Альдегидами называют органические вещества, относящиеся к карбонильным соединениям, содержащим функциональную группу -СОН, которая именуется карбонильной группой.

В зависимости от характера углеводородного скелета молекулы альдегиды бывают предельными, непредельными и ароматическими. Их молекулы могут также включать атомы галогенов или дополнительные функциональные группы. Общая формула насыщенных альдегидов имеет вид C n H 2 n O. В соответствии с номенклатурой ИЮПАК названия их оканчиваются суффиксом -аль.

Окисление альдегидов имеет важное значение в промышленности, поскольку они довольно легко превращаются в карбоновые кислоты. Окислителями в этом случае могут послужить гидроксид меди, оксид серебра или даже кислород воздуха.

Строение карбонильной группы

Электронное строение двойной связи в группе С=О характеризуется образованием одной σ-связи и еще одной π-связи. Атом С находится в состоянии sp 2 -гибридизации, молекула плоского строения с валентными углами между связями около 120 0 . Отличие двойной связи в этой функциональной группе заключено в том, что она расположена между атомом углерода и весьма электроотрицательным атомом кислорода. В результате электроны притянуты к атому О, а значит, эта связь очень сильно поляризована.

Содержание в альдегидной группе такой поляризованной двойной связи можно назвать главной причиной высокой реакционноспособности альдегидов. Для альдегидов наиболее характерны реакции присоединения атомов или их групп по С=О связи. И легче всего протекают реакции нуклеофильного присоединения. Также для альдегидов типичны реакции с участием атомов Н из функциональной группы альдегидов. Из-за электроноакцепторного влияния группы С=О происходит повышение полярности связи. Это в свою очередь является причиной относительно легкого окисления альдегидов.

Отдельные представители альдегидов

Формальдегид (муравьиный альдегид или метаналь) СН 2 О является газообразным веществом с весьма острым запахом, который получают обычно пропусканием смеси паров метанола с воздухом через раскаленную сетку из медной или серебряной сетки. Его 40%-й водный раствор называется формалином. Формальдегид легко вступает в реакции, многие из которых лежат в основе промышленного синтеза целого ряда важных веществ. Его используют и для получения пентаэритрита, многих лекарственных веществ, различных красителей, для дубления кожи, в качестве дезинфицирующего и дезодорирующего средства. Формальдегид довольно токсичен, его ПДК в воздухе составляет 0,001 мг/л.

Ацетальдегид (уксусный альдегид, этаналь) СН 3 СОН является бесцветной жидкостью с удушающим запахом, который при разбавлении его водой приобретает фруктовый аромат. Ацетальдегид обладает всеми основными свойствами альдегидов. Окислением уксусного альдегида производят огромные объемы уксусной кислоты и уксусного ангидрида, разнообразных фармацевтических препаратов.

Акролеин (пропеналь) CH 2 =CH-СОН, простейший ненасыщенный альдегид является бесцветной легколетучей жидкостью. Его пары сильно раздражают слизистые глаз и верхних дыхательных путей. Очень ядовит, ПДК его содержания в воздухе составляет 0,7 мг/м 3 . Пропеналь - промежуточный продукт синтеза некоторых полимеров, необходим в производстве отдельных лекарственных препаратов.

Бензальдегид (бензойный альдегид) С 6 Н 5 СОН является бесцветной желтеющей при хранении жидкостью с ароматом Он довольно быстро окисляется воздухом до бензойной кислоты. Содержится в эфирных маслах растений (нероли, пачулей), а в виде глюкозида - в ядрах косточек горького миндаля, вишни, абрикоса и персика. Как душистое вещество его применяют в парфюмерии, в виде компонента пищевых эссенций, как сырье для синтеза других душистых веществ (коричного альдегида, жасминальдегида).

Реакция серебряного зеркала

Окисление альдегидов оксидом серебра является самой показательной качественной реакцией на соответствующую форму функциональной группы. Свое название эта реакция получила благодаря тонкому серебряному налету на стенках пробирки, образующемуся в ходе этой реакции.

Суть ее заключается во взаимодействии альдегида R-СОН с аммиачным раствором оксида серебра(I), который представляет собой растворимое комплексное соединение OH и носит название реактив Толленса. Реакцию осуществляют при температурах, близких к температуре кипения воды (80-100 °С). При этом происходит окисление альдегидов до соответствующих им карбоновых кислот, а окислитель восстанавливается до металлического серебра, выпадающего в осадок.

