Бернард Джефф

1. Морской офицер измерил скорость света

Весной 1879 года газета «Нью-Йорк таймс» сообщала: «На научном горизонте Америки появилась новая яркая звезда. Младший лейтенант морской службы, выпускник Морской академии в Аннаполисе Альберт А. Майкельсон, которому нет еще двадцати семи лет, добился выдающегося успеха в области оптики: ой измерил скорость света». В редакционной статье, озаглавленной «Наука – народу», газета «Дейли трибюн» писала: «Местная газета Вирджиния-Сити, города рудокопов в далекой Неваде, с гордостью сообщает: "Младший лейтенант Альберт А. Майкельсон, сын Сэмюэля Майкельсона, владельца галантерейного магазина в нашем городе, привлек к себе внимание всей страны замечательным научным достижением: он измерил скорость света"».

О скорости света размышляли и спорили еще с древних времен, но до Майкельсона только троим ученым (все они были французы) удалось измерить ее с помощью земных средств. Это была очень старая и очень сложная проблема. До Майкельсона на американском континенте никто даже не пытался поставить этот трудный эксперимент.

Однако за предшествующие столетия философы и ученые накопили довольно обширный запас сведений о свойствах света. За 300 лет до нашей эры, в те дни, когда Евклид создал свою геометрию, греческие математики уже немало знали о свете. Было известно, что свет распространяется прямолинейно и что при отражении от плоского зеркала угол падения луча равен углу отражения. Древние ученые хорошо знали и явление преломления света. Заключается оно в том, что свет, переходя из одной среды, например воздуха, в среду иной плотности, например воду, преломляется.

Клавдий Птолемей, астроном и математик из Александрии, составил таблицы измеренных углов падения и преломления, но закон преломления света был открыт только в 1621 году голландским математиком из Лейдена Виллебрордом Снеллиусом, который обнаружил, что отношение синусов угла падения и угла преломления постоянно для любых двух сред разной плотности.

Многие древние философы, в том числе великий Аристотель и римский государственный деятель Луций Сенека, задумывались о причинах возникновения радуги. Аристотель считал, что цветовая гамма появляется в результате отражения света капельками воды; примерно того же мнения придерживался и Сенека, полагая, что облака, состоящие из частичек влаги, являются своего рода зеркалом. Так или иначе, человек на протяжении всей своей истории проявлял интерес к природе света, о чем свидетельствуют дошедшие до нас мифы, легенды, философские споры и научные наблюдения.

Как и большинство древних ученых (исключая Эмпедокла), Аристотель считал, что скорость света бесконечно велика. Было бы удивительно, если бы он думал иначе. Ведь столь огромную скорость невозможно было измерить ни одним из существовавших тогда методов или приборов. Но и в позднейшие времена ученые продолжали размышлять и спорить по этому поводу. Около 900 лет тому назад арабский ученый Авиценна выразил предположение, что, хотя скорость света и очень велика, она должна быть величиной конечной. Таково же было мнение одного из его современников, арабского физика Альгазена, который впервые объяснил природу сумерек. Ни тот, ни другой, разумеется, не имели возможности подтвердить свое мнение экспериментально.

Опыт Галилея

Такие споры могли продолжаться бесконечно. Чтобы решить вопрос, нужен был четкий, неопровержимый опыт. Первым на этот путь вступил поражающий разносторонностью своего гения итальянец Галилео Галилей. Он предложил, чтобы два человека, стоящие на вершинах холмов на расстоянии нескольких километров друг от друга, подавали сигналы с помощью фонарей, снабженных заслонками. Эту мысль, осуществленную впоследствии учеными Флорентийской академии, он высказал в своем труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки, относящиеся к механике и местному движению» (опубликованном в Лейдене в 1638 году).

У Галилея разговаривают трое собеседников. Первый, Сагредо, спрашивает: «Но какого рода и какой степени быстроты должно быть это движение? Должны ли мы считать его мгновенным или же совершающимся во времени, как все другие движения?». Симпличио, ретроград, тут же отвечает: «Повседневный опыт показывает, что свет от пламени выстрелов без всякой потери времени запечатлевается в нашем глазу в противоположность звуку, который доходит до уха через значительный промежуток времени». Сагредо на это с полным основанием возражает: «Из этого общеизвестного опыта я не могу вывести никакого другого заключения, кроме того, что звук доходит до нашего слуха через большие промежутки времени, нежели свет».

Тут вмешивается Сальвиати (выражающий мнение Галилея): «Малая доказательность этих и других подобных же наблюдений заставила меня подумать о каком-либо способе удостовериться безошибочно в том, что освещение, т.е. распространение света, совершается действительно мгновенно. Опыт, который я придумал, заключается в следующем. Два лица держат каждый по огню, заключенному в фонаре или в чем-либо подобном, который можно открывать и закрывать движением руки на виду у компаньона; став друг против друга «на расстоянии нескольких локтей, участники начинают упражняться в закрывании и открывании огня на виду у компаньона таким образом, что как только один замечает свет другого, так тотчас же открывает и свой... Мне удалось произвести его лишь на малом расстоянии – менее одной мили, – почему я и не мог убедиться, действительно ли появление противоположного света совершается внезапно. Но если оно происходит и не внезапно, то, во всяком случае, с чрезвычайной быстротой».

Имевшиеся тогда в распоряжении Галилея средства, конечно, не позволяли так просто решить этот вопрос, и он вполне отдавал себе в этом отчет. Споры продолжались. Роберт Бойль, знаменитый ирландский ученый, давший первое правильное определение химического элемента, считал, что скорость света конечна, а другой гений XVII века, Роберт Гук, полагал, что скорость света слишком велика, чтобы ее можно было определить экспериментально. С другой стороны, астроном Иоганн Кеплер и математик Рене Декарт придерживались точки зрения Аристотеля.

Рёмер и спутник Юпитера

Первая брешь в этой стене была пробита в 1676 году. Произошло это в известной, мере случайно. Теоретическая проблема, как это не раз случалось в истории науки, была разрешена в ходе осуществления чисто практической задачи. Нужды расширяющейся торговли и возрастающее значение мореплавания побудили французскую Академию наук заняться уточнением географических карт, для чего, в частности, требовался более надежный способ определения географической долготы. Долгота определяется довольно простым способом – по разнице во времени в двух разных точках земного шара, но тогда еще не умели делать достаточно точные часы. Ученые предложили использовать для определения парижского времени и времени на борту корабля какое-нибудь небесное явление, наблюдающееся ежедневно в один и тот же час. По этому явлению мореплаватель или географ мог бы поставить свои часы и узнать парижское время. Таким явлением, видимым с любого места на море или на суше, является затмение одного из четырех больших спутников Юпитера, обнаруженных Галилеем в 1609 году.

Среди ученых, занимавшихся этим вопросом, был молодой датский астроном Оле Рёмер, за четыре года до того приглашенный французским астрономом Жаном Пикаром на работу в новой парижской обсерватории.

Как и другие астрономы того времени, Рёмер знал, что период между двумя затмениями ближайшего к Юпитеру спутника изменяется в течение года; наблюдения из одного и того же пункта, отделенные сроком в полгода, дают максимальную разницу в 1320 секунд. Эти 1320 секунд были загадкой для астрономов, и никто не мог найти им удовлетворительное объяснение. Казалось, существовала какая-то зависимость между периодом обращения спутника и положением Земли на орбите относительно Юпитера. И вот Рёмер, обстоятельно проверив все эти наблюдения и расчеты, неожиданно просто решил загадку.

Рёмер допустил, что 1320 секунд (или 22 минуты) – это то время, которое требуется свету, чтобы пройти расстояние от ближайшего к Юпитеру положения Земли на орбите до положения, наиболее отдаленного от Юпитера, где Земля оказывается через полгода. Иными словами, дополнительное расстояние, которое проходит свет, отраженный от спутника Юпитера, равно диаметру орбиты Земли (рис. 1).

Рис. 1. Схема рассуждений Рёмера.
Период обращения ближайшего к Юпитеру спутника равен приблизительно 42,5 часа. Поэтому спутник должен был заслоняться Юпитером (или выходить из полосы затмения) каждые 42,5 часа. Но в течение полугода, когда Земля удаляется от Юпитера, затмения наблюдались каждый раз со все большим запаздыванием по сравнению с предсказанными сроками. Рёмер пришел к выводу, что свет распространяется не мгновенно, а имеет конечную скорость; поэтому ему требуется все больше времени для достижения Земли, по мере того как она, двигаясь по орбите вокруг Солнца, удаляется от Юпитера.

