Основанные на методе полного перебора, являются самыми универсальными, но и самыми долгими.

Энциклопедичный YouTube

    1 / 5

    ✪ Перебор. Жадные алгоритмы: Полный перебор с использованием циклов. Центр онлайн-обучения «Фоксфорд»

    ✪ #82. Арифметическая прогрессия, делимость и полный перебор вариантов! Теория чисел на ЕГЭ

    ✪ Алгоритмы C++ Перебор (часть 1)

    ✪ #84. Задача про два взвода солдат! Строгое и понятное решение. ЕГЭ по математике (профиль)

    ✪ Перебор. Жадные алгоритмы: Задача о размене монет. Центр онлайн-обучения «Фоксфорд»

    Субтитры

Метод исчерпывания

Терминология

В английском языке рассматриваемый в данной статье термин «brute-force » обычно относится к классу хакерских атак . При этом более общее понятие, математический метод исчерпывания всевозможных вариантов для нахождения решения задачи, соответствует термину «Proof by exhaustion ».

Описание

«Метод исчерпывания» включает в себя целый класс различных методов. Обычно постановка задачи подразумевает рассмотрение конечного числа состояний данной логической системы с целью выявления истинности логического утверждения посредством независимого анализа каждого состояния . Методика доказательства утверждения состоит из двух частей:

  1. Доказательство возможности исчерпания всех состояний системы. Требуется показать, что любое конкретное состояние системы (например, значение доказываемого логического выражения) соответствует хотя бы одному из рассматриваемых кандидатов в решения.
  2. Проверка каждого варианта и доказательство того, что рассматриваемый вариант является или не является решением поставленной задачи.

Характерные задачи, решаемые методом полного перебора

Хотя полный перебор в большинстве прикладных задач (особенно не связанных со взломом шифров) на практике не применяется, есть ряд исключений. В частности, когда полный перебор всё же оказывается оптимальным, либо представляет собой начальный этап в разработке алгоритма, его использование оправдано. Примером оптимальности полного перебора является алгоритм оценки времени вычисления цепочечных произведений матриц, который не удаётся ускорить по сравнению с алгоритмом, основанным на методе «грубой силы» . Этот алгоритм используется для решения классической задачи динамического программирования - определения приоритетов вычислений матричных произведений следующего вида: A 1 A 2 A 3 ⋯ A n {\displaystyle A_{1}A_{2}A_{3}\cdots A_{n}} .

Пример использования полного перебора

Исходная задача заключается в вычислении данной цепочки (матричного произведения) за наименьшее время. Можно реализовать тривиальный последовательный алгоритм, вычисляющий искомое произведение. Поскольку матричное произведение является ассоциативной операцией , можно вычислить цепочечное произведение, произвольно выбирая пару элементов цепочки (A i A i + 1) , i = 1.. n − 1 {\displaystyle (A_{i}A_{i+1}),i=1..n-1} и заменяя её результирующей матрицей A i 1: A i 1 = (A i A i + 1) {\displaystyle A_{i}^{1}\colon A_{i}^{1}=(A_{i}A_{i+1})} . Если повторять описанную процедуру n − 1 {\displaystyle n-1} раз, то оставшаяся результирующая матрица A k n − 1 {\displaystyle A_{k}^{n-1}} и будет ответом: A k n − 1 = (A k n − 2 A k + 1 n − 2) = … = A 1 A 2 A 3 ⋯ A n , k = 1.. n − 1 {\displaystyle A_{k}^{n-1}=(A_{k}^{n-2}A_{k+1}^{n-2})=\ldots =A_{1}A_{2}A_{3}\cdots A_{n},k=1..n-1} . Эта формула может быть проиллюстрирована следующим образом. Рассмотрим матричную цепочку: ⟨ A 1 , A 2 , A 3 , A 4 ⟩ {\displaystyle \left\langle A_{1},A_{2},A_{3},A_{4}\right\rangle } . Существуют следующие 5 способов вычислить соответствующее этой цепочке произведение A 1 A 2 A 3 A 4 {\displaystyle A_{1}A_{2}A_{3}A_{4}} :

