Приведем пример, подтверждающий справедливость свойства деления суммы двух натуральных чисел на данное натуральное число. Покажем, что равенство (18+36):6=18:6+36:6 верное. Сначала вычислим значение выражения из левой части равенства. Так как 18+36=54 , то (18+36):6=54:6 . Из таблицы умножения находим 54:6=9 (смотрите раздел теории деление при помощи таблицы умножения). Переходим к вычислению значения выражения 18:6+36:6 . Из таблицы умножения имеем 18:6=3 и 36:6=6 , поэтому 18:6+36:6=3+6=9 . Следовательно, равенство (18+36):6=18:6+36:6 верное.

Еще следует обратить внимание на тот факт, что это свойство, а также сочетательное свойство сложения натуральных чисел позволяют выполнять деление суммы трех и большего количества натуральных чисел на данное натуральное число. Например, частное (14+8+4+2):2 равно сумме частных следующего вида 14:2+8:2+4:2+2:2 .

Свойство деления разности двух натуральных чисел на натуральное число.

Аналогично предыдущему свойству формулируется свойство деления разности двух натуральных чисел на данное натуральное число: разделить разность двух чисел на данное число – это все равно, что отнять от частного уменьшаемого и данного числа частное вычитаемого и данного числа .

С помощью букв это свойство деление можно записать так: (a-b):c=a:c-b:c , где a , b и c – такие натуральные числа, что a больше или равно b , а также и a и b можно разделить на c .

В качестве примера, подтверждающего рассматриваемое свойство деления, покажем справедливость равенства (45-25):5=45:5-25:5 . Так как 45-25=20 (при необходимости изучите материал статьи вычитание натуральных чисел), то (45-25):5=20:5 . По таблице умножения находим, что полученное частное равно 4 . Теперь вычислим значение выражения 45:5-25:5 , стоящего в правой части равенства. Из таблицы умножения имеем 45:5=9 и 25:5=5 , тогда 45:5-25:5=9-5=4 . Следовательно, равенство (45-25):5=45:5-25:5 верно.

Свойство деления произведения двух натуральных чисел на натуральное число.

Если увидеть связь между делением и умножением , то будет видно и свойство деления произведения двух натуральных чисел на данное натуральное число, равное одному из множителей. Его формулировка такова: результат деления произведения двух натуральных чисел на данное натуральное число, которое равно одному из множителей, равен другому множителю . Приведем буквенный вид этого свойства деления: (a·b):a=b или (a·b):b=a , где a и b – некоторые натуральные числа.

Например, если разделить произведение чисел 2 и 8 на 2 , то получим 8 , а (3·7):7=3 .

Теперь будем считать, что делитель не равен ни одному из множителей, образующих делимое. Сформулируем свойство деления произведения двух натуральных чисел на данное натуральное число для этих случаев. При этом будем считать, что хотя бы один из множителей можно разделить на данное натуральное число. Итак, разделить произведение двух натуральных чисел на данное натуральное число – это все равно, что разделить на это число один из множителей и результат умножить на другой множитель .

Озвученное свойство, мягко говоря, не очевидно. Но если вспомнить, что умножение натуральных чисел по сути является сложением некоторого количества равных слагаемых (об этом написано в разделе теории смысл умножения натуральных чисел), то рассматриваемое свойство следует из .

Запишем это свойство с помощью букв. Пусть a , b и c – натуральные числа. Тогда, если a можно разделить на c , то справедливо равенство (a·b):c=(a:c)·b ; если b можно разделить на c , то справедливо равенство (a·b):c=a·(b:c) ; а если и a , и b можно разделить на c , то имеют место оба равенства одновременно, то есть, (a·b):c=(a:c)·b=a·(b:c) .

К примеру, в силу рассмотренного свойства деления произведения двух натуральных чисел на данное натуральное число справедливы равенства (8·6):2=(8:2)·6 и (8·6):2=8·(6:2) , которые можно записать в виде двойного равенства вида (8·6):2=(8:2)·6=8·(6:2) .

Свойство деления натурального числа на произведение двух натуральных чисел.

Давайте разберем следующую ситуацию. Пусть нужно поровну разделить a призов между участниками b команд по c человек в каждой команде (будем считать, что натуральные числа a , b и c таковы, что указанное деление возможно провести). Как это можно сделать? Рассмотрим два случая.

  • Во-первых, можно узнать общее количество участников (для этого нужно вычислить произведение b·c ), после чего провести деление всех a призов на всех b·c участников. Математически этому процессу соответствует a:(b·c) .
  • Во-вторых, a призов можно разделить на b команд, после чего полученное количество призов в каждой команде (оно будет равно частному a:b ) разделить на c участников. Математически этот процесс описывается выражением (a:b):c .

Понятно, что и при первом и при втором варианте деления, каждый участник получит одно и то же количество призов. То есть, будет справедливо равенство вида a:(b·c)=(a:b):c , которое представляет собой буквенную запись свойства деления натурального числа на произведение двух натуральных чисел. Следует заметить, что в силу переместительного свойства умножения натуральных чисел полученное равенство можно записать в виде a:(b·c)=(a:c):b .

Осталось лишь привести формулировку рассматриваемого свойства деления: разделить натуральное число на произведение – это все равно что разделить это число на один из множителей, после чего полученное частное разделить на другой множитель .