Во времена Рёмера диаметр орбиты Земли считался равным примерно 182 000 000 миль (292 000 000 км). Разделив это расстояние на 1320 секунд, Рёмер получил, что скорость света равна 138 000 миль (222 000 км) в секунду.

На первый взгляд может показаться, что получить числовой результат с такой погрешностью (почти в 80 000 км в секунду) не велика заслуга. Но вдумайтесь, чего все-таки достиг Рёмер. Впервые за всю историю человечества было доказано, что движение, считавшееся бесконечно быстрым, доступно познанию и измерению.

Мало того, с первой же попытки Рёмер получил величину правильного порядка. Если же принять во внимание, что ученые до сих пор занимаются уточнением диаметра орбиты Земли и сроков затмения спутников Юпитера, то ошибка Рёмера не будет вызывать удивления. Теперь мы знаем, что максимальное запаздывание затмения спутника равно не 22 минутам, как думал Рёмер, а примерно 16 минутам 36 секундам, а диаметр орбиты Земли приближенно равен не 292 000 000 км, а 300 000 000 км. Если внести эти поправки в расчет Рёмера, получается, что скорость света равна 300 000 км в секунду, а этот результат близок к самой точной цифре, полученной учеными нашего времени.

Основное требование, которое предъявляется к хорошей гипотезе, – это чтобы на ее основе можно было делать правильные предсказания. Исходя из вычисленной им скорости света, Рёмер смог за несколько месяцев вперед точно предсказать некоторые затмения. Например, в сентябре 1676 года он предсказал, что в ноябре спутник Юпитера появится примерно с десятиминутным опозданием. Крошечный спутник не подвел Рёмера и появился в предсказанное время с точностью до одной секунды. Но парижских философов не убедило даже это подтверждение теории Рёмера. Однако Исаак Ньютон и великий голландский астроном и физик Христиан Гюйгенс выступили в поддержку датчанина. А некоторое время спустя, в январе 1729 года, английский астроном Джемс Брадлей несколько иным путем пришел к тому же выводу, что и Рёмер. Сомнениям не оставалось места. Рёмер навсегда положил конец бытовавшему среди ученых убеждению, что свет распространяется мгновенно независимо от расстояния.

Рёмер доказал, что, хотя скорость света и очень велика, она тем не менее конечна и может быть измерена. Однако, отдавая должное достижению Рёмера, некоторые ученые все же не были вполне удовлетворены. Измерение скорости света по его методу основывалось на астрономических наблюдениях и требовало длительного времени. Им же хотелось провести измерение в лаборатории чисто земными средствами, не выходя за пределы нашей планеты, так, чтобы все условия опыта находились под контролем. Сумел же французский физик Марен Марсенн, современник и друг Декарта, тридцать пять лет назад измерить скорость звука. Почему нельзя то же самое проделать и со светом?

Первое измерение земными средствами

Однако разрешения этой проблемы пришлось ждать почти два столетия. В 1849 году французский физик Арман Ипполит Луи Физо придумал довольно простой способ. На рис. 2 показана упрощенная схема его установки. Физо направлял из источника световой луч в зеркало В , затем этот луч отражался на зеркало А . Одно зеркало было установлено в Сюрен, в доме отца Физо, а другое – на Монмартре в Париже; расстояние между зеркалами составляло приблизительно 8,66 км. Между зеркалами А и В помещалось зубчатое колесо, которое можно было вращать с заданной скоростью (принцип стробоскопа). Зубцы вращавшегося колеса прерывали световой луч, разбивая его на импульсы. Таким образом посылалась цепь коротких вспышек.

Рис. 2. Установка Физо.
Через 174 года после того, как Рёмер вычислил скорость света из наблюдений затмений спутника Юпитера, Физо сконструировал устройство для измерения скорости света в земных условиях. Зубчатое колесо C разбивало луч света на вспышки. Физо измерил время, за которое свет проходил расстояние от C до зеркала A и обратно, равное 17,32 км. Слабостью этого метода было то, что момент наибольшей яркости света определялся наблюдателем на глаз. Такие субъективные наблюдения недостаточно точны.