Приготовление реактивов

Для качественного определения группы -СОН в альдегидах сначала готовят комплексное соединение серебра. Для этого в пробирку наливают немного раствора аммиака (гидроксида аммония) в воде и следом небольшое количество нитрата серебра. При этом образующийся осадок оксида серебра тут же исчезает:

2AgNO 3 + 2NH 3 + Н 2 О -> Ag 2 O↓ + 2NH 4 NO 3

Ag 2 O + 4NΗ 3 + Η 2 О -> 2ОΗ

Более надежные результаты дает реактив Толленса, приготовленный с добавлением щелочи. Для этого 1 г AgNO 3 растворяют в 10 г дистиллированной воды и добавляют равный объем концентрированного гидроксида натрия. В результате выпадает осадок Ag 2 O, который исчезает при добавлении концентрированного раствора гидроксида аммония. Использовать для проведения реакции нужно только свежеприготовленный реактив.

Механизм реакции

Реакции серебряного зеркала соответствует уравнение:

2OΗ + НСОΗ -> 2Ag↓ + ΗCOONΗ 4 + 3NΗ 3 + Н 2 О

Стоит отметить, что для альдегидов такое взаимодействие изучено недостаточно. Механизм данной реакции неизвестен, но предполагается радикальный или же ионный вариант окисления. По гидроксиду диамминсеребра вероятнее всего реализуется присоединение с образованием серебряной соли диола, от которого затем отщепляется серебро с образованием карбоновой кислоты.

Для успешного проведения опыта чрезвычайно важна чистота используемой посуды. Связано это с тем, что образующиеся в ходе опыта коллоидные частицы серебра должны прицепиться к поверхности стекла, создав зеркальную поверхность. В присутствии малейших загрязнений оно будет выпадать в виде серого хлопьевидного осадка.

Для очистки емкости следует использовать растворы щелочей. Так, для этих целей можно взять раствор NaOH, который нужно смыть большим объемом дистиллированной водой. На поверхности стекла не должно присутствовать жировых следов и механических частиц.

Окисление гидроксидом меди

Реакция окисления альдегидов гидроксидом меди (II) также довольно эффектна и эффективна в определении типа функциональной группы. Протекает она при температуре соответствующей кипячению реакционной смеси. При этом альдегиды восстанавливают двухвалентную медь в составе реактива Фелинга (свежеприготовленный аммиачный раствор Cu(OH) 2) до одновалентной. Сами же они окисляются по причине внедрения атома кислорода по связи С-Η (степень окисления С изменяется с +1 на +3).

Визуально за ходом реакции можно проследить по изменению окраски смеси растворов. Голубоватый осадок гидроксида меди постепенно превращается желтый, соответствующий гидроксиду меди одновалентной и дальнейшее появление яркого красного осадка Cu 2 O.

Этому процессу соответствует уравнение реакции:

R-СОН + Cu 2+ + NaOH + Н 2 О -> R-COONa + Cu 2 O + 4Н +

Действие реактивом Джонса

Стоит отметить, что на альдегиды такой реактив действует наилучшим образом. В этом случае окисление не требует нагревания и проводится при температуре 0-20 °С в течение довольно короткого отрезка времени, а выход продуктов составляет больше 80%. Главным недостатком реагента Джонса состоит в отсутствии высокой избирательности в отношении других функциональных групп, да к тому же кислая среда порой приводит к изомеризации или деструкции.

Реагент Джонса представляет собой раствор оксида хрома (VI) в разбавленной и ацетоне. Его также можно получить из дихромата натрия. При окислении альдегидов образуются под действием этого реактива карбоновые кислоты.

Промышленное окисление кислородом

Окисление ацетальдегида в промышленности осуществляют воздействием кислорода в присутствии катализаторов - ионов кобальта или марганца. Сначала образуется надуксусная кислота:

СН 3 -СОН + О 2 -> СН 3 -СОООН

Она в свою очередь взаимодействует со второй молекулой уксусного альдегида и через перекисное соединение дает две молекулы уксусной кислоты:

СН 3 -СОООН + СН 3 -СОН -> 2СН 3 -СООН

Окисление ведется при температуре 60-70 °С и давлении 2·10 5 Па.

