Где будем размещать КСЭ? Вероятнее всего на ГСО. На других орбитах надо или приёмники по всей планете ставить, или кучу аккумуляторов с собой возить.

Не будем пока фантазировать, а разберёмся с имеющимися возможностями

РН «Ангара» с космодрома «Плесецк» донесёт до ГСО 3-4 тонны. Что можно в них засунуть? Очень приблизительно квадратов 100 панелей солнечных батарей. С постоянной направленностью на Солнце и КПД процентов 20 можно выжать по 300 Вт с квадрата. Предположим они будут деградировать по 5% в год (надеюсь никого не удивит, что солнечные панели в космосе портятся от радиации, микрометеоритов и пр.).
Давайте считать: (100*300*24*365*20)/2=2 628 000 000 Вт ч.
Чтобы осознать весь масштаб проблемы, пусть эти мегаватты без потерь добираются до Земли. Мощность внушает, но что если мы никуда не летим. В наличии 300 тонн керосина. Керосин почти бензин. Делает ещё одно допущение и берём обычный бензогенератор (200КВт за 50 литров в час).
200000*300000/50=1 200 000 000 Вт ч
Что получается: сливаем бензин с ракеты и уже получаем половину мощности.
Ещё полракеты занимает жидкий кислород. Хотел посчитать охлаждение и сжижение через теплоёмкость, но потом просто попалась цена в интернете 8200 рублей за тонну жидкого кислорода. Поскольку в себестоимости практически одно электричество получим (киловатт пусть будет 2 рубля):
300*8200*1000/2= 1 230 000 000 Вт ч
Опа, вторая половина. Уже КПД 0%. Это мы ещё ракету не считали.

А вот мы изобретём некий закидыватель полезных грузов на орбиту

То есть каким-то образом сообщим панелям кинетическую энергию в виде 10км/с:
3000*10000 2 /2 = 150000000000 Дж = 41 700 000 Вт ч
Вроде бы налицо КПД 5000%, но есть некоторые проблемы:
- достаточно высоко выбросить объект вряд ли получится, поэтому часть массы и энергии необходимо потратить на преодоление атмосферы;
- всё что выброшено с Земли по законам баллистики на Землю и вернётся, то есть ещё часть массы уйдёт на подъём перигея.
Пускай тонна ушла на теплозащиту. Посчитаем изменение орбиты:
ΔV=корень((3,986ּ10 14 /42000000)(1+2*6000000/(6000000+42000000)))=3441 м/с
Лучшие движки дают импульс 4500. Берём формулу Циолковского:
М конечная =2000/exp(4500/3500)=572 кг
А давайте возьмём электроракетные двигатели, импульс же раз в 10 больше и панели у нас есть. Да, но при имеющейся мощности панелей, тяга будет миллиньютоны, и на переход уйдут годы. А у нас до приземления всего пара часов.
В итоге: минус двигатель, баки, перегрузки - хорошо, если получим столько же.

А давайте поднимем панели на лифте

Идея в целом неплохая. Если просто поднять груз на высоту, то считаем изменение потенциальной энергии:
3000*9.81*36000000/3600 = 294 300 000 Вт ч
Как их сообщить грузу? Варианты передачи электричества:
- По самому лифту. Нетрудно представить потери и массу проводника длиной 36000 км. Сам бы лифт построить.
- Лазером – минус существенная часть массы на преобразование.
- Какое-то число панелей доставить традиционным способом и потом бесплатно поднять остальные на верёвочке. На мегаватт мощности надо 3 км 2 панелей. При этом на подъём груза понадобится две недели. Т.е. тот же мегаватт мы поднимем за год.

Прочие сложности

Свободно оперируя километрами панелей и эффективностью приёма солнечной энергии в космосе, редкие авторы рассказывают а как они собираются ориентировать панели на Солнце. ГСО стационарно только относительно Земли. Соответственно нужны механизмы, топливо.
Ещё нужны преобразователи, хранители, приёмники на Земле. Много ли потребителей у экватора? Высоковольтные линии через половину шарика. Если это всё помножить на не 100% вероятность выполнения задачи, спрашивается кому это вообще по силам?

Выводы:

- При существующих технологиях строить космическую солнечную энергостанцию нерентабельно.
- Даже, если поднять всё на космическом лифте, ко времени завершения строительства встанет вопрос как утилизировать выходящие из строя панели.
- Можно подогнать к Земле астероид и наделать панелей из него. Что-то мне подсказывает, что к тому времени как мы это сможем, уже не будет необходимости передавать энергию на Землю.

Однако дыма ведь без огня не бывает. И под кажущимися мирными намерениями могут скрываться совсем другие.
Например, строительство боевой космической станции на порядки проще и гораздо эффективнее:
- орбиту можно и нужно выбрать пониже;
- 100% попадание в приёмник необязательно;
- очень малое время от нажатия на кнопку пуск до поражения цели;
- отсутствие загрязнения местности.