Приведем пример. Покажем справедливость равенства 18:(2·3)=(18:2):3 , что будет подтверждать свойство деления натурального числа на произведение двух натуральных чисел. Так как 2·3=6 , то частное 18:(2·3) равно 18:6=3 . Теперь вычислим значение выражения (18:2):3 . Из таблицы умножения находим, что 18:2=9 , а 9:3=3 , тогда (18:2):3=3 . Следовательно, 18:(2·3)=(18:2):3 .

Свойство деления нуля на натуральное число.

Мы приняли условность, что число нуль (напомним, что нуль не относится к натуральным числам) означает отсутствие чего-либо. Таким образом, деление нуля на натуральное число – это есть деление «ничего» на несколько частей. Очевидно, что в каждой из полученных частей также будет «ничто», то есть нуль. Итак, 0:a=0 , где a – любое натуральное число.

Полученное выражение представляет собой буквенную запись свойства деления нуля на натуральное число, которое формулируется так: результатом деления нуля на произвольное натуральное число является нуль .

К примеру, 0:105=0 , а частное от деления нуля на 300 553 тоже равно нулю.

Натуральное число делить на нуль нельзя.

Почему же натуральное число нельзя делить на нуль? Давайте разберемся с этим.

Предположим, что некоторое натуральное число a можно разделить на нуль, и результатом деления является другое натуральное число b , то есть, справедливо равенство a:0=b . Если вспомнить о связи деления с умножением, то записанное равенство a:0=b означает справедливость равенства b·0=a . Однако свойство умножения натурального числа и нуля утверждает, что b·0=0 . Сопоставление двух последних равенств указывает на то, что a=0 , чего быть не может, так как мы сказали, что a – некоторое натуральное число. Таким образом, наше предположение о возможности деления натурального числа на нуль приводит к противоречию.

Итак, натуральное число нельзя делить на нуль .

Список литературы.

  • Математика. Любые учебники для 1, 2, 3, 4 классов общеобразовательных учреждений.
  • Математика. Любые учебники для 5 классов общеобразовательных учреждений.
  • выработка навыка решения заданий на применение свойств делимости суммы и произведения;
  • включение каждого учащегося в осознанную учебную деятельность;
  • Развивать творческие способности, математическую культуру, умение выявлять закономерности, обобщать.
  • Оборудование: доска, таблица, учебная литература, компьютер, проектор, экран.

    Ход урока

    1. Организационный момент

    2. Актуализация опорных знаний

    Математический диктант

    1 вариант 2 вариант

    а) если число а делится на 6, то оно делится на 12*;

    б) если число а не делится на 6, то оно не делится на 12

    1. Какие из высказываний верные:

    а) если число а делится на 12, то оно делится на 6;

    б) если число а не делится на 12, то оно не делится на 6

    а) любое число, кратное 90

    2. Пусть F – множество чисел, кратных 33. Принадлежит ли множеству F:

    а) любое число, кратное 11

    3. Найдите пересечения:

    а) множества четных чисел и множества чисел, кратных 4

    3. Найдите пересечения:

    а) множества чисел, кратных 3, и множества чисел, кратных 7

    3. Усвоение новых знаний

    Учащиеся делятся на 4 группы. Каждая группа изучает одно из свойств, доказательство этого свойства.

    Рассмотрим некоторые свойства делимости суммы и произведения.

    1. Если в сумме целых чисел каждое слагаемое делится на некоторое число, то и сумма делится на это число.

    Доказательство проведем для трех слагаемых. Если числа a, b , и c делятся на p, то a=pk, b=pm, c=pn, где k,m и n – целые числа. Тогда

    a+b+c=pk+pm+pn=p(k+m+n),

    и так как k +m+n – целое число, то a+b+c делится на p.

    В случае произвольного числа слагаемых прием доказательства остается тем же. Очевидно, что обратное утверждение неверно.

    2. Если два целых числа делятся на некоторое число, то их разность делится на это число.

    Это свойство следует из предыдущего, так как разность a-b всегда можно представить в виде суммы a+(-b) .

    3. Если в сумме целых чисел все слагаемые, кроме одного делятся на некоторое число, то сумма не делится на это число.

    Пусть числа a и b делятся на p, а число c не делится на p. Докажем, что сумма a+b+c не делится p. Предположим противное: пусть a+b+c делится на p. Тогда в разности (a+b+c)-(a+b) уменьшаемое делится на p по предположению, а вычитаемое делится на p по свойству 1, и поэтому по свойству 2 разность делится на p. Однако эта разность равна c и на p по условию не делится. Мы пришли к противоречию. Следовательно, сделанное нами предположение неверно и сумма a+b+c делится на р, что и требовалось доказать.

    Заметим, что так как разность a-b можно рассматривать как сумму a+(-b), то доказанные свойства суммы относятся к любой алгебраической сумме чисел.

    4. Если в произведении целых чисел один из множителей делится на некоторое число, то произведение делится на это число.

    Если а делится на с, то a=ck, где k –целое число. Тогда ab=(ck)b т.е ab=c(kb), причем kb – целое число, так как произведение целых чисел является целым числом. Значит ab делится на с.