Когда зубчатое колесо было неподвижно и находилось в первоначальном положении, наблюдатель мог видеть свет от источника сквозь промежуток между двумя зубцами. Затем колесо приводилось в движение со все возрастающей скоростью, и наступал такой момент, когда световой импульс, пройдя через промежуток между зубцами, возвращался, отразившись от зеркала A , и задерживался зубцом. В этом случае наблюдатель ничего не видел. При дальнейшем ускорении вращения зубчатого колеса свет снова появлялся, становился все ярче и, наконец, достигал максимальной интенсивности. На зубчатом колесе, использованном Физо, было 720 зубцов, а максимальной интенсивности свет достигал при 25 оборотах в секунду. На основании этих данных Физо следующим образом вычислил скорость света. Свет проходит расстояние между зеркалами и обратно за то время, пока колесо повернется от одного промежутка между зубцами до другого, т.е. за 1 / 25 × 1 / 720 , что составляет 1 / 18000 секунды. Пройденное расстояние равно удвоенному расстоянию между зеркалами, т.е. 17,32 км. Отсюда скорость света равна 17,32 · 18 000, или около 312 000 км в секунду.

Усовершенствование Фуко

Когда Физо объявил о результате своего измерения, ученые усомнились в достоверности этой колоссальной цифры, согласно которой свет доходит от Солнца до Земли за 8 минут и может облететь Землю за восьмую долю секунды. Казалось невероятным, чтобы человек смог измерить столь огромную скорость такими примитивными инструментами. Свет проходит восемь с лишним километров между зеркалами Физо за 1 / 36000 секунды? Невозможно, говорили многие. Однако цифра, полученная Физо, была весьма близка к результату Рёмера. Вряд ли это могло быть простым совпадением.

Тринадцать лет спустя, когда скептики все еще продолжали сомневаться и отпускать иронические замечания, Жан Бернар Леон Фуко, сын парижского издателя, одно время готовившийся стать врачом, определил скорость света несколько иным способом. Он несколько лет проработал вместе с Физо и много размышлял над тем, как усовершенствовать его опыт. Вместо зубчатого колеса Фуко применил вращающееся зеркало.

Рис. 3. Установка Фуко.
После некоторых усовершенствований Майкельсон использовал это устройство для определения скорости света. В этом устройстве зубчатое колесо (см. рис. 2) заменено вращающимся плоским зеркалом C . Если зеркало C неподвижно или очень медленно поворачивается, свет отражается на полупрозрачное зеркало B по направлению, указанному сплошной линией. Когда зеркало быстро вращается, отраженный луч смещается в положение, обозначенное пунктирной линией. Глядя в окуляр, наблюдатель мог измерить смещение луча. Это измерение давало ему удвоенную величину угла α, т.е. угла поворота зеркала за то время, пока луч света шел от C к вогнутому зеркалу A и обратно к C . Зная скорость вращения зеркала C , расстояние от A до C и угол поворота зеркала C за это время, можно было вычислить скорость света.

Фуко пользовался репутацией талантливого исследователя. В 1855 году ему была присуждена коплейская медаль Английского Королевского общества за его опыт с маятником, явившийся доказательством вращения Земли вокруг оси. Он построил также первый гироскоп, годный для практического использования. Замена в опыте Физо зубчатого колеса вращающимся зеркалом (такая идея была предложена еще в 1842 году Доминико Араго, но не была осуществлена) дала возможность сократить путь, проходимый световым лучом, с 8 с лишним километров до 20 м. Вращающееся зеркало (рис. 3) отклоняло обратный луч под небольшим углом, что позволяло провести необходимые измерения для вычисления скорости света. Результат, полученный Фуко, был 298 000 км/сек, т.е. примерно на 17 000 км меньше значения, полученного Физо. (В другом опыте Фуко поместил между отражающим и вращающимся зеркалами трубу с водой, чтобы определить скорость распространения света в воде. Оказалось, что скорость распространения света в воздухе больше.)

Через десять лет Мари Альфред Корню, профессор экспериментальной физики в Парижской Высшей политехнической школе, снова вернулся к зубчатому колесу, но оно имело уже 200 зубцов. Результат Корню был близок к предыдущему. Он получил цифру 300 000 км в секунду. Так обстояло дело в 1872 году, когда молодого Майкельсона, слушателя последнего курса Морской академии в Аннаполисе, на экзамене по оптике попросили рассказать об аппарате Фуко для измерения скорости света. Никому тогда и в голову не приходило, что в учебниках физики, по которым будут учиться будущие поколения студентов, Майкельсону будет отведено гораздо больше места, чем Физо или Фуко.

1) Впервые скорость света измерил датский ученый Ремер в 1676г используя астрономический метод. Он засекал время которое самый большой из спутников Юпитера Ио находился в тени этой огромной планеты.

Ремер провел измерения в момент, когда наша планета была ближе всего к Юпитеру, и в момент, когда мы находились немного по астрономическим понятиям дальше от Юпитера. В первом случае промежуток между вспышками составил 48 часов 28 минут. Во втором случае спутник опоздал на 22 минуты. Из этого был сделан вывод, что свету необходимо 22 минуты, чтобы пройти расстояние от места предыдущего наблюдения до места настоящего наблюдения. Так была доказана теория о конечной скорости света, и была примерно подсчитана его скорость она примерно составляла 299800 км/с.

2) Лабораторный метод позволяет определить скорость света на небольшом расстоянии и большой точностью. Первые лабораторные опыты провёл Фуко, а затем и Физо.

Ученые и их эксперименты

Впервые скорость света определил в 1676 году О. К. Рёмер по изменению промежутков времени между затмениями спутников Юпитера. В 1728 году её установил Дж. Брадлей, исходя из своих наблюдений аберрации света звезд. В 1849 году А. И. Л. Физо первым измерил скорость света по времени прохождения светом точно известного расстояния (базы), так как показатель преломления воздуха очень мало отличается от 1, то наземные измерения дают величину весьма близкую к скорости.

Опыт Физо

Опыт Физо - опыт по определению скорости света в движущихся средах (телах), осуществлённый в 1851 Луи Физо. Опыт демонстрирует эффект релятивистского сложения скоростей. С именем Физо связан также первый эксперимент по лабораторному определению скорости света.

В опыте Физо пучок света от источника света S, отраженный полупрозрачным зеркалом 3, периодически прерывался вращающимся зубчатым диском 2, проходил базу 4-1 (около 8 км) и, отразившись от зеркала 1, возвращался к диску. Попадая на зубец, свет не достигал наблюдателя, а попавший в промежуток между зубцами свет можно было наблюдать через окуляр 4. По известным скоростям вращения диска определялось время прохождения светом базы. Физо получил значение c = 313300 км/с.

Опыт Фуко

В 1862 году Ж. Б. Л. Фуко реализовал высказанную в 1838 году идею Д. Арго, применив вместо зубчатого диска быстровращающееся зеркало (512 оборотов в секунду). Отражаясь от зеркала пучок света направлялся на базу и по возвращении вновь попадал на то же зеркало, успевшее повернуться на некоторый малый угол. При базе всего 20 м Фуко нашёл, что скорость света равна 298000 500 км/с. Схемы и основные идеи методов Физо и Фуко были многократно использованы в последующих работах по определению скорости света.

Определение скорости света методом вращающегося зеркала (Метод Фуко): S– источник света; R – быстровращающееся зеркало; C – неподвижное вогнутое зеркало, центр которого совпадает с осью вращения R (поэтому свет, отраженный C, всегда попадает обратно на R); M – полупрозрачное зеркало; L– объектив; E – окуляр; RC – точно измеренное расстояние (база). Пунктиром показаны положение R, изменившееся за время прохождения светом пути RC и обратно, и обратный ход пучка лучей через объектив L, который собирает отраженный пучок в точке S’, а не в точке S, как это было бы при неподвижном зеркале R. Скорость света устанавливается, измеряя смещение SS’.

Полученное А. Майкельсоном в1926 году значение c = 299796 4 км/с было тогда самым точным и вошло в интернациональные таблицы физических величин. свет скорость оптический волокно

Измерение скорости света в 19 веке сыграли большую роль в физике, дополнительно подтвердив волновую теорию света. Выполненное Фуко в 1850 году сравнение скорости света одной и той же частоты в воздухе и воде показало, что скорость в воде u = c/n(n) в соответствии с предсказанием волновой теории. Была так же установлена связь оптики с теорией электромагнетизма: измеренная скорость света совпала со скоростью электромагнитных волн, вычисленной из отношения электромагнитных и электростатических единиц электрического заряда.

В современных измерениях скорости света используется модернизированный метод Физо с заменой зубчатого колеса на интерференционный или какой-либо другой модулятор света, полностью прерывающий или ослабляющий световой пучок. Приемником излучения служит фотоэлемент или фотоэлектрический умножитель. Применение лазера в качестве источника света, УЗ – модулятора со стабилизированной частотой и повышение точности измерения длины базы позволит снизить погрешности измерений и получить значение с = 299792,5 0,15 км/с. Помимо прямых измерения скорости света по времени прохождения известной базы, широко применяются косвенный методы, дающие большую точность.

Как можно более точное измерение величины «с» чрезвычайно важно не только в общетеоретическом плане и для определения значений других физических величин, но и для практических целей. К ним, в частности. Относится определение расстояний во времени прохождения радио или световых сигналов в радиолокации, оптической локации, светодальнометрии и в других подобных измерениях.

Светодальномерия

Светодальномер - геодезический прибор, позволяющий с высокой точностью (до нескольких миллиметров) измерять расстояния в десятки (иногда в сотни) километров. Так, например, светодальномером измерено расстояние от Земли до Луны с точностью до нескольких сантиметров.

Лазерный дальномер - прибор для измерения расстояний с применением лазерного луча.

Известно, что скорость света в вакууме конечна и составляет ≈300 000 км/c. На этих данных основана вся современная физика и все современные космические теории. Но ещё совсем недавно ученые были уверены, что скорость света бесконечна, и мы мгновенно видим то, что происходит в самых дальних уголках космоса.

О том, что такое свет, люди начали задумываться ещё в глубокой древности. Свет от пламени свечи, мгновенно распространяющийся по помещению, вспышки молний на небесах, наблюдение за кометами и другими космическими телами на ночном небе давало ощущение, что скорость света бесконечна. Действительно, трудно поверить, что, например, смотря на Солнце, мы наблюдаем его не в настоящем состоянии, а таким, какое оно было около 8 минут назад.

Но некоторые люди всё же подвергали сомнению устоявшуюся, казалось бы, истину о бесконечности скорости света. Одним из таких людей был Исаак Бенгман, который в 1629 году попробовал провести эксперимент по определению конечной скорости света. В его распоряжении не было, конечно же, ни компьютеров, ни высокочувствительных лазеров, ни высокоточных часов. Вместо этого ученый решил произвести взрыв. Наполнив емкость взрывчатым веществом, он на различном расстоянии от неё установил большие зеркала и попросил наблюдателей определить, в каком из зеркал вспышка от взрыва появится раньше. Учитывая, что за одну секунду свет способен обогнуть землю 7,5 раз, можно догадаться, что эксперимент закончился провалом.

Чуть позже небезызвестный Галилей, который тоже подвергал сомнению бесконечность скорости света, предложил свой эксперимент. Он поставил своего помощника с фонарем на один холм, а сам встал с фонарем на другой. Когда Галилей поднял крышку со своего фонаря, его помощник сразу же поднял крышку с противоположного фонаря. Конечно, этот эксперимент тоже не мог увенчаться успехом. Единственное, что Галилей мог предположить, было то, что скорость света намного быстрее человеческой реакции.

Получается, единственным выходом из положения было участие в эксперименте тел, достаточно сильно удаленных от Земли, но которые можно было бы наблюдать при помощи телескопов того времени. Такими объектами стали Юпитер и его спутники. В 1676 году астроном Оле Рёмер пытался определить долготу между различными точками на географической карте. Для этого он использовал систему по наблюдению за затмением одного из спутников Юпитера – Ио. Свои исследования Оле Рёмер вел с острова недалеко от Копенгагена, в то время как другой астроном Джованни Доменико Кассини наблюдал за этим же затмением из Парижа. Сравнив время начала затмения между Парижем и Копенгагеном, ученые определили разницу в долготе. Несколько лет подряд Кассини наблюдал за спутниками Юпитера из одного и того же места на Земле и заметил, что время между затмениями спутников становится короче, когда Земля находится к Юпитеру ближе, и длиннее, когда Земля отдалена от Юпитера. На основании своих наблюдений он предположил, что скорость света конечна. Это было абсолютно верное решение, но почему-то Кассани вскоре отказался от своих слов. Зато Рёмер воспринял идею с энтузиазмом, и даже сумел составить хитроумные формулы, учитывающие диаметр Земли и орбиту Юпитера. В результате он посчитал, что свету требуется около 22 минут, чтобы пересечь диаметр орбиты Земли вокруг Солнца. Его расчеты были неверны: по современным данным, свет проходит это расстояние за 16 минут и 40 секунд. Если бы вычисления Оле были бы точными, то скорость света составляла бы 135 000 км/c.