(A 1 (A 2 (A 3 A 4))) , {\displaystyle {\color {Violet}(}A_{1}{\color {BurntOrange}(}A_{2}{\color {BrickRed}(}A_{3}A_{4}{\color {BrickRed})}{\color {BurntOrange})}{\color {Violet})},} (A 1 ((A 2 A 3) A 4)) , {\displaystyle {\color {Violet}(}A_{1}{\color {BurntOrange}(}{\color {BrickRed}(}A_{2}A_{3}{\color {BrickRed})}A_{4}{\color {BurntOrange})}{\color {Violet})},} ((A 1 A 2) (A 3 A 4)) , {\displaystyle {\color {Violet}(}{\color {BrickRed}(}A_{1}A_{2}{\color {BrickRed})}{\color {BurntOrange}(}A_{3}A_{4}{\color {BurntOrange})}{\color {Violet})},} ((A 1 (A 2 A 3)) A 4) , {\displaystyle {\color {Violet}(}{\color {BurntOrange}(}A_{1}{\color {BrickRed}(}A_{2}A_{3}{\color {BrickRed})}{\color {BurntOrange})}A_{4}{\color {Violet})},} (((A 1 A 2) A 3) A 4) . {\displaystyle {\color {Violet}(}{\color {BurntOrange}(}{\color {BrickRed}(}A_{1}A_{2}{\color {BrickRed})}A_{3}{\color {BurntOrange})}A_{4}{\color {Violet})}.}

Выбрав правильный порядок вычислений, можно добиться значительного ускорения вычислений. Чтобы убедиться в этом, рассмотрим простой пример цепочки из 3-х матриц. Положим, что их размеры равны соответственно 10 × 100 , 100 × 5 , 5 × 50 {\displaystyle 10\times 100,100\times 5,5\times 50} . Стандартный алгоритм перемножения двух матриц размерами p × q , q × r {\displaystyle p\times q,q\times r} требует время вычисления, пропорциональное числу p q r {\displaystyle pqr} (число вычисляемых скалярных произведений) . Следовательно, вычисляя цепочку в порядке ((A 1 A 2) A 3) {\displaystyle ((A_{1}A_{2})A_{3})} , получаем 10 ⋅ 100 ⋅ 5 = 5000 {\displaystyle 10\cdot 100\cdot 5=5000} скалярных произведений для вычисления (A 1 A 2) {\displaystyle (A_{1}A_{2})} , плюс дополнительно 10 ⋅ 5 ⋅ 50 = 2500 {\displaystyle 10\cdot 5\cdot 50=2500} скалярных произведений, чтобы вычислить второе матричное произведение. Общее число скалярных произведений: 7500. При ином выборе порядка вычислений получаем 100 ⋅ 5 ⋅ 50 = 25000 {\displaystyle 100\cdot 5\cdot 50=25000} плюс 10 ⋅ 100 ⋅ 50 = 50000 {\displaystyle 10\cdot 100\cdot 50=50000} скалярных произведений, то есть 75000 скалярных произведений .

Таким образом, решение данной задачи может существенно сократить временные затраты на вычисление матричной цепочки. Это решение может быть получено полным перебором: необходимо рассмотреть все возможные последовательности вычислений и выбрать из них ту, которая при вычислении цепочки занимает наименьшее число скалярных произведений. Однако надо учитывать, что этот алгоритм сам по себе требует экспоненциальное время вычисления , так что для длинных матричных цепочек выигрыш от вычисления цепочки самым эффективным образом (оптимальная стратегия) может быть полностью потерян временем нахождения этой стратегии .

Связь с концепцией «разделяй и властвуй»

Другим ярким примером фундаментальной концепции теории алгоритмов является принцип «разделяй и властвуй ». Эта концепция применима, когда система поддается разделению на множество подсистем, структура которых аналогична структуре исходной системы . В таких случаях подсистемы также поддаются разделению, либо являются тривиальными . Для таких систем тривиальной является исходно поставленная задача. Таким образом, реализация концепции «разделяй и властвуй» имеет рекурсивный характер.

В свою очередь, рекурсия представляет собой разновидность полного перебора. Так, рекурсия применима лишь для дискретных систем . Однако это требование относится не к состояниям данной системы, а к её субструктуре . Последовательное рассмотрение всех уровней дает исчерпывающее решение задачи, поставленной для всей дискретной системы.

По сравнению с другими примерами полного перебора, особенностью метода рекурсии является то, что конечное решение опирается не на одну-единственную тривиальную подсистему. В общем случае решение формируется на основании целого множества подсистем.

Для следующих примеров классических задач, решаемых методом «разделяй и властвуй», полный перебор является либо единственным известным методом решения, либо изначальной реализацией, которая в дальнейшем была оптимизирована:

Атака методом «грубой силы»

Кол-во знаков Кол-во вариантов Стойкость Время перебора
1 36 5 бит менее секунды
2 1296 10 бит менее секунды
3 46 656 15 бит менее секунды
4 1 679 616 21 бит 17 секунд
5 60 466 176 26 бит 10 минут
6 2 176 782 336 31 бит 6 часов
7 78 364 164 096 36 бит 9 дней
8 2,821 109 9x10 12 41 бит 11 месяцев
9 1,015 599 5x10 14 46 бит 32 года
10 3,656 158 4x10 15 52 бита 1 162 года
11 1,316 217 0x10 17 58 бит 41 823 года
12 4,738 381 3x10 18 62 бита 1 505 615 лет

Таким образом, пароли длиной до 8 символов включительно в общем случае не являются надежными. Для современных компьютеров этот показатель гораздо выше. Так, 64 битный ключ(пароль) перебирается на современном компьютере примерно за 2 года и перебор легко может быть распределен между множеством компьютеров.

Средства проведения атаки

Современные персональные компьютеры позволяют взламывать пароли полным перебором вариантов с эффективностью, проиллюстрированной в таблице выше. Однако, при оптимизации brute force, основанной на параллельных вычислениях , эффективность атаки можно существенно повысить . При этом может потребоваться использование компьютера, адаптированного к многопоточным вычислениям . В последние годы широкое распространение получили вычислительные решения, использующие GPU , такие как Nvidia Tesla . С момента создания компанией Nvidia архитектуры CUDA в 2007 году, появилось множество решений (см., например, Cryptohaze Multiforcer , Pyrit), позволяющих проводить ускоренный подбор ключей благодаря использованию таких технологий, как CUDA, FireStream , OpenCL .

Устойчивость к атаке полного перебора

В процессе улучшения системы информационной безопасности по отношению к атаке полным перебором можно выделить два основных направления:

  1. повышение требований к ключам доступа от защищаемой информации;
  2. повышение надежности всех узлов системы безопасности.

Таким образом, невозможно достичь высокого уровня защиты, улучшая только один из этих параметров. . Существуют примеры того, как система аутентификации, основанная на оптимальной сложности паролей, оказывалась уязвимой к копированию базы данных на локальный компьютер злоумышленника, после чего подвергалась brute force атаке с применением локальных оптимизаций и вычислительных средств, недоступных при удаленном криптоанализе . Такое положение дел привело к тому, что некоторые эксперты по компьютерной безопасности начали рекомендовать более критически относится к таким стандартным инструкциям, призванным обеспечить надежную защиту, как использование максимально длинных паролей . Ниже приведен список некоторых применяемых на практике методов повышения надежности криптосистемы по отношению к brute force атаке:

Методы оптимизации полного перебора

Метод ветвей и границ

Распараллеливание вычислений

Одним из методов увеличения скорости подбора ключа является распараллеливание вычислений . Существует два подхода к распараллеливанию :