    При решении задач на делимость часто бывают полезными свойства, связанные с последовательным расположением целых чисел. Например:

    Одно из п последовательных целых чисел делится на п;

    Одно из двух последовательных четных чисел делится на 4;

    Произведение трех последовательных целых чисел делится на 6;

    Произведение двух последовательных четных чисел делится на 8.

    Решение задач с применением свойств делимости суммы и произведения.

    Пример 1

    Докажите, что сумма 333 555 + 555 333 делится на 37.

    333 555 + 555 333 = (3*111) 555 +(5*111) 333 = 111*(3 555 *111 554 + 5 333 *111 332). Так как 111 делится на 37, то данное выражение делится на 37.

    Пример 2

    Выясним, принадлежит ли графику уравнения 15х + 25 y= 114 хотя бы одна точка, координатами которой являются целые числа.

    Допустим, что график проходит через точку М (а; в), где а и в целые числа. Тогда верным является равенство 15а + 25в =114. В левой части этого равенства записана сумма, которая делится на 5, так как каждое слагаемое 15а и 25в делятся на 5. ТО число 114 на 5 не делится. Полученное противоречие показывает, что предположение неверно и на графике уравнения 15х + 25y = 114 нет ни одной точки с целочисленными координатами.

    Пример 3

    Выясним, может ли целое число а, не равное нулю и не являющееся делителем 240, быть корнем уравнения 17х 3 –10х 2 -6х + 240 =0.

    Допустим, что а – целый корень уравнения. Тогда верно равенство

    17а 3 – 10а 2 – 6а + 240 =0.

    Левая часть представляет собой сумму, в которой каждое слагаемое, кроме одного, делится на а, и поэтому эта сумма не делится на а. Правая часть этого равенства делится на а, так как 0 делится на любое число, отличное от нуля. Полученное противоречие показывает, что предположение неверно и число а не может быть корнем данного уравнения.

    Пример 4

    Докажем, что если n - простое число, большее чем 3, то разность n 2 - 1 делится на 24.

    Имеем n 2 - 1 =(n-1)(n+1) . Из трех последовательных чисел n-1, n , n+1 хотя бы одно делится на 3. Однако число n на 3 не делится, значит, на 3 делится одно из чисел n-1 и n+1и, следовательно, их произведение (n-1)(n+1). Из условия ясно, что число n нечетное. Значит, n-1 и n+1 – два последовательных четных числа. Одно из таких чисел делится на 2, а другое - на 4, и поэтому их произведение делится на 8.

    Итак, разность n 2 -1, где n – простое число и n>3, делится на 3 и на 8. А так как 3 и 8 взаимно простые, то эта разность делится на 24.

    Решение №108, 110, 111(а),116(а), 119, 123.

    4. Подведение итогов

    5. Домашнее задание

    Теорема 1 (признак делимости суммы). Если каждое слагаемое делится на нат. число с, то и сумма чисел делится на с. Док-во: пусть а⋮с и в⋮с. Тогда существуют нат.числа q 1 и q 2 такие, что а=сq 1 и в=сq 2 . Имеем: а+в=сq 1 +cq 2 = c(q 1 +q 2). Так как числа q 1 и q 2 натуральные, то q 1 +q 2 также число натуральное. Тогда из равенства а+в=с(q 1 +q 2) следует, что (а+в)⋮с. П: Числа 96 и 48 делятся на 12,значит,их сумма 96+48=144 также делится на 12. Утверждение, обратное данной теореме неверно,т.е. если двух чисел a и b делится на некоторое число с, то это не значит, что каждое слагаемое, из которых состоит эта сумма, делится на число с. Теорема 2 (о делимости разности). Если каждое из чисел а и в делится на натуральное число с и в ≤ а, то разность этих чисел делится на с. Теорема 3 (о делимости произведения). Если хотя бы один из множителей делится на число с, то и произведение делится на это число с. Док-во. Пусть а ⋮ с.Тогда по определению отношения делимости существует натуральное число q такое, что а= сq. Рассмотрим число а ∙ в = (сq) ∙ в =с ∙ (qв). Поскольку число qв-натуральное, то из последнего равенства следует, что (ав) ⋮ с. Теорема4 (о делимости произведения). Если в произведении ав двух множителей первый множитель делится на натуральное число с, а второй множитель делится на натуральное число d, то это произведение делится на сd. Док-во.По условию a=cq 1 и b=dq 2 ,где q 1 , q 2 ∈ N. Тогда ab =(cq 1)(dq 2) =с (q 1 (dq 2)=c ((q 1 ∙ d) q 2)= с ((dq 1) ∙ q 2)= c (d(q 1 q 2))= (cd)(q 1 ∙q 2), где q 1 ∙ q 2 ∈ N. Следовательно,(ав) ⋮ (с d). П: т.к.число 30 делится на 5, а число 14 делится на 7, то произведение 30 и 14 делится на произведение 5 и7, т.ею(30 14) делится на(5 7). Действительно, 30 14=420; 5 7=35, и 420:35=12,т.е.420 35.