Позже, основываясь на вычислениях Рёнера, Христиан Гюйенс подставил в формулы более точные данные диаметра Земли и орбиты Юпитера. В итоге он получил скорость света равную 220 000 км/c, что намного ближе к верному значению.

Но не все ученые подсчитали гипотезу о конечности скорости света верной. Научные дебаты продолжались до 1729 года, когда было открыто явление световой абберации, которое подтвердило предположение о конечности скорости света и позволило более точно измерить её значение.

Это интересно: современные ученые и историки приходят к выводу, что, скорее всего, формулы Рёмера и Гюйенса были верными. Ошибка заключалась в данных об орбите Юпитера и диаметре Земли. Получается, ошибались не два астронома, а люди, предоставившие им информацию об орбите и диаметре.

Основное фото: depositphotos.com

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

В 1676 датский астроном Оле Рёмер сделал первую грубую оценку скорости света. Рёмер заметил слабое расхождение в продолжительности затмений спутников Юпитера и сделал вывод, что движение Земли, либо приближающейся к Юпитеру, либо удаляющейся от него, изменяло расстояние, которое приходилось проходить свету, отраженному от спутников.

Измерив величину этого расхождения, Рёмер подсчитал, что скорость света составляет 219911 километров в секунду. В более позднем эксперименте в 1849 году французский физик Арман Физо получил, что скорость света равна 312873 километрам в секунду.

Как показано на рисунке вверху, экспериментальная установка Физо состояла из источника света, полупрозрачного зеркала, которое отражает только половину падающего на него света, позволяя остальному проходить дальше вращающегося зубчатого колеса и неподвижного зеркала. Когда свет попадал на полупрозрачное зеркало, он отражался на зубчатое колесо, которое разделяло свет на пучки. Пройдя через систему фокусирующих линз, каждый световой пучок отражался от неподвижного зеркала и возвращался назад к зубчатому колесу. Проведя точные измерения скорости вращения, при которой зубчатое колесо блокировало отраженные пучки, Физо смог вычислить скорость света. Его коллега Жан Фуко год спустя усовершенствовал этот метод и получил, что скорость света составляет 297 878 километров в секунду. Это значение мало отличается от современной величины 299 792 километров в секунду, которая вычисляется путем перемножения длины волны и частоты лазерного излучения.

Эксперимент Физо

Как показано на рисунках вверху, свет проходит вперед и возвращается назад через один и тот же промежуток между зубцами колеса в том случае, если оно вращается медленно (нижний рисунок). Если колесо вращается быстро (верхний рисунок), соседний зубец блокирует возвращающийся свет.

Результаты Физо

Разместив зеркало на расстоянии 8,64 километра от зубчатого колеса, Физо определил, что скорость вращения зубчатого колеса, необходимая для блокирования возвращающегося светового пучка, составляла 12,6 оборотов в секунду. Зная эти цифры, а также расстояние, пройденное светом, и расстояние, которое должно было пройти зубчатое колесо, чтобы блокировать световой пучок (равное ширине промежутка между зубцами колеса), он вычислил, что световому пучку потребовалось 0,000055 секунды на то, чтобы пройти расстояние от зубчатого колеса к зеркалу и обратно. Разделив на это время общее расстояние 17,28 километра, пройденное светом, Физо получил для его скорости значение 312873 километра в секунду.

Эксперимент Фуко

В 1850 году французский физик Жан Фуко усовершенствовал технику Физо, заменив зубчатое колесо на вращающееся зеркало. Свет из источника доходил до наблюдателя только в том случае, когда зеркало совершало полный оборот на 360° за промежуток времени между отправлением и возвращением светового луча. Используя этот метод, Фуко получил для скорости света значение 297878 километров в секунду.

Финальный аккорд в измерениях скорости света.

Изобретение лазеров дало возможность физикам измерить скорость света с гораздо большей точностью, чем когда либо раньше. В 1972 году ученые из Национального института стандартов и технологии тщательно измерили длину волны и частоту лазерного луча и зафиксировали скорость света, произведение этих двух переменных, на величине 299792458 метров в секунду (186282 мили в секунду). Одним из последствий этого нового измерения было решение Генеральной конференции мер и весов принять в качестве эталонного метра (3,3 фута) расстояние, которое свет проходит за 1/299792458 секунды. Таким образом/скорость света, наиболее важная фундаментальная постоянная в физике, сейчас вычисляется с очень высокой достоверностью, а эталонный метр может быть определен гораздо более точно, чем когда-либо ранее.