Взаимодействие с раствором йода

Для окисления альдегидных групп иногда применяется раствор йода в присутствии щелочи. Особое значение этот реактив имеет в процессе окисления углеводов, поскольку действует очень избирательно. Так под его влиянием D-глюкоза превращается в D-глюконовую кислоту.

Йод в присутствии щелочей образует гипойодид (весьма сильный окислитель): I 2 + 2NaOΗ -> NaIO + NaI + Н 2 О.

Под действием гипойодида формальдегид превращается в метановую кислоту: ΗСОΗ + NaIO + NaOΗ -> ΗCOONa + NaI + Н 2 О.

Окисление альдегидов йодом используют в аналитической химии для определения количественного их содержания в растворах.

Окисление диоксидом селена

В отличие от предыдущих реактивов, под действием диоксида селена альдегиды превращаются в дикарбонильные соединения, а из формальдегида образуется глиоксаль. Если рядом с карбонилом расположены метиленовые или метильные группы, то они могут превращаться в карбонильные. Как растворитель для SeO2 обычно используют диоксан, этанол или ксилол.

По одной из методик реакцию проводят в трехгорлой колбе, соединенной с мешалкой, термометром и обратным холодильником. К исходному веществу, взятому в количестве 0,25 моль, каплями прибавляют раствор 0,25 моль диоксида селена в 180 мл диоксана, а также 12 мл Н 2 О. Температура не должна превышать 20 °C (при необходимости колбу охлаждают). После этого при постоянном перемешивании раствор кипятят в течении 6 часов. Далее горячий раствор фильтруют для отделения селена и промывают осадок диоксаном. После вакуумной отгонки растворителя остаток фракционируют. Основную фракцию отбирают в широком температурном интервале (20-30 °C) и повторно ректифицируют.

Аутоокисление альдегидов

Под действием кислорода воздуха при комнатной температуре окисление альдегидов происходит очень медленно. Главными продуктами этих реакций являются соответствующие карбоновые кислоты. Механизм аутоокисления родственен промышленному окислению этаналя до уксусной кислоты. Одним из промежуточных продуктов является надкислота, которая взаимодействует с еще одной молекулой альдегида.

Благодаря тому, что этот тип реакций ускоряется под действием света, перекисей, и следов тяжелых металлов, можно сделать вывод о ее радикальном механизме. Формальдегид в водных растворах значительно хуже своих собратьев окисляется воздухом, из-за того, что существует в них в виде гидратированного метиленгликоля.

Окисление альдегидов перманганатом калия

Наиболее успешно эта реакция происходит в Визуально оценить ее прохождение можно по потере интенсивности и полному обесцвечиванию розовой окраски раствора марганцовки. Реакция проходит при комнатной температуре и нормальном давлении, поэтому она не требует особых условий. Достаточно в пробирку налить 2 мл формальдегида и 1 мл подкисленного серной кислотой Пробирку с раствором нужно осторожно встряхнуть для перемешивания реагентов:

5СН 3 -СОН + 2KMnO 4 + 3H 2 SO 4 = 5СН 3 -СООН + 2MnSO 4 + K 2 SO 4 + 3Н 2 О

Если ту же реакцию вести при повышенных температурах, то метаналь легко окисляется до углекислого газа:

5СН 3 -СОН + 4KMnO 4 + 6H 2 SO 4 = 5СО 2 + 4MnSO 4 + 2K 2 SO 4 + 11Н 2 О

(для простейшего альдегида R=H)

Классификация альдегидов

По строению углеводородного радикала:

Предельные; например:



Непредельные; например:

Ароматические; например:



Алициклические; например:


Общая формула предельных альдегидов

Гомологический ряд, изомерия, номенклатура

Альдегиды изомерны другому классу соединений - кетонам


например:




Альдегиды и кетоны содержат карбонильную группу ˃C=O, поэтому называются карбонильными соединениями.

Электронное строение молекул альдегидов

Атом углерода альдегидной группы находится в состоянии sp 2 -гибридизации, поэтому все σ-связи в этой группе располагаются в одной плоскости. Облака р-электронов, образующих π-связь, перпендикулярны этой плоскости и легко смещаются к более электроотрицательному атому кислорода. Поэтому двойная связь C=O (в отличие от двойной связи C=C в алкенах) сильно поляризована.

Физические свойства


Химические свойства

Альдегиды - реакционноспособные соединения, вступающие в многочисленные реакции. Наиболее характерны для альдегидов:


а) реакции присоединения по карбонильной группе; реагенты типа НХ присоединяются следующим образом:



б) реакции окисления связи C-H альдегидной группы, в результате которых образуются карбоновые кислоты:

I. Реакции присоединения

1. Гидрирование (образуются первичные спирты



2. Присоединение спиртов (образуются полуацетали и ацетали)



В избытке спирта в присутствии HCl полуацетали превращаются в ацетали:



II. Реакции окисления

1. Реакция «серебряного зеркала»



Упрощённо:



Эта реакция является качественной реакцией на альдегидную группу (на стенках реакционного сосуда образуется зеркальный налет металлического серебра).


2. Реакция с гидроксидом меди (II)



Эта реакция также является качественной реакцией на альдегидную групп у (выпадает красный осадок Сu 2 O).


Формальдегид окисляется различными O-содержащими окислителями сначала до муравьиной кислоты и далее - до Н 2 СO 3 (СO 2 + Н 2 O):



III. Реакции ди-, три- и полимеризации

1. Альдольная конденсация



2. Тримеризация ацетальдегида



3. Полимеризация формальдегида

При длительном хранении формалина (40%-ный водный раствор формальдегида) в нем происходит полимеризация с образованием белого осадка параформа:



IV. Реакция поликонденсации формальдегида с фенолом


Альдегиды
– органические вещества, молекулы которых содержат карбонильную группу С=O , соединенную с атомом водорода и углеводородным радикалом.
Общая формула альдегидов имеет вид:

В простейшем альдегиде – формальдегиде роль углеводородного радикала играет другой атом водорода:

Карбонильную группу, связанную с атомом водорода, часто называют альдегидной:

Кетоны – органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами. Очевидно, общая формула кетонов имеет вид:

Карбонильную группу кетонов называют кетогруппой .
В простейшем кетоне – ацетоне – карбонильная группа связана с двумя метильными радикалами:

Номенклатура и изомерия альдегидов и кетонов

В зависимости от строения углеводородного радикала, связного с альдегидной группой, различают предельные, непредельные, ароматические, гетероциклические и другие альдегиды:

В соответствии с номенклатурой ИЮПАК названия предельных альдегидов образуются от названия алкана с тем же числом атомов углерода в молекуле с помощью суффикса -аль. Например:

Нумерацию атомов углерода главной цепи начинают с атома углерода альдегидной группы. Поэтому альдегидная группа всегда располагается при первом атоме углерода, и указывать ее положение нет необходимости.

Наряду с систематической номенклатурой используют и тривиальные названия широко применяемых альдегидов. Эти названия, как правило, образованы от названий карбоновых кислот, соответствующих альдегидам.

Для названия кетонов по систематической номенклатуре кетогруппу обозначают суффиксом -он и цифрой, которая указывает номер атома углерода карбонильной группы (нумерацию следует начинать от ближайшего к кетогруппе конца цепи). Например:

Для альдегидов характерен только один вид структурной изомерии - изомерия углеродного скелета, которая возможна с бутаналя, а для кетонов также и изомерия положения карбонильной группы. Кроме этого, для них характерна и межклассовая изомерия (пропаналь и пропанон).

Физические свойства альдегидов

В молекуле альдегида или кетона вследствие большей электороотрицательности атома кислорода по сравнению с углеродным атомом связь С=O сильно поляризована за счет смещения электронной плотности π -связи к кислороду:

Альдегиды и кетоны - полярные вещества с избыточной электронной плотностью на атоме кислорода. Низшие члены ряда альдегидов и кетонов (формальдегид, уксусный альдегид, ацетон) растворимы в воде неограниченно. Их температуры кипения ниже, чем у соответствующих спиртов. Это связано с тем, что в молекулах альдегидов и кетонов в отличие от спиртов нет подвижных атомов водорода и они не образуют ассоциатов за счет водородных связей. Низшие альдегиды имеют резкий запах; у альдегидов, содержащих от четырех до шести атомов углерода в цепи, неприятный запах; высшие альдегиды и кетоны обладают цветочными запахами и применяются в парфюмерии.

Химические свойства альдегидов и кетонов

Наличие альдегидной группы в молекуле определяет характерные свойства альдегидов.

1. Реакции восстановления .