Вот такие выводы. Возможно вычисления содержат ошибки. Традиционно предлагаю читателям их поправить.

Холдинг "Российские космические системы" (РКС, входит в состав "Роскосмоса") завершил создание модернизированной системы электрической защиты для солнечных батарей отечественного производства. Её применение позволит существенно продлить срок работы источников питания космических аппаратов и сделает российские солнечные батареи одними из самых энергоэффективных в мире. О разработке сообщается в пресс-релизе, поступившем в редакцию.

В конструкции новых диодов использовали запатентованные технические решения, которые существенно улучшили их эксплуатационные характеристики и повысили их надёжность. Так, применение специально разработанной многослойной диэлектрической изоляции кристалла позволяет диоду выдерживать обратное напряжение до 1,1 киловольта. Благодаря этому новое поколение защитных диодов может использоваться с самыми эффективными из существующих фотоэлектрическими преобразователями (ФЭП). Ранее, когда диоды были неустойчивыми к высокому обратному напряжению, приходилось выбирать не самые эффективные образцы.

Для повышения надёжности и срока службы диодов в РКС создали новые многослойные коммутирующие шины диодов на основе молибдена, благодаря которым диоды выдерживают более 700 термоударов. Термоудар - типичная ситуация для фотоэлементов в космосе, когда при переходе из освещённой части орбиты в затенённую Землёй температура за несколько минут изменяется более чем на 300 градусов Цельсия. Стандартные компоненты земных солнечных батарей такого не выдерживают, а ресурс космических во многом определяется количеством термоударов, которое они могут пережить.

Срок активного существования солнечной батареи космического аппарата, оснащённой новыми диодами, увеличится до 15,5 года. Ещё 5 лет диод может храниться на Земле. Таким образом, общий гарантийный срок эксплуатации диодов нового поколения составляет 20,5 года. Высокая надёжность устройства подтверждена независимыми ресурсными испытаниями, в ходе которых диоды выдержали более семи тысяч термоциклов. Отработанная групповая технология производства позволяет РКС выпускать более 15 тысяч диодов нового поколения в год. Их поставки планируется начать уже в 2017 году.

Новые фотоэлементы выдержат до 700 перепадов температуры на 300 градусов Цельсия и смогут проработать в космосее более 15 лет

Солнечные батареи для космоса состоят из фотоэлектрических преобразователей (ФЭП) размером 25х50 миллиметров. Площадь солнечных батарей может достигать 100 квадратных метров (для орбитальных станций), поэтому ФЭП в одной системе может быть очень много. ФЭП расположены цепочками. Каждую отдельную цепочку называют "стринг". В космосе отдельные ФЭП периодически поражаются космическими лучами, и если бы на них не было никакой защиты, то из строя могла бы выйти вся солнечная батарея, в которой находится поражённый преобразователь.

Основу системы защиты солнечной батареи составляют диоды - небольшие устройства, устанавливаемые в комплекте с ФЭП. Когда солнечная батарея частично или полностью попадает в тень, ФЭП вместо подачи тока на аккумуляторы начинают его потребление - через ФЭП идёт обратное напряжение. Чтобы этого не происходило, на каждом ФЭП устанавливается шунтирующий диод, а на каждый "стринг" - блокирующий диод. Чем эффективнее ФЭП, чем больше тока он выдаёт, тем больше будет обратное напряжение при попадании солнечной батареи в тень Земли.

Если шунтирующий диод "не тянет" обратное напряжение выше определённой величины, ФЭП придется делать менее эффективными, чтобы как прямой ток зарядки батарей, так и обратный ток нежелательной разрядки были минимальны. Когда со временем под воздействием дестабилизирующих факторов космического пространства отдельные ФЭП или сразу "стринг" выходят из строя, такие элементы просто отсекаются, не затрагивая рабочие ФЭП и другие "стринги". Это позволяет остальным, ещё исправным, преобразователям продолжать работу. Таким образом, именно от качества диодов зависит энергоэффективность и срок активного существования солнечной батареи.

В СССР на солнечных батареях использовались только блокирующие диоды, при неисправности одного ФЭП выключавшие сразу целую цепочку преобразователей. Из-за этого деградация солнечных батарей на советских спутниках была быстрой и работали они не очень долго. Это заставляло чаще делать и запускать аппараты им на замену, что было весьма недёшево. С 1990-х при создании отечественных космических аппаратов стали применять ФЭП иностранного производства, которые закупались в сборе с диодами. Переломить ситуацию удалось лишь в XXI веке.