    21.Признак делимости паскаля .Теорема: нат.число а, заданное в десятичной системе счисления, делится на натуральное число в тогда и только тогда, когда на в делится сумма произведений каждой цифры числа а на остатки от деления на в соответствующих разрядных единиц (1,10,10 2 ,10 3 , …,10 п). Док-во: пусть а =а п а п-1 …а 2 а 1 а 0 . Пусть при делении на в числа 10, 10 2 , 10 3 , …, 10 п дают остатки r 1 , r 2 , r 3 , …, r п-1 , r п. По теореме о делении с остатком имеем: 10=вq 1 +r 1 , 10 2 =вq 2 +r 2 , 10 3 =вq 3 +r 3, …, 10 п-1 =вq п-1 +r п-1 , 10 п =вq п +r п. Преобразуем данное число а к виду: а=а п а п-1 …а 2 а 1 а 0 = а п 10 п +а п-1 10 п-1 +…+а 2 10 2 +а 1 10 1 +а 0 = а п (вq п +r п)+ а п-1 (вq п-1 +r п-1)+ …+ а 2 (вq 2 +r 2)+ а 1 (вq 1 +r 1) +а 0 = (а п q п +а п-1 q п-1 +… +а 2 q 2 +а 1 q 1) в+ (а п r п +а п-1 r п-1 + …+ а 2 r 2 + а 1 r 1 +а 0). Видим, что первое слагаемое делится на в, т.к.содержит мн.в. Для того чтобы данное число а делилось на в, необходимо и достаточно, чтобы и второе слагаемое делилось на в,т.е.на в должно делиться число с=а 0 +а 1 r 1 + а 2 r 2 + …+ а п-1 r п-1 +а п r п. Это число и есть сумма произведений каждой цифры числа а на остатки от деления на в соответствующих разрядных единиц. П: покажем, что число 65345 делится на 7. Найдём остатки от деления на 7 разрядных единиц 10 1 , 10 2 , …, 10 5 . Если остаток будет близок к числу 7, то будем заменять его недостатком, то есть числом единиц, недостающих для делимости нацело на 7. 10 1:7, r 1 =3; 10 2:7, r 2 =2; 10 3:7, r 3 = -1; 10 4:7, r 4 =-3. Тогда с=5+4 3+3 2+ 5 (-1)+ 6 (-3)= 5+12+6-5-18=0. Т.к.0 делится на 7, то и число 65345 делится на 7.

    Понятие о рациональном числе. Отношения между множествами натуральных, целых и рациональных чисел .

    Рациональное число - число, представляемое обыкновенной дробью , числитель м - целое число, а знаменатель п - натуральное число, к примеру 2/3. Множество положительных рациональных чисел обозначают Q + . Покажем, что все нат.числа содержатся в этом множестве, т.е.что N c Q + .Пусть длина отрезка а при единице длины е выражается нат.числом м. Разобьём отрезок е на п равных частейю Тогда п-я доля отрезка е будет укладываться в отрезке а м п раз, т.е.длина отрезка а будет выражаться дробями вида . Но мн.этих дробей есть положит.рациональное число. Следовательно, длина отрезка а, с одной стороны, выражается нат.числом м, а с другой- полож.рациональным числом . Но это должно быть одно и то же число. Поэтому целесообразно считать, что дроби вида яв-ся записями нат.числа м. Из этого следует, что любое нат.число м можно представить в виде дроби , следовательно N c Q + . Все нат.числа содержатся в мн.полож.рац.чисел. Числа, которые дополняют мн.нат.чисел до мн.полож.рацион.чисел, называют дробными числами.

    Сложение и вычитание рациональных чисел. Законы сложения .

    Суммой рациональных чисел и называют рациональное число . Т.к.любые две дроби могут быть приведены к общему знаменателю, то сумма рациональных чисел и будет равна: + = + = . Сумма рациональных чисел всегда существует и единственная. Теорема: операция сложения рациональных чисел обладает коммутативным и ассоциативным свойствами, т.е. 1. ( а,в Q) а+в= в+а (коммутативность сложения); 2. ( а,в,с Q)(a+в)+с= а+(в+с) (ассоциативность сложения). Законы сложения: переместительный- а+в=в+а для любых а,в Q + ; сочетательный- (а+в)+с= а+(в+с) для любых а, в, с Q + . Разность дробей и называется дробь такая, что + = . Согласно определению - = + = . Выведем правило вычитания дробей, т.е.найдём значение дроби . Т.к. + = , то = . Отсюда: (py+xq) n= (qy) m или pyn+xqn=qум, х(qп)= у(qм-pn). Из последнего равенства будем иметь: = . Таким образом, получили: - = . В частности, - = . Для рациональных чисел верно утверждение: разность рациональных чисел всегда существует и единственная. Это значит, что каких бы два рациональных числа ни были даны, разность их всегда можно найти, т.е.вычитание обыкновенных дробей всегда выполнимая операция.

    Отношение порядка на множестве рациональных чисел. Свойства множества рациональных чисел (бесконечность, упорядоченность, счётность, плотность) .

    Mq np или mq np. Для целых чисел это также верно: а в или а 1 в 1. П: сравним дроби и . 19 27=513 и 23 25= 575 и сравним их. Т.к. 513 575, то . Теорема: отношение «меньше» на мн.рацион.чисел транзитивно, асимметрично и антирефлексивно, т.е. 1) и , то - транзитивность; 2) , то неверно, что - асимметричность; 3)неверно, что - антирефлексивность. Из теорем следует, что отношение «меньше» на множестве Q рациональных чисел яв-ся отношением строгого линейного порядка, а само мн.Q- линейно упорядоченным множеством. Свойства мн.рацион.чисел : 1.Мн.Q рациональных чисел счётное, т.е.его элементы можно пронумеровать с помощью нат.чисел.

    N: 1,2, 3, 4, 5, 6.

    Из графика видим, что Q N, значит, мн.Q счётное.

    2.Мн.Q рациональных чисел бесконечное. Это вытекает из того, что Q N, а мн.N бесконечное. 3.Во мн.положительных рац.чисел нет наименьшего числа. 4.Мн.Q рац.чисел плотное. Это значит, что между любыми двумя различными рац.числами а и в мн.Q лежит бесконечное мн.рац.чисел. 5.Каждому рац.числу соответствует единственная точка координатной прямой, но не каждой точке будет соответствовать рац.число. Соответствие между мн.Q рац.чисел и мн.точек координатной прямой не яв-ся биективным.

    Понятие иррационального числа. Множество положительных действительных чисел .

    Иррациональное число- это число, которое выражается бесконечной десятичной непериодической дробью. Иррац.числа получаются не только при извлечении корней из некоторых чисел ( ; ), не только при измерении длин отрезков, но и при решении практических задач, например, при измерении площади, вычислении отношения длины окружности к её диаметру (). П: числа 0,0100100010000100…; 45,3232232223222232…; =3,141592…; =1,732050…; =1,414213… яв-ся иррац., т.к.они яв-ся бесконечными непериодическими десятичными дробями (в них невозможно выделить период). Мн.полож.иррац.чисел обозначают I + . Объединение мн.полож.рац.чисел и мн.полож.иррац.чисел образует мн.полож.действительных чисел, которое обозначается R + , т.е. R + =Q + I + , причём Q + c R + , I + c R + , Q + I + = . Мн. R + делится на два класса: 1.класс бесконечных периодических десятичных дробей; 2.класс бесконечных непериодических десятичных дробей. Конечные десятичные дроби можно также считать бесконечными периодическими дробями с периодом равным 0. Н: 0,4=0,40000… Кроме того, любое рациональное число можно записать в виде бесконечной периодической дроби с периодом, равным 9.

    Упорядоченность множества положительных действительных чисел. Свойства множества положительных действительных чисел .

    Отношение «меньше» на мн.R + яв-ся отношением строгого линейного порядка, это значит, оно асимметрично (если х у, то у х), транзитивно (если х у, у z, то х z) и связно (либо х=у, либо х у, либо у х). Из этого следует, что мн.R + положительных действительных чисел яв-ся упорядоченным множеством. Его элементы можно упорядочить с помощью отношения «меньше». Мн. R + плотно в себе, т.е.между любыми двумя действительными числами лежит бесконечное мн.действительных чисел. Н: между числами 1,2 и 1,3 лежат числа 1,21; 1,211 и т.д. Мн. R + яв-ся непрерывным, т.е.если числовое множество Х располагается слева от числового мн.Y, то найдётся хотя бы одно число, которое разделяет эти множества. Мн.полож.действ.чисел несчётно. Док-во (методом от противного): докажем, что ни при каком упорядочивании мн. R + пронумеровать его числа невозможно. Предположим, что элементы мн. R + удалось пронумеровать: 1 м 1 ,а 1 а 2 а 3 …; 2 м 2 , в 1 в 2 в 3 …; 3 м 3 ,с 1 с 2 с 3 …; …., где м i - целая часть числа, буквы а,в,с,… представляют собой десятичные знаки после запятой. Предположим, что эта последовательность дробей описывает все действительные числа. Возьмём число z=0, авс…, где а а 1 , в в 2 , с с 3 и т.д. Это новое число z отличается от первого числа десятыми долями, от второго- сотыми, от третьего- тысячными и т.д. Оно отличается от п-го числа в последовательности п-ой цифрой дробной части. Значит, появилось новое число z, которое не пронумеровали. Это противоречит предположению о том, что пронумеровали все действительные числа. Таким образом, доказано, что мн. R + несчётное. Мн. R + бесконечное(доказывается методом от противного).

    Арифметические операции на множестве всех действительных чисел .

    Суммой двух дейст.чисел х и у называется дейст.число, которое удовлетворяет след.условиям: 1)сумма полож.чисел есть число положительное, модуль которого равен сумме модулей слагаемых: |х+у|=|х|+|у|; 2)сумма отриц.чисел есть число отрицательное, модуль которого равен сумме модулей слагаемых: (-х)+(-у)=-(х+у); 3)сумма двух чисел с разными знаками есть число, которого совпадает со знаком слагаемого, имеющего больший модуль, а модуль суммы равен разности большего и меньшего модулей слагаемых: если х у, то х+(-у)=х-у; если х у, то х+(-у)= -(у-х). Операции сложения во мн.R коммутативна ( х,у R) х+у=у+х и ассоциативна ( х,у,z R)(x+y)+z= x+(y+z). Число 0 яв-ся нейтральным элементом относительно сложения, т.е.х+0=0+х=х. Операция вычитания во мн.R определяется как операция, обратная сложению. Т.к.для каждого в R существует число- в такое, что в+(-в)=0, то вычитание равносильно сложению с числом-в, т.е.а-в=а+(-в). Произведением двух действительных чисел х и у называется дейст.число z, которое удовлетворяет условиям: 1)модуль произведения двух чисел равен произведению модулей этих чисел: |х у|=|х|∙|у|; 2)знак в произведении двух чисел положителен, если знаки множителей одинаковые; 3)знак в произведении двух чисел отрицателен, если знаки множителей разные. Операция умножения во мн.R коммутативна ( х,у R)x∙y=y∙x; ассоциативна ( x,y,z R)(x∙y) ∙z=x∙(y∙z); дистрибутивна ( x,y,z . 1-нейтральный элемент относительно умножения: х∙1=1∙х=х; 0- поглощающий элемент относительно умножения: х∙0=0∙х=0. Деление дейст.чисел можно рассматривать как действие, обратное умножению, т.к.х:у=х ∙ , где у Деление на 0 во множестве R невозможно.

    Длина отрезка и её измерение .

    Длиной отрезка называется величина, определенная для каждого отрезка так, что: 1) равные отрезки имеют равные длины; 2) если отрезок состоит из конечного числа отрезков, то его длина равна сумме длин этих отрезков. В математике рассматривают две взаимно обратные задачи, связанные с длиной отрезка: измерение длины отрезка а с помощью отрезка е, выбранного за единичный отрезок, и построение отрезка а по заданной его длине. Св-ва длины отрезка 1.При выбранной единице длины длина любого отрезка выражается положительным действительным числом, и для каждого положительного действительного числа существует отрезок, длина которого выражается зтим числом.2.Если два отрезка равны, то числовые значения их длин также равны, и наоборот: если числовые значения длин двух отрезков равны, то равны и сами отрезки. a=b (a) = (b). 2.Если данный отрезок состоит из конечного числа отрезков, числовое значение его длина равно сумме числовых значений длин составляющих отрезков, и наоборот: если числовое значение длины отрезка равно сумме числовых значений нескольких отрезков, то и сам отрезок равен сумме этих отрезков. c= a+ b (c) = (a) + (b). Покажем это. Пусть a = e, b= e. a+b = ( + 4. Если длины отрезков а и в такие, что в = ха, где х – положительное действительное число, то, чтобы найти числовое значение длины отрезка b при единице измерения е, достаточно найти произведение число х и числового значения длины отрезка а при единице е. b = xa (b) = x (a). Пусть b = xa и a = e, тогда в=х е= (х )е. 5.При замене единицы длины значение длины отрезка увеличивается (уменьшается) во столько раз, во сколько раз новая единица меньше (больше) старой. Пусть даны две единицы длины е и е 1 такие, что е 1 =ке. Это значит, что новая единица в к раз больше старой. Тогда если а= е, то при переходе к новой единице будем иметь: а= 1 = е 1 . Число в к раз меньше числа . П: 14м=14 1м=14 =(14 1400 см. Полученное число 1400 в 100 раз больше числа 14, т.к.новая единица длины- сантиметр-в 100 раз меньше метра.

    Площадь фигуры и её измерение .

    Площадью фигуры называется неотрицательная величина, определённая для каждой фигуры так, что:1)равные фигуры имеют равные площади; 2)если фигура состоит из конечного числа фигур, то её площадь равна сумме их площадей. Чтобы измерить площадь фигуры, надо иметь единицу площади. За единицу измерения площади принимают площадь квадрата со стороной е. Площадь квадрата со стороной е обозначается е 2 . Н., S=20см 2 при единице площади1 см 2 . Измерение площади фигур с помощью палетки. Палетка-это сетка квадратов, нанесённая на прозрачный материал. Измерение с помощью палетки яв-ся приблизительным и вычисляется по формуле: S , где S 1 - площадь внутренней системы квадратов, S 2 - площадьсистемы квадратов, которые целиком покрывают фигуру. Другие способы измерения площадей фигур состоят в применении формул дляих вычисления: 1.Площадь прямоугольника: S=ab, где a- длина, b- ширина прямоугольника. 2.Площадь параллелограмма: S=ah, где a- длина стороны параллелограмма, h- его высота. 3.Площадь треугольника: S= ah, где a- длина стороны треугольника, h- его высота. 4.Площадь ромба: S= d 1 d 2 , где d 1 и d 2 - длины диагоналей ромба. 5.Площадь трапеции: S= , где a и b- длины оснований трапеции, h- её высота. 6.Площадь круга: S= 2 , где R- длина радиуса круга. Площади плоскихфигур обладают св-ми: а)площади равных фигур при одной и той же единице площади равны между собой. б)если фигура F состоит из фигур F 1 ,F 2 ,…,F n , то значение площади фигуры F равно сумме площадей фигур F 1 , F 2 ,…, F п при одной и той же единице площади. в)при замене единицы измерения площади числовое значение площади фигуры увеличивается (уменьшается) во столько же раз, во сколько раз новая единица измерения меньше (больше) старой.П: 12 м 2 =12 2 = 12 2 = 1200дм 2 . Первоначальную единицу измерения 1м 2 уменьшили в 100 раз, а значение площади увеличилось в 100 раз. Это связано с тем, что 1м 2 =100дм 2 , а 1дм 2 =0,01м 2 .

    Лекция 4. Делимость на множестве целых неотрицательных чисел

    1. Понятие отношения делимости, его свойства.

    2. Признаки делимости суммы, разности, произведения.

    3. Признаки делимости на 2, 3, 4, 5, 9 (два доказать).

    В начальном курсе математики делимость натуральных чисел, как правило, не изучается, но многие факты из этого раздела математики неявно используются.

    Отношение делимости и его свойства

    Рассмотрим отношение делимости на множестве целых неотрицательных чисел.

    Определение 1. Пусть даны целые неотрицательные числа а и b . Говорят, что число а b , если существует такое целое неотрицательное число q , что а=bq . В этом случае число b называют делителем числа а , а число а - кратным числа b.

    Обознаение: а b и говорят а кратно b , а b называют делителем числа а .

    Заметим, что понятие "делитель данного числа" следует отличать от понятия "делитель", обозначающего то число, на которое делят. Например, если 18 делят на 5, то число 5 - делитель, но не является делителем числа 18. Если 18 делят на 6, то в этом случае понятия "делитель" и "делитель данного числа" совпадают.

    Замечание. Из определения 1 и равенства а=1а , следует, что 1 является делителем любого целого неотрицательного числа.

    Свойства отношения делимости:

    Отношение делимости рефлексивно, антисимметрично, транзитивно.

    Теорема 1. Отношение делимости рефлексивно, т.е. любое натуральное число делится само на себя
    .

    Доказательство:

    Для справедливо равенство а=а 1. Т.к. 1 , то по опр. 1 .

    Теорема 2. Отношение делимости антисимметрично, т. е.

    Доказательство (методом от противного): Предположим, что
    . Тогда очевидно, что b≥a. Но по условию
    и значит а≥b. Выполнение этих неравенств возможно только при а=b, что противоречит условию. Следовательно, наше предположение неверно и справедливость свойства установлена.

    Теорема 3. Отношение делимости транзитивно, то есть

    Доказательство:

    Т.к.
    , то по опр.1 . Аналогично, т.к. b с, то .

    Тогда a=bq=(cp)q=c(pq). Число рq- натуральное. Это означает по опр.1, что а с.

    Таким образом, отношение делимости на множестве N, обладая свойствами рефлексивности, антисимметричности и транзитивности, является отношением нестрогого порядка.

    Делимость суммы, разности, произведения целых неотрицательных чисел

    Теорема 4 (признак делимости суммы): Если каждое слагаемое суммы делится на натуральное число b, то и вся сумма делится на это число, то есть

    если
    .

    Доказательство: Пусть
    . Тогда существуют q 1 ,q 2 ,…q n
    N такие, что выполняются равенства: а 1 =bq 1 , а 2 =bq 2 , …, а 1 n = bq n . Из этих равенств следует, что а 1 +а 2 +…а n =bq 1 +bq 2 +…+bq n =b(q 1 +q 2 +…+q n), где q 1 +q 2 +…+q n =q
    N 0 . По определению отношения делимости это означает, что
    .

    Теорема 5 (признак делимости разности): Если каждое из чисел а и b делится на с и а≥b , то разность а-b делится на с , т. е. если .

    Доказательство: Пусть
    . Тогда существуют q 1 ,q 2
    N такие, что а=cq 1 , b=cq 2 . Поскольку а≥b, то q 1 >q 2 . Таким образом, имеем а-b =cq 1 -cq 2 =c(q 1 -q 2)=cq, где q 1 -q 2 =q
    N. Следовательно, .

    Теорема 6 (признак делимости произведения): Если хотя бы один из множителей произведения делится на натуральное число b, то и все произведение делится на это число, то есть
    .



    Доказательство: Пусть а k b, тогда существует q
    N такое, что а k =bq. Отсюда, используя коммутативный и ассоциативный законы умножения, можем записать
    . Поскольку произведение целых неотрицательных чисел является целым неотрицательным числом, то последнее равенство означает, что
    .

    Теорема 7: Если в произведении ab множитель а делится на натуральное число m , а множитель b делится на натуральное число n , то произведение ab делится на произведение nm , то есть
    .

    Доказательство: Пусть a m и b n, тогда существуют q 1 ,q 2
    N такие что, a=mq 1 , b=nq 2 . Отсюда на основании комм. и ассоц. законов умножения имеем ab=(mq 1)(nq 2)=(mn)(q 1 q 2)=(mn)q, где q 1 q 2 =q
    N . следовательно, ab mn.

    Теорема 8: Если в сумме одно слагаемое не делится на натуральное число b , а все остальные слагаемые делятся на это число, то и вся сумма на число b не делится.

    Доказательство: Пусть S=a 1 +a 2 +…+a n +c, где а 1 b, a 2 b, …, a n b, но
    . Докажем, что
    . Предположим противное, то есть S b. Тогда с=S-(a 1 +a 2 +…+a n), где S b, и (a 1 +a 2 +…+a n) b. По теореме о делимости разности это означает, что с b. Полученное противоречие и доказывает теорему.

    Признаки делимости

    Теорема 9 (признак делимости на 2) Для того чтобы число х делилось на 2, необходимо и достаточно, чтобы его десятичная запись оканчивалась одной из цифр 0,2,4,6,8.

    Доказательство. Пусть число х

    х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 , где а n , а n-1,…, a 1 принимают значения 0, 1, 2, ...9, а n ≠0 и а 0 принимает значения 0,2,4,6,8. Докажем, что тогда х: .2.

    Так как 10: .2, то 10 2: .2, 10 3: .2,…,10 n: .2 и, значит, (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10) : .2. По условию а 0 тоже делится на 2, поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 2. Следовательно, согласно признаку делимости суммы, число хделится на 2.

    Докажем обратное: если число х делится на 2, то его десятичная запись оканчивается одной из цифр 0,2,4,6,8.

    Запишем равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 в таком виде: а 0 = х - (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10). Но тогда, по теореме о делимости разности, а 0: . 2, поскольку х: . 2 и (а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10) : . 2. Чтобы однозначное число а 0 делилось на 2, оно должно принимать значения 0,2,4,6,8.

    Теорема 10 (признак делимости на 5). Для того чтобы число х делилось на 5, необходимо и достаточно, чтобы его десятичная запись оканчивалась цифрой 0 или 5.

    Доказать самостоятельно!

    Доказательство этого признака аналогично доказательству признака делимости на 2.

    Теорема 11 (признак делимости на 4). Для того чтобы число х делилось на 4, необходимо и достаточно, чтобы на 4 делилось двузначное число, образованное последними двумя цифрами десятичной записи числа х .

    Доказательство . Пусть число х записано в десятичной системе счисления, т.е.

    х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 и последние цифры в этой записи образуют число, которое делится на 4. Докажем, что тогда х: . 4.

    Так как 100: . 4, то (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) : . 4. По условию, а 1 ·10 + а 0 (это и есть запись двузначного числа) также делится на 4. Поэтому число х можно рассматривать как сумму двух слагаемых, каждое из которых делится на 4. Следовательно, согласно признаку делимости суммы, и само число х делится на 4.

    Докажем обратное, т.е. если число х делится на 4, тo двузначное число, образованное последними цифрами его десятичной записи, тоже делится на 4.

    Запишем равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 в таком виде:

    а 1 · 10 + а 0 = х- (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) .

    Так как х: . 4 и (а n ·10 + а n-1 ·10 n-1 + ... + а 2 · 10 2) : . 4, то по теореме о делимости разности (а 1 · 10 + а 0) : . 4. Но выражение а 1 · 10 + а 0 есть запись двузначного числа, образованного последними цифрами записи числа х.

    Теорема12 (признак делимости на 9) Для того чтобы число х делилось на 9, необходимо и достаточно, чтобы сум­ма цифр его десятичной записи делилось на 9.

    Доказательство . Докажем сначала, что числа вида 10 n - 1 делятся на 9. Действительно, 10 n - 1 = (9·10 n-1 + 10 n-1) - 1 = (9·10 n-1 +9·10 n-2 + 10 n-2)-1 = (9·10 n-1 +9·10 n-2 + …+10)-1=9·10 n-1 +9·10 n-2 + …+9. Каждое слагаемое полученной сум­мы делится на 9, значит, и число 10 n - 1 делится на 9.

    Пусть число х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 и (a n +a n-1 +…+a 1 +a 0) : . 9. Докажем, что тогда х: . 9.

    Преобразуем сумму а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 , при­бавив и вычтя из нее выражение a n +a n-1 +…+a 1 +a 0 и записав результат в таком виде:

    х = (а n ·10 - a n)+( а n-1 ·10 n-1 - a n-1)+…+( а 1 · 10 - a 1)+ (а 0 – а 0)+ (a n +a n-1 +…+a 1 +a 0)= n ·(10 n -1)+ a n-1 ·(10 n-1 -1)+…+ a 1 ·(10 -1)+ (a n +a n-1 +…+a 1 +a 0).

    В последней сумме каждое слагаемое делится на 9:

    а n ·(10 n -1) : . 9, так как (10 n -1) : . 9,

    a n-1 ·(10 n-1 -1) : . 9,так как(10 n-1 -1) : . 9 и т.д.

    a 1 ·(10 -1) : . 9, так как (10- 1) : . 9,

    (a n +a n-1 +…+a 1 +a 0) : . 9 по условию.

    Следовательно, х: . 9.

    Докажем обратное, т.е. если х: . 9, то сумма цифр его деся­тичной записи делится на 9.

    Равенство х = а n ·10 + а n-1 ·10 n-1 + ... + а 1 · 10 + а 0 запи­шем в таком виде:

    a n +a n-1 +…+a 1 +a 0 = х - (а n (10 n - 1) + а n-1 ·(10 n-1 -1) +…+ a 1 ·(10 -1).

    Так как в правой части этого равенства и уменьшаемое, и вычитаемое кратны 9, то по теореме о делимости разности (a n +a n-1 +…+a 1 +a 0) : . 9, т.е. сумма цифр десятичной записи числа x делится на 9, что и требовалось доказать.

    Теорема15 (признак делимости на 3): Для того чтобы число х делилось на 3, необходимо и достаточно, чтобы сум­ма цифр его десятичной записи делилась на 3.

    Доказательство этого утверждения аналогично доказа­тельству признака делимости на 9.