  • Первый подход - построение конвейера . Пусть алгоритм соотношения E k (x) = y {\displaystyle E_{k}\ (x)=y} можно представить в виде цепочки простейших действий (операций): O 1 , O 2 , . . . , O N {\displaystyle {O_{1}\ ,O_{2},...,O_{N}}} . Возьмём N {\displaystyle N\ } процессоров A 1 , A 2 , . . . , A N {\displaystyle {A_{1}\ ,A_{2},...,A_{N}}} , зададим их порядок и положим, что i {\displaystyle i\ } - ый процессор выполняет три одинаковые по времени операции: Тогда конвейер из N {\displaystyle N\ } последовательно соединённых, параллельно и синхронно работающих процессоров работает со скоростью v / 3 {\displaystyle v/3\ } , где v {\displaystyle v\ } - скорость выполнения одной операции одним процессором.
  • Второй подход состоит в том, что множество K {\displaystyle K\ } всех возможных ключей разбивается на непересекающиеся подмножества K 1 K 2 , . . . , K N {\displaystyle {K_{1}\,K_{2},...,K_{N}}} . Система из Q {\displaystyle Q\ } машин перебирает ключи так, что i {\displaystyle i\ } - ая машина осуществляет перебор ключей из множества K i , i = 1.. Q {\displaystyle K_{i}\ ,i=1..Q} . Система прекращает работу, если одна из машин нашла ключ. Самое трудное - это разделение ключевого множества. Но если каждый процессор начнёт вычисление с какого-то произвольного ключа, то время нахождения увеличится, а схема значительно упростится. Среднее число шагов в этом случае составляет | K | / N {\displaystyle |K|/N\ } , где | K | {\displaystyle |K|\ } - число элементов во множестве ключей, а N {\displaystyle N\ } - число процессоров.

Радужные таблицы

Предпосылки к появлению

Компьютерные системы, которые используют пароли для аутентификации , должны каким-то образом определять правильность введенного пароля. Тривиальное решение данной проблемы - хранить список всех допустимых паролей для каждого пользователя, но такой подход не является безопасным. Одним из более предпочтительных подходов является вычисление криптографической хеш-функции от парольной фразы. Радужная таблица представляет собой оптимизацию этого метода . Основным её преимуществом является значительное уменьшение количества используемой памяти .

Использование

Радужная таблица создается построением цепочек возможных паролей. Каждая цепочка начинается со случайного возможного пароля, затем подвергается действию хеш-функции и функции редукции. Данная функция преобразует результат хеш-функции в некоторый возможный пароль (например, если мы предполагаем, что пароль имеет длину 64 бита, то функцией редукции может быть взятие первых 64 бит хеша, побитовое сложение всех 64-битных блоков хеша и т. п.). Промежуточные пароли в цепочке отбрасываются и в таблицу записываются только первый и последний элементы цепочек. Создание таких таблиц требует больше времени, чем нужно для создания обычных таблиц поиска, но значительно меньше памяти (вплоть до сотен гигабайт, при объеме для обычных таблиц в N слов для радужных нужно всего порядка N 2/3) . При этом они требуют хоть и больше времени (по сравнению с обычными методами) на восстановление исходного пароля, но на практике более реализуемы (для построения обычной таблицы для 6-символьного пароля с байтовыми символами потребуется 256 6 = 281 474 976 710 656 блоков памяти, в то время как для радужной - всего 256 6·⅔ = 4 294 967 296 блоков).

Для восстановления пароля данное значение хеш-функции подвергается функции редукции и ищется в таблице. Если не было найдено совпадения, то снова применяется хеш-функция и функция редукции. Данная операция продолжается, пока не будет найдено совпадение. После нахождения совпадения цепочка, содержащая его, восстанавливается для нахождения отброшенного значения, которое и будет искомым паролем.

В итоге получается таблица, которая может с высокой вероятностью восстановить пароль за небольшое время .

Инциденты

Хотя любая защита информационной системы должна, в первую очередь, быть надежной по отношению к атаке методом «грубой силы», случаи успешного применения данной атаки злоумышленниками достаточно распространены.

Атака «Энигмы»

Изобретенная в 1918 году шифровальная машина, названная «Энигма», широко использовалось немецким военно-морским флотом начиная с 1929 года. В течение дальнейших нескольких лет система модифицировалась, а с 1930 года активно использовалась немецкой армией и правительством в процессе Второй мировой войны .

Первые перехваты сообщений, зашифрованных с кодом Энигмы относятся к 1926 году. Однако прочитать сообщения долгое время не могли. На протяжении всей Второй мировой шло противостояние между польскими и германскими криптографами. Поляки, получая очередной результат по взлому немецкой криптосистемы, сталкивались с новыми трудностями, которые привносили германские инженеры, постоянно модернизирующие систему «Энигма». Летом 1939 года , когда неизбежность вторжения в Польшу стала очевидна, бюро передало результаты своей работы английской и французской разведкам .

Дальнейшая работа по взлому была организована в Блетчли-парке . Основным инструментом криптоаналитиков стала дешифровальная машина «Бомба» . Её прототип был создан польскими математиками накануне Второй мировой войны для министерства обороны Польши. На основе этой разработки и при непосредственной поддержке её создателей в Англии был сконструирован более «продвинутый» агрегат.

Теоретическую часть работы выполнил Алан Матисон Тьюринг . Его работы по криптографическому анализу алгоритма, реализованного в шифровальной машине «Энигма », основывался на более раннем криптоанализе предыдущих версий этой машины, которые были выполнены в 1938 году польским криптоаналитиком Марианом Реевским . Принцип работы разработанного Тьюрингом дешифратора состоял в переборе возможных вариантов ключа шифра и попыток расшифровки текста, если была известна структура дешифруемого сообщения или часть открытого текста .

С современной точки зрения шифр «Энигмы» был не очень надёжным, но только сочетание этого фактора с наличием множества перехваченных сообщений, кодовых книг, донесений разведки, результатов усилий военных и даже террористических атак позволило «вскрыть» шифр .

Массовый взлом домашних сетей посредством WASP

См. также

Примечания

Литература

  • Reid, D. A. et al.,. Proof in Mathematics Education: Research, Learning, and Teaching . - John Wiley & SSense Publishersons, 2010. - P. 266. - ISBN 978-9460912443 .
  • Paar, Christof et al.,.

Приведены справочные данные по показательной функции - основные свойства, графики и формулы. Рассмотрены следующие вопросы: область определения, множество значений, монотонность, обратная функция, производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Определение

Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Найдем значение выражения при различных рациональных значениях переменной х=2; 0; -3; -

Заметим, какое бы число вместо переменной икс мы не подставили, всегда можно найти значение данного выражения. Значит, мы рассматриваем показательную функцию (игрек равен три в степени икс), определенную на множестве рациональных чисел: .

Построим график данной функции, составив таблицу ее значений.

Проведем плавную линию, проходящую через данные точки (рис 1)

Используя график данной функции, рассмотрим ее свойства:

3.Возрастает на всей области определения.

  1. область значения от нуля до плюс бесконечности.

8. Функция выпукла вниз.

Если в одной системе координат построить графики функций; у=(игрек равен два в степени икс, игрек равен пять в степени икс, игрек равен семь в степени икс), то можно заметить, что они обладают теми же свойствами, что и у=(игрек равен трем в степени икс) (рис.2), то есть такими свойствами будут обладать все функции вида у=(игрек равен а в степени икс, при а большем единицы)

Построим график функции:

1. Составив таблицу ее значений.

Отметим полученные точки на координатной плоскости.

Проведем плавную линию, проходящую через данные точки (рис 3).

Используя график данной функции, укажем ее свойства:

1. Область определения - множество всех действительных чисел.

2.Не является ни четной, ни нечетной.

3.Убывает на всей области определения.

4.Не имеет ни наибольшего, ни наименьшего значений.

5.Ограничена снизу, но не ограничена сверху.

6.Непрерывна на всей области определения.

7. область значения от нуля до плюс бесконечности.

8. Функция выпукла вниз.

Аналогично, если в одной системе координат построить графики функций; у=(игрек равен одна вторая в степени икс, игрек равен одна пятая в степени икс, игрек равен одна седьмая в степени икс), то можно заметить, что они обладают теми же свойствами, что и у=(игрек равен одна третья в степени икс)(рис.4), то есть такими свойствами будут обладать все функции вида у=(игрек равен единица, деленная на а в степени икс, при а большем нуля, но меньшем единицы)

Построим в одной системе координат графики функций

значит, будут симметричны и графики функций у=у= (игрек равен а в степени икс и игрек равен единице, деленной на а в степени икс) при одном и том же значении а.

Обобщим сказанное, дав определение показательной функции и указав ее основные свойства:

Определение: Функция вида у=, где (игрек равен а в степени икс, где а положительно и отлично от единицы), называют показательной функцией.

Необходимо запомнить различия между показательной функцией у= и степенной функцией у=, а=2,3,4,…. как на слух, так и зрительно. У показательной функции х является степенью, а у степенной функции х является основанием.

Пример1: Решите уравнение (три в степени икс равно девяти)

(игрек равняется три в степени икс и игрек равняется девяти) рис.7

Заметим, что они имеют одну общую точку М (2;9) (эм с координатами два; девять), значит, абсцисса точки будет являться корнем данного уравнения. То есть, уравнение имеет единственный корень х= 2.

Пример 2: Решите уравнение

В одной системе координат построим два графика функции у= (игрек равен пяти в степени икс и игрек равен одна двадцать пятая) рис.8. Графики пересекаются в одной точке Т (-2;(тэ с координатами минус два; одна двадцать пятая). Значит, корнем уравнения является х=-2(число минус два).

Пример 3: Решите неравенство

В одной системе координат построим два графика функции у=

(игрек равен три в степени икс и игрек равен двадцати семи).

Рис.9 График функции расположен выше графика функции у=при

х Следовательно, решением неравенства является интервал (от минус бесконечности до трех)

Пример 4: Решите неравенство

В одной системе координат построим два графика функции у= (игрек равен одна четвертая в степени икс и игрек равен шестнадцати). (рис.10). Графики пересекаются в одной точке К (-2;16). Значит, решением неравенства является промежуток (-2;(от минус двух до плюс бесконечности), т.к. график функции у=расположен ниже графика функции при х

Наши рассуждения позволяют убедиться в справедливости следующих теорем:

Терема 1: Если справедливо тогда и только тогда, когда m=n.

Теорема 2: Если справедливо тогда и только тогда, когда, неравенство справедливо тогда и только тогда, когда (рис. *)

Теорема 4: Если справедливо тогда и только тогда, когда (рис.**), неравенство справедливо тогда и только тогда, когда.Теорема 3: Если справедливо тогда и только тогда, когда m=n.

Пример 5: Построить график функции у=

Видоизменим функцию, применив свойство степени у=

Построим дополнительную систему координат и в новой системе координат построим график функции у= (игрек равен два в степени икс) рис.11.

Пример 6: Решите уравнение

В одной системе координат построим два графика функции у=

(игрек равен семи в степени икс и игрек равен восемь минус икс) рис.12.

Графики пересекаются в одной точке Е (1;(е с координатами один; семь). Значит, корнем уравнения является х=1(икс равный единице).

Пример 7: Решите неравенство

В одной системе координат построим два графика функции у=

(игрек равен одна четвертая в степени икс и игрек равен икс плюс пять). График функции у=расположен ниже графика функции у=х+5 при, решением неравенства является интервал х(от минус единицы до плюс бесконечности).

1.Показательная функция – это функция вида у(х) =а х, зависящая от показателя степени х, при постоянном значении основания степени a , где а > 0, a ≠ 0, xϵR (R – множество действительных чисел).

Рассмотрим график функции, если основание не будет удовлетворять условию: а>0
a) a < 0
Если a < 0 – возможно возведение в целую степень или в рациональную степень с нечетным показателем.
а = -2

Если а = 0 – функция у = определена и имеет постоянное значение 0


в) а =1
Если а = 1 – функция у = определена и имеет постоянное значение 1



2. Рассмотрим подробнее показательную функцию:

0


Область определения функции (ООФ)

Область допустимых значений функции (ОДЗ)

3. Нули функции (у = 0)

4. Точки пересечения с осью ординат oy (x = 0)

5. Возрастания, убывания функции

Если , то функция f(x) возрастает
Если , то функция f(x) убывает
Функция y= , при 0 Функция у =, при a> 1 монотонно возрастает
Это следует из свойств монотонности степени с действительным показателем.

6. Чётность, нечётность функции

Функция у = не симметрична относительно оси 0у и относительно началу координат, следовательно не является ни чётной, ни нечётной. (Функция общего вида)

7. Функция у = экстремумов не имеет

8. Свойства степени с действительным показателем:

Пусть а > 0; a≠1
b> 0; b≠1

Тогда для xϵR; yϵR:


Свойства монотонности степени:

если , то
Например:




Если a> 0, , то .
Показательная функция непрерывна в любой точке ϵ R.

9. Относительное расположение фунцкции

Чем больше основание а, тем ближе к осям ох и оу

a > 1, a = 20




Если а0, то показательная функция принимает вид близкий к y = 0.
Если а1, то дальше от осей ох и оу и график принимает вид близкий к функции у = 1.

Пример 1.
Построить график у =