Солнечные батареи зачастую бывают довольно больших размеров, поэтому сложно подобрать такие объекты недвижимости, на которых их можно было бы разместить. Одна швейцарская компания разработала новый подход и нашла свои пути решения этой проблемы. Компания запускает плавающий остров, покрытый солнечными батареями на озеро Невшатель. Каждый из трех запланированных островов диаметром 25 метров сможет разместить на себе 100 фотоэлектрических панелей, которые будут работать на протяжении следующих 25 лет. Острова так же будут использованы в научно-исследовательских целях.

В последнее время, судоходные компании все чаще и чаще прибегают к использованию интенсивной солнечной энергетики, размещая на борту панели солнечных батарей. Впервые солнечные батареи на корабле были размещены в Шанхае в 2010 году. Корабль был оснащен огромной солнечной батареей, сделанной в виде паруса. По такому же принципу сделана яхта Turanor PlanetSolar, которая совсем недавно завершила кругосветное плавание, используя солнечную энергетику.

Солнечные батареи в небе

2013 года стал рекордным годом по использованию солнечных батарей в качестве источника энергии для самолетов. Компания Solar Impulse разработала самолет, совершивший самый продолжительный полет с использованием солнечной энергии. Самолет пролетел через всю Америку этим летом.

Разумеется, летать на солнечной энергии, пока что могут только небольшие, беспилотные самолеты. Солнечные батареи значительно облегчают конструкцию дронов, и увеличивают время их возможного пребывания в воздухе.

Одним из примеров использования солнечных батарей в воздухе является подъемник, размещенный высоко в горах, который способен подымать людей на вершину горы с помощью солнечной энергии.

Солнечные батареи в космосе

Исследователи Университета Карнеги-Меллона создали прототип разведочного ровера, который в будущем, планируется отправить на Луну, на ракете SpaceX. Устройство, называемое Polaris, полностью работает на солнечной энергии. Polaris будет использован для изучения полярных лунных широт. Ровер оснащен специальным программным обеспечением, которое поможет ему работать в более темных областях спутника.

Вы так же наверняка слышали о большом количестве космического мусора на орбите. Было бы неплохо восстановить эти спутники и вернуть их на землю для ремонта и дальнейшего возвращения на орбиту. Эта идея легла в основу новой концепции Solara, устройства работающего на солнечных батареях и не требующего постоянного ремонта. Атмосферный спутник разработан компанией Titan Aerospace. Solara способен работать в высочайших слоях атмосферы на протяжении пяти лет подряд.

Последней и самой амбициозной надеждой является проект японской фирмы, которая планирует построить массив солнечных батарей вокруг экватора Луны, а затем запустить луч энергии обратно на Землю. На создание «Кольца Луны » уйдет около 30 лет. По предположениям специалистов компании лунное кольцо будет генерировать до 13000 ТВт (тераватт) постоянной энергии.

Солнечная батарея на МКС

Солнечная батарея - несколько объединённых фотоэлектрических преобразователей (фотоэлементов) - полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος , Helios - ). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

История

Первые прототипы солнечных батарей были созданы итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном.

25 апреля 1954 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании - Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 году, в США был запущен первый с солнечными батареями - Vanguard 1. Спустя всего пару месяцев, 15 мая 1958 года в СССР был запущен Спутник-3, также с использованием солнечных батарей.

Использование в космосе

Солнечные батареи - один из основных способов получения электрической энергии на : они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и .

Однако при полётах на большом удалении от Солнца (за орбитой ) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к и , напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу (AM0), составляет около 1366 ватт на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может быть менее 100 Вт/м². С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9-24 %. При этом цена батареи составит около 1-3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях.

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд.

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26-30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния.

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4х4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %, а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали фотоэлемент, использующий линзы Френеля с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 %. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46%.

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца.

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200-300 нм) светом (т. е. электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85%.

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях
Тип Коэффициент фотоэлектрического преобразования, %
Кремниевые
Si (кристаллический) 24,7
Si (поликристаллический) 20,3
Si (тонкопленочная передача) 16,6
Si (тонкопленочный субмодуль) 10,4
III-V
GaAs (кристаллический) 25,1
GaAs (тонкопленочный) 24,5
GaAs (поликристаллический) 18,2
InP (кристаллический) 21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент) 19,9
CIGS (субмодуль) 16,6
CdTe (фотоэлемент) 16,5
Аморфный/Нанокристаллический кремний
Si (аморфный) 9,5
Si (нанокристаллический) 10,1
Фотохимические
На базе органических красителей 10,4
На базе органических красителей (субмодуль) 7,9
Органические
Органический полимер 5,15
Многослойные
GaInP/GaAs/Ge 32,0
GaInP/GaAs 30,3
GaAs/CIS (тонкопленочный) 25,8
a-Si/mc-Si (тонкий субмодуль) 11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Производство

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определенное количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована.