположение. При точечном разрушении 17 поля нарушается полнота зрительного восприятия окружающей среды, так как выпадает участок поля зрения. При поражении 18 поля Бродмана страдают функции, связанные с распознаванием зрительного образа, нарушается восприятие письма. При поражении 19 поля Бродмана возникают различные зрительные галлюцинации, страдает зрительная память и другие зрительные функции.

4-я зона - слуховая - височная область коры головного мозга (22, 41, 42 поля Бродмана). При поражении 42 поля нарушается функция распознавания звуков. При разрушении 22 поля возникают слуховые галлюцинации, нарушение слуховых ориентировочных реакций, музыкальная глухота. При разрушении 41 поля - корковая глухота.

5-я зона - обонятельная - располагается в грушевидной извилине (11 поле Бродмана).

6-я зона - вкусовая - 43 поле Бродмана.

7-я зона - речедвигательная (по Джексону - центр речи) у правшей располагается в левом полушарии. Эта зона делится на 3 отдела:

1) речедвигательный центр Брока (центр речевого праксиса) расположен в задненижней части лобных извилин. Он отвечает за праксис речи, т.е. умение говорить. Важно понять разницу между центром Брока и двигательным центром речедвигательных мышц (языка, глотки, лица), который расположен в передней центральной извилине кзади от зоны Брока. При поражении двигательного центра указанных мышц развивается их центральный парез или паралич. При этом человек способен говорить, смысловая сторона речи не страдает, но речь его нечетка, голос маломодулирован, т.е. нарушено качество звукопроизношения. При поражении зоны Брока мышцы речедвигательного аппарата интактны, но человек не способен говорить, как ребенок первых месяцев жизни. Это состояние называется моторной афазией;

2) сенсорный центр Вернике расположен в височной зоне. Он связан с восприятием устной речи. При его поражении возникает сенсорная афазия - человек не понимает устную речь (как чужую, так и свою). Из-за непонимания собственной речевой продукции речь больного приобретает характер «словесного салата», т.е. набора не связанных между собой слов и звуков.

При совместном поражении центров Брока и Вернике (например, при инсульте, поскольку оба они расположены в одном сосудистом бассейне) развивается тотальная (сенсорная и моторная) афазия;

3) центр восприятия письменной речи располагается в зрительной зоне коры головного мозга - 18 поле Бродмана. При его поражении развивается аграфия - невозможность писать.

Аналогичные, но недифференцированные зоны есть и в субдоминантном правом полушарии, при этом степень их развития различна у каждого индивидуума. Если у левши повреждено правое полушарие, функция речи страдает в меньшей степени.

Кору большого мозга на макроскопическом уровне можно разделить на сенсорные, двигательные и ассоциативные зоны. Сенсорные (проекционные) зоны, к которым относят первичную соматосенсорную кору, первичные зоны различных анализаторов (слухового, зрительного, вкусового, вестибулярного), имеют связь с определенными участками,

органами и системами человеческого тела, периферическими отделами анализаторов. Такую же соматотопическую организацию имеет и двигательная кора. Проекции частей тела и органов представлены в этих зонах по принципу функциональной значимости.

Ассоциативная кора, к которой относят теменно-височно-затылочную, префрональную и лимбическую ассоциативные зоны, важна для осуществления следующих интегративных процессов: высших сенсорных функций и речи, двигательного праксиса, памяти и эмоционального (аффективного) поведения. Ассоциативные отделы коры полушарий большого мозга у человека не только больше по занимаемой площади, чем проекционные (сенсорные и двигательные), но и характеризуются более тонким архитектоническим и нейронным строением.

7.2. Основные виды высших психических функций и их нарушения

7.2.1. Гнозис, виды агнозий

Гнозис (от греч. gnosis - познавание, знание) - это способность познавать или узнавать окружающий мир, в частности различные предметы окружающего мира, используя информацию, поступающую от различных корковых анализаторов. В каждый момент нашей жизни анализаторные системы снабжают мозг информацией о состоянии внешней среды, о предметах, звуках, запахах, окружающих нас, о положении нашего тела в пространстве, что дает нам возможность адекватно воспринимать себя относительно окружающего мира и правильно реагировать на все изменения, происходящие вокруг нас.

Агнозии - это расстройства узнавания и познавания, отражающие нарушения различных видов восприятия (формы предмета, символов, пространственных отношений, звуков речи и т.д.), возникающие при поражении коры больших полушарий головного мозга.

В зависимости от пораженного анализатора различают зрительные, слуховые и сенсорные агнозии, каждая из которых включает в себя большое количество нарушений.

Зрительными агнозиями называют такие расстройства зрительного гнозиса, которые возникают при поражении корковых структур (и ближайших подкорковых образований) задних отделов полушарий большого мозга (теменной и затылочной области) и протекают при относительной сохранности элементарных зрительных функций (остроты зрения, цветоощущения, полей зрения) [поля 18, 19 по Бродману].

Предметная агнозия характеризуется нарушением зрительного распознавания предметов. Больной может описать различные признаки предмета (форму, размер и т.д.), но не может его узнать. Используя информацию, поступающую от других анализаторов (тактильного, слухового), больной может частично компенсировать свой дефект, поэтому такие люди часто ведут себя почти как слепые - они хотя и не натыкаются на предметы, но постоянно их ощупывают, обнюхивают, прислушиваются. В более легких случаях больным трудно узнать перевернутые, перечеркнутые, наложенные одно на другое изображения.

Оптико-пространственная агнозия возникает при поражении верхней части теменно-затылочной области. У больного нарушается ориентация в пространстве. Особенно страдает право-левая ориентация. Такие больные не понимают географическую карту, не ориентируются на местности, не умеют рисовать.

Буквенная агнозия - нарушение узнавания букв, в результате возникает алексия.

Лицевая агнозия (прозопагнозия) - нарушение узнавания лиц, возникающая при поражении задних отделов субдоминантного полушария.

Апперцептивная агнозия характеризуется невозможностью узнавать целостные предметы или их изображения при сохранении восприятия отдельных признаков.

Ассоциативная агнозия - зрительная агнозия, характеризующаяся нарушением способности узнавать и называть целостные предметы и их изображения при сохранении их отчетливого восприятия.

Симультанная агнозия - неспособность синтетически интерпретировать группы изображений, образующих целое. Возникает при двустороннем или правостороннем поражении затылочно-теменных отделов мозга. Больной не может одновременно воспринимать несколько зрительных объектов или ситуации в целом. Воспринимается только один предмет, точнее, обрабатывается только одна оперативная единица зрительной информации, являющаяся в данный момент объектом внимания пациента.

Слуховые агнозии разделяются на нарушения речевого фонематического слуха, интонационной стороны речи и неречевого слухового гнозиса.

Слуховые агнозии, связанные с фонематическим слухом, возникают в основном при поражении височной доли доминантного полушария. Из-за нарушения фонематического слуха утрачивается способность к различению звуков речи.

Слуховая неречевая (простая) агнозия возникает при поражении коркового уровня слуховой системы правого полушария (ядерной зоны); больной не способен определить значения различных бытовых (предметных) звуков, шумов. Такие звуки, как скрип двери, шум воды, звон посуды, перестают для этих больных быть носителями определенного значения, хотя слух как таковой остается сохранным, и они могут различать звуки по высоте, интенсивности, тембру. При поражении височной области также возникает такой симптом, как аритмия. Больные не могут правильно оценивать на слух различные ритмические структуры (серию хлопков, постукиваний) и не могут их воспроизвести.

Амузия - слуховая агнозия с нарушением музыкальных способностей, имевшихся у больного в прошлом. Моторная амузия проявляется невозможностью воспроизведения знакомых мелодий; сенсорная - нарушением узнавания знакомых мелодий.

Нарушение интонационной стороны речи возникает при повреждении височной области субдоминантного полушария, при этом теряется восприятие эмоциональных характеристик голоса, различение мужских и женских голосов, собственная речь утрачивает выразительность. Такие больные не могут петь.

Сенситивные агнозии выражаются в неузнавании предметов при воздействии их на рецепторы поверхностной и глубокой чувствительности.

Тактильная агнозия, или астереогноз возникает при поражении постцентральных областей коры нижнетеменной области, граничащих с зонами представительства руки и лица в 3-м поле, и проявляется неспособностью восприятия предметов на ощупь. Тактильное восприятие сохранено, поэтому больной, ощупывая предмет с закры- тыми глазами, описывает все его свойства («мягкий», «теплый», «колючий»), однако не может определить этот предмет. Иногда возникают трудности и при опознавании материала, из которого сделан предмет. Этот тип нарушения получил название тактильной агнозии текстуры объекта.

Пальцевая агнозия, или синдром Терштмана наблюдается при поражении нижнетеменной коры, когда теряется возможность называть с закрытыми глазами пальцы на руке, контралатеральной очагу поражения.

Нарушения «схемы тела», или аутотопагнозия возникает при поражении верхней теменной области коры мозга, которая примыкает к пер-

вичной сенсорной коре кожно-кинестетического анализатора. Чаще всего у больного нарушено восприятие левой половины тела вследствие поражения правой теменной области мозга. Больной игнорирует левые конечности, часто нарушается восприятие собственного дефекта - анозогнозия (синдром Антона-Бабинского), т.е. больной не замечает паралича, нарушений чувствительности в левых конечностях. При этом могут возникать ложные соматические образы в виде ощущения «чужой руки», удвоения конечностей - псевдополимелии, увеличения, уменьшения частей тела, псевдоамелии - «отсутствия» конечности.

7.2.2. Праксис, виды апраксий

Праксис (от греч. praxis - действие) - способность человека выполнять целесообразные последовательные комплексы движений и совершать целенаправленные действия по выработанному плану.

Апраксии - расстройства праксиса, которые характеризуются утратой навыков, выработанных в процессе индивидуального опыта, сложных целенаправленных действий (бытовых, производственных, символической жестикуляции) без выраженных признаков центрального пареза или нарушений координации движений.

Согласно классификации, предложенной А.Р. Лурия, выделяют 4 формы апраксии.

Кинестетическая апраксия возникает при поражении нижних отделов постцентральной извилины области коры полушарий большого мозга (поля 1, 2, частично 40, преимущественно левого полушария). В этих случаях отсутствуют четкие двигательные нарушения, парезы мышц, однако нарушается контроль движений. Больные с трудом могут писать, нарушена точность воспроизведения поз руки (апраксия позы), они не могут без предмета изобразить то или иное действие (курение сигареты, причесывание). Возможна частичная компенсация данного нарушения при усилении зрительного контроля за выполнением движений.

При пространственной апраксии нарушается соотнесение собственных движений с пространством, нарушаются пространственные представления «вверх-вниз», «право-лево». Больной не может придать выпрямленной кисти горизонтальное, фронтальное, сагиттальное положение, нарисовать изображение, ориентированное в пространстве, при письме возникают ошибки в виде «зеркального письма». Такое нарушение возникает при поражении теменно-затылочных отделов коры на границе 19 и 39 полей, двустороннего или изолированно левого полушария. Оно

часто сочетается со зрительной оптико-пространственной агнозией; в этом случае возникает комплексная картина апрактоагнозии. К этому типу расстройств относится и конструктивная апраксия - трудности конструирования целого из отдельных предметов (кубики Кооса и т.д.).

Кинетическая апраксия связана с поражением нижних отделов премоторной коры (6 и 8 поля). При данном состоянии наблюдается нарушение временной организации движений (автоматизация движений). Для этой формы апраксии характерны двигательные персеверации, проявляющиеся в бесконтрольном продолжении раз начавшегося движения. Больному сложно переключиться с одного элементарного движения на другое, он как будто застревает на каждом из них. Особенно ярко это проявляется при письме, рисовании, выполнении графических проб. Часто апраксия рук сочетается с нарушениями речи (моторная эфферентная афазия), причем установлена общность механизмов, лежащих в основе патогенеза этих состояний.

Регуляторная (или префронтальная) форма апраксии возникает при поражении конвекситальной префронтальной коры впереди от премоторных отделов лобных долей и проявляется нарушением программирования движений. Отключен сознательный контроль за их выполнением, нужные движения замещаются шаблонами и стереотипиями. Характерны персеверации, но уже системные, т.е. не элементов двигательной программы, а всей программы в целом. Если таким больным предложить написать что-то под диктовку, а после выполнения данной команды попросить нарисовать треугольник, то они будут обводить контур треугольника движениями, характерными для письма. При грубом распаде произвольной регуляции движений у больных наблюдаются симптомы эхопраксии в виде подражательных повторений движений врача. Данный вид нарушений тесно связан с нарушением речевой регуляции двигательных актов.

7.2.3. Речь. Виды афазий

Речь - это специфическая человеческая психическая функция, которую можно определить как процесс общения посредством языка. Выделяют импрессивную речь (восприятие устной, письменной речи, ее декодирование, осознание смысла и соотнесение с предыдущим опытом) и экспрессивную речь (начинается с замысла высказывания, затем проходит стадию внутренней речи и заканчивается развернутым внешним речевым высказыванием).

Афазия - полное или частичное нарушение речи, возникающее после периода ее нормального становления, обусловленное локаль-

ным поражением коры (и прилежащих подкорковых образований) доминантного полушария большого мозга. Афазии проявляются в виде нарушений фонематической, морфологической и синтаксической структуры собственной речи и понимания обращенной речи при сохранности движений речевого аппарата, обеспечивающих членораздельное произношение, и элементарных форм слуха.

Сенсорная афазия (акустико-гностическая афазия) возникает при поражении задней трети височной извилины (поле 22); впервые была описана К. Вернике в 1864 г. Характеризуется невозможностью нормального восприятия как чужой, так и своей устной речи. В основе лежит нарушение фонематического слуха, т.е. потеря способности различать звуковой состав слов (различение фонем). В русском языке фонемами являются все гласные и их ударность, а также согласные и их звонкость-глухость, твердость-мягкость. В случае неполного разрушения зоны затруднено восприятие быстрой или «зашумленной» речи (например, когда говорят два или более собеседников). Кроме того, больные практически не могут различать слова, близкие по звучанию, но разные по смыслу: «колос-голос-холост» или «забор-собор».

В более тяжелых случаях у человека полностью исчезает способность восприятия фонем родного языка. Больные не понимают обращенную к ним речь, воспринимая ее как шум, разговор на неизвестном языке. Происходит вторичный распад и активной спонтанной устной речи, так как отсутствует слуховой контроль, т.е. понимание и оценка правильности произносимых слов. Речевые высказывания заменяются так называемым «словесным салатом», когда больные произносят непонятные по своему звуковому составу слова и выражения. Иногда сохраняется возможность произносить привычные слова, однако и в них больные часто заменяют одни звуки другими; такое нарушение называют литеральными парафазиями. При замене целых слов говорят о вербальных парафазиях. У таких больных нарушено письмо под диктовку, резко затруднено повторение услышанных слов, чтение вслух. Однако музыкальный слух при данной локализации патологического очага обычно не нарушен и полностью сохранена артикуляция.

При моторной афазии (речевой апраксии) возникают нарушения произношения слов при относительной сохранности восприятия речи.

Афферентная моторная афазия возникает при повреждении нижних отделов постцентральных отделов теменной области мозга. Такие больные часто не могут произвольно издавать различные звуки, не

могут надуть одну щеку, высунуть язык, облизать губы. Иногда страдает управление только лишь сложными артикуляционными движениями (сложности при произнесении слов типа «пропеллер», «пространство», «тротуар»), однако при этом больные ощущают ошибки при произношении, но не в состоянии их исправить, так как «рот их не слушается». Нарушение артикуляции сказывается и в письменной речи в виде замены букв на близкие по произношению.

Эфферентная моторная афазия (классическая афазия Брока, поля 44, 45) возникает при разрушении нижних отделов премоторной коры (задней трети нижней лобной извилины) доминантного полушария. Ведущим дефектом при данном нарушении является частичная или полная потеря возможности плавного переключения моторных импульсов во времени. Нарушений произвольных простых движений губ, языка при данной патологии не наблюдается. Такие больные могут произносить отдельные звуки или слоги, но не могут их объединить в слова, фразы. При этом возникает патологическая инертность артикуляционных действий, проявляющаяся в виде речевых персевераций (постоянного повтора одного и того же слога, слова или выражения). Часто такой словесный стереотип («эмбол») становится заменой всех других слов. В стертых случаях возникают сложности при произнесении «трудных» в моторном отношении слов или выражений. Из-за поражения связей с различными «речевыми зонами» могут возникать также нарушения письма, чтения и даже понимания речи.

Динамическая моторная афазия возникает при повреждении префронтальных отделов (9, 10, 46 поля). При этом нарушается последовательная организация речевого высказывания, нарушается активная продуктивная речь, а репродуктивная (повторная, автоматизированная) - сохранена. Больной может повторить фразу, но самостоятельно выстроить высказывание не может. Возможна пассивная речь - односложные ответы на вопросы, часто эхолалии (повторение слова собеседника).

При поражении нижних и задних отделов теменной и височной областей возможно развитие амнестической афазии (на границе 37 и 22 полей). В основе данного нарушения лежит слабость зрительных представлений, зрительных образов слов. Такой тип нарушений также называют номинативной амнестической афазией, или оптикомнестической афазией. Больные хорошо повторяют слова и плавно говорят, но не могут называть предметы. Больной без труда вспоминает назначение предметов (ручка - «чем пишут»), однако не могут вспомнить их названия. Подсказка врача часто облегчает выполнение задания,

так как понимание речи остается сохранным. Больные способны писать под диктовку и читать, тогда как спонтанное письмо нарушено.

Акустико-мнестическая афазия возникает при поражении средних отделов височной области доминантного полушария, расположенной вне зоны звукового анализатора. Больной правильно понимает звуки родного языка, обращенную речь, но не способен запомнить даже сравнительно небольшой текст вследствие грубого нарушения слу- хоречевой памяти. Речь этих больных характеризуется скудностью, частым пропусканием слов (чаще существительных). Подсказки при попытке воспроизведения слов таким больным не помогают, так так речевые следы не удерживаются в памяти.

Семантическая афазия возникает при поражении корковых полей 39 и 40 теменной доли левого полушария. Больной не понимает речевых формулировок, отражающих пространственные соотношения. Так, больной не может справиться с задачами, например нарисовать круг под квадратом, треугольник над чертой, не понимая, как следует расположить фигуры относительно друг друга; больной не понимает, не может разобраться в сравнительных конструкциях: «Соня светлее Мани, а Маня светлее Оли; кто из них самый светлый, самый темный?» Не улавливается больным изменение смысла фразы при перестановке слова, например: «У витрины с книгами стояли студенты», «У витрины стояли студенты с книгами». Не удается разобраться в атрибутивных конструкциях: отец брата и брат отца - одно ли это лицо? Больной не понимает пословиц и метафор.

Афазии следует отличать от других расстройств речи, возникающих при мозговых поражениях или функциональных расстройствах, таких как дизартрия, дислалия.

Дизартрия - сложное понятие, объединяющее такие расстройства речи, при которых страдает не только произношение, но и темп, выразительность, плавность, модуляция, голос и дыхание. Это нарушение может быть обусловлено центральным или периферическим параличом мышц речедвигательного аппарата, поражением мозжечка, стриопаллидарной системы. Нарушения восприятия речи на слух, чтения и письма при этом чаще всего не происходит. Различают мозжечковую, паллидарную, стриарную и бульбарную дизартрии.

Нарушение речи, связанное с нарушением звукопроизношения, называется дислалией. Она встречается, как правило, в детском возрасте (дети «не выговаривают» определенные звуки) и поддается логопедической коррекции.

Алексия (от греч. а - отрицат. частица и lexis - слово) - нарушение процесса чтения или овладения им при поражении различных отделов коры доминантного полушария (поля 39-40 по Бродману). Различают несколько форм алексии. При поражении коры затылочных долей вследствие нарушения процессов зрительного восприятия в головном мозге возникает оптическая алексия, при которой не определяются либо буквы (литеральная оптическая алексия), либо целые слова (вербальная оптическая алексия). При односторонней оптической алексии, поражении затылочно-теменных отделов правого полушария игнорируется половина текста (чаще левая), при этом больной не замечает свой дефект. Вследствие нарушения фонематического слуха и звукобуквенного анализа слов возникает слуховая (височная) алексия как одно из проявлений сенсорной афазии. Поражение нижних отделов премоторной области коры приводит к нарушению кинетической организации речевого акта и возникновению кинетической (эфферентной) моторной алексии, входящей в структуру синдрома эфферентной моторной афазии. При поражении коры лобных долей мозга нарушаются регулирующие механизмы и возникает особая форма алексии в виде нарушения целенаправленного характера чтения, отключения внимания, его патологической инертности.

Аграфия (от греч. а - отрицат. частица и grapho - пишу) - нарушение, характеризующееся потерей способности к письму при достаточной сохранности интеллекта и сформированных навыках письма (поле 9 по Бродману). Может проявляться полной утратой способности к письму, грубым искажением написания слов, пропусками, неспособностью соединять буквы и слоги. Афатическая аграфия возникает при афазии и обусловлена дефектами фонематического слуха и слухоречевой памяти. Апрактическая аграфия возникает при идеаторной афазии, конструктивная - при конструктивной афазии. Выделяется также чистая аграфия, не связанная с другими синдромами и обусловленная поражением задних отделов второй лобной извилины доминантного полушария.

Акалькулия (от греч. а - отрицат. частица и лат. calculatio - счет, вычисление) описана S.E. Henschen в 1919 г. Характеризуется нару- шением счетных операций (поля 39-40 по Бродману). Первичная акалькулия как симптом, не зависящий от других расстройств высших психических функций, наблюдается при поражении теменнозатылочно-височных отделов коры доминантного полушария и представляет собой нарушение понимания пространственных отношений, затруднение при выполнении цифровых операций с переходом через

десяток, связанных с разрядной структурой чисел, невозможность различать арифметические знаки. Вторичная акалькулия может возникать при поражении височных отделов из-за нарушения устного счета, затылочных отделов из-за неразличения сходных по написанию цифр, префронтальных отделов из-за нарушения целенаправленной деятельности, планирования и контроля счетных операций.

7.3. Особенности развития речевой функции у детей в норме и патологии

В норме дети приобретают способность говорить и понимать обращенную к ним речь в течение первых 3 лет жизни. На 1-м году жизни речь развивается от так называемого гуления до произнесения слогов или простых слов. На 2-м году жизни происходит постепенное накопление словарного запаса, а около 18 месяцев дети впервые начинают произносить комбинации из двух связанных по смыслу слов. Этот этап является предвестником освоения детьми сложных правил грамматики, которые, по мнению некоторых лингвистов, являются базовой характеристикой человеческих языков. На 3-й год словарный запас ребенка возрастает от десятка до сотен слов, усложняется структура предложений - от словосочетаний, состоящих из двух слов, до сложных предложений. К 4 годам дети уже практически осваивают все основные правила языка. Развитие экспрессивной речи немного отстает от импрессивной. Произношение разборчивых слов требует точного различения звуков речи и совершенной работы моторных систем под контролем слуха. Чистое произнесение всех фонем языка совершенствуется с годами и не все дети к наступлению школьного возраста овладевают им. Отдельные неточности в произнесении некоторых согласных, в целом не снижающие разборчивости речи, считаются скорее признаком незрелости мозга, чем речевыми нарушениями.

Если у ребенка с нормальным интеллектом и слухом происходит повреждение речевых областей полушарий большого мозга в результате травм или заболеваний мозга в первые 3 года жизни, то может развиться алалия - отсутствие или недоразвитие речи. Алалию, как и афазию, можно разделить на моторную и сенсорную.

Алалия может быть клиническим проявлением комплексного нарушения речевой функции, которое носит название общего недоразвития речи (форма патологии речи у детей с нормальным слухом и первично сохранным интеллектом, когда нарушается формирование всех компонентов речевой системы).

7.4. Память

В самом общем смысле памятью называется сохранение информации о раздражителе, после того как его действие уже прекратилось. Выделяют четыре фазы процессов памяти: фиксация, сохранение, считывание и воспроизведение следа.

По длительности процессы памяти подразделяются на три категории:

1. Мгновенная память - кратковременное запечатление следов, длящееся несколько секунд.

2. Кратковременная память - процессы запечатления, которые длятся несколько минут.

3. Долговременная память - долгое (возможно, в течение всей жизни) сохранение следов памяти (даты, события, имена и т.д.).

Кроме того, процессы памяти можно охарактеризовать с точки зрения их модальности, т.е. вида анализаторных систем. Соответственно выделяют зрительную, слуховую, тактильную, двигательную, обонятельную память. Существует также аффективная, или эмоциональная, память, или память на эмоционально окрашенные события. Были выделены различные области мозга, ответственные за тот или иной вид памяти (гиппокамп, поясная извилина, передние ядра таламуса, мамиллярные тела, перегородки, свод, амигдалярный комплекс, гипоталамус), но, по большому счету, память как любой сложный психический процесс связана с работой целостного мозга, поэтому говорить о центрах памяти можно лишь условно.

Нарушения памяти бывают различных видов, причем в литературе описаны случаи не только ослабления (гипомнезия) или полного выпадения памяти (амнезия), но и ее патологического усиления (гипер- мнезия).

Гипомнезия, или ослабление памяти, может иметь различное происхождение. Она может быть связана с возрастными изменениями, болезнями мозга либо быть врожденной. Таких больных, как правило, характеризует ослабление всех видов памяти. Нарушение памяти с утратой способности сохранять и воспроизводить приобретенные знания называется амнезией.

При поражении на уровне лимбической системы может возникнуть так называемый корсаковский синдром. У больных с корсаковским синдромом практически отсутствует память на текущие события, например, они по несколько раз здороваются с врачом, не могут вспомнить, что делали несколько минут назад, в то же время у этих

больных сравнительно хорошо сохраняются следы долговременной памяти, они способны помнить события далекого прошлого.

Схожие состояния могут наступать при преходящих гипоксиях мозга, некоторых интоксикациях (например, при отравлении окисью углерода). Такое нарушение памяти также называют фиксационной амнезией. При выраженном нарушении запоминания новых фактов и обстоятельств развивается амнестическая дезориентация во времени, пространстве собственной личности. Другим примером своеобразного временного нарушения всех видов памяти является глобальная транзиторная амнезия при транзиторной ишемии в вертебробазилярном бассейне.

Особой группой нарушения памяти являются так называемые псевдоамнезии (ложные воспоминания), характерные для больных с массивным поражением лобных долей мозга. Проблемы запоминания материала связаны в этом случае с нарушением не столько самой памяти, сколько целенаправленного запоминания, так как у этих больных грубо нарушается процесс формирования намерений, планов, программ поведения, т.е. страдает структура любой сознательной психической деятельности.

7.5. Синдромы поражения коры полушарий большого мозга

Синдромы поражения коры полушарий большого мозга включают симптомы выпадения функций или раздражения корковых центров различных анализаторов (табл. 13).

Таблица 13. Синдромы поражения коры полушарий большого мозга Синдромы поражения лобной доли


7.6. Нарушение ВПФ при поражении мозжечка

Нарушение ВПФ при поражении мозжечка объясняют выпадением его координирующей роли в отношении различных отделов большого мозга. Развиваются когнитивные расстройства в виде нарушений оперативной памяти, внимания, планирования и контроля действий, т.е. расстройства последовательности действий. Также возникают зрительно-пространственные нарушения, акустико-мнестическая афазия, трудности счета, чтения и письма и даже лицевая агнозия.

Синдром поражения мозолистого тела сопровождается психическими расстройствами в виде спутанности сознания, прогрессирующего слабоумия. Отмечаются амнезия и конфабуляции (ложные воспоминания), ощущение «уже виденного», загруженность, апраксия, акинезия. Нарушена ориентация в пространстве.

Лобно-каллезный синдром характеризуется акинезией, амимией, аста- зией-абазией, аспонтанностью, рефлексами орального автоматизма, нарушениями памяти, снижением критики к своему состоянию, хватательными рефлексами, апраксией, корсаковским синдромом, деменцией.

Кора больших полушарий головного мозга , слой серого вещества толщиной 1-5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468-1670 см2.

Строение коры . Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними. Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80-90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры - афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон. Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением.Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику Наиболее крупные подразделения территории коры - древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2-3 слоями; новая кора состоит, как правило, из 6-7 слоев клеток; межуточные формации - переходные структуры между полями старой и новой коры, а также древней и новой коры - из 4-5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры - вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные - горизонтальные - пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя.

Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений - нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры - комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая - на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Второй комплекс клеток новой коры - слой - ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V - выход из коры в подкорку, а среднеклеточный слой III - ассоциативный, связывающий между собой различные корковые зоны

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой - кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний. Новая кора - совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов.В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных - третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры - её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры . Кора - продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.

Корковая пластинка появляется в процессе внутриутробного развития человека сравнительно рано - на 2-м месяце. Раньше всего выделяются нижние слои коры (VI-VII), затем - более высоко расположенные (V, IV, III и II;)К 6 месяцам у эмбриона уже имеются все цитоархитектонические поля коры, свойственные взрослому человеку. После рождения в росте коры можно выделить три переломных этапа: на 2-3-м месяце жизни, в 2,5-3 года и в 7 лет. К последнему сроку цитоархитектоника коры полностью сформирована, хотя тела нейронов продолжают увеличиваться до 18 лет. Корковые зоны анализаторов завершают своё развитие раньше, и степень их увеличения меньше, чем у вторичных и третичных зон. Отмечается большое разнообразие в сроках созревания корковых структур у разных индивидуумов, что совпадает с разнообразием сроков созревания функциональных особенностей коры. Т. о., индивидуальное (онтогенез) и историческое (филогенез) развитие коры характеризуется сходными закономерностями.

На тему : строение коры головного мозга

Подготовила