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе. Продуктом гидрирования альдегидов являются первичные спирты, кетонов - вторичные спирты. Так, при гидрировании уксусного альдегида на никелевом катализаторе образуется этиловый спирт, при гидрировании ацетона - пропанол-2.

Гидрирование альдегидов - реакция восстановления, при которой понижается степень окисления атома углерода, входящего в карбонильную группу.

2. Реакции окисления . Альдегиды способны не только восстанавливаться, но и окисляться . При окислении альдегиды образуют карбоновые кислоты.

Окисление кислородом воздуха . Например, из пропионового альдегида (пропаналя) образуется пропионовая кислота:

Окисление слабыми окислителями (аммиачный раствор оксида серебра).

Если поверхность сосуда, в котором проводится реакция, была предварительно обезжирена, то образующееся в ходе реакции серебро покрывает ее тонкой ровной пленкой. Получается замечательное серебряное зеркало. Поэтому эту реакцию называют реакцией «серебряного зеркала». Ее широко используют для изготовления зеркал, серебрения украшений и елочных игрушек.

3. Реакция полимеризации:

n СH 2 =O → (-CH 2 -O-) n параформ n=8-12

Получение альдегидов и кетонов

Применение альдегидов и кетонов

Формальдегид (метаналь, муравьиный альдегид) H 2 C=O:
а) для получение фенолформальдегидных смол;
б) получение мочевино-формальдегидных (карбамидных) смол;
в) полиоксиметиленовые полимеры;
г) синтез лекарственных средств (уротропин);
д) дезинфицирующее средство;
е) консервант биологических препаратов (благодаря способности свертывать белок).

Уксусный альдегид (этаналь, ацетальдегид) СН 3 СН=О:
а) производство уксусной кислоты;
б) органический синтез.

Ацетон СН 3 -СО-СН 3:
а) растворитель лаков, красок, ацетатов целлюлозы;
б) сырье для синтеза различных органических веществ.


Лекция № 11

АЛЬДЕГИДЫ И КЕТОНЫ

План

1. Методы получения.

2. Химические свойства.

2.1. Реакции нуклеофильного
присоединения.

2.2. Реакции по a -углеродному атому.

2.3.


Лекция № 11

АЛЬДЕГИДЫ И КЕТОНЫ

План

1. Методы получения.

2. Химические свойства.

2.1. Реакции нуклеофильного
присоединения.

2.2. Реакции по a -углеродному атому.

2.3. Реакции окисления и восстановления.

Альдегиды и кетоны содержат карбонильную группу
С=О. Общая формула:

1. Методы получения.

2. Химические
свойства.

Альдегиды и кетоны – один из наиболее реакционноспособных классов
органических соединений. Их химические свойства определяются присутствием
карбонильной группы. Вследствие большого различия в электроотрицательностях
углерода и кислорода и высокой поляризуемости p -связи связь С=О обладает значительной полярностью
(
m С=О =2,5-2,8 D). Атом углерода карбонильной
группы несет эффективный положительный заряд и является объектом для атаки
нуклеофилов. Основной тип реакций альдегидов и кетонов – реакции
нуклеофильного присоединения Ad
N . Кроме того, карбонильная группа оказывает влияние на
реакционную способность связи С-Н в
a -положении, повышая ее кислотность.

Таким образом, молекулы альдегидов и кетонов
содержат два основных реакционных центра – связь С=О и связь С-Н в a -положении:

2.1. Реакции нуклеофильного
присоединения.

Альдегиды и кетоны легко присоединяют нуклеофильные реагенты по С=О связи.
Процесс начинается с атаки нуклеофила по карбонильному атому углерода. Затем
образующийся на первой стадии тетраэдрический интермедиат присоединяет протон и
дает продукт присоединения:

Активность карбонильных соединений в
Ad N –реакциях зависит от величины
эффективного положительного заряда на карбонильном атоме углерода и объема
заместителей у карбонильной группы. Электронодонорные и объемистые заместители
затрудняют реакцию, электроноакцепторные заместители повышают реакционную
способность карбонильного соединения. Поэтому альдегиды в
Ad
N –реакциях активнее, чем
кетоны.

Активность карбонильных соединений повышается в
присутствии кислотных катализаторов, которые увеличивают положительный заряд на
карбонильном атоме углерода:

Альдегиды и кетоны присоединяют воду, спирты,
тиолы, синильную кислоту, гидросульфит натрия, соединения типа
NH 2 X. Все реакции присоединения
идут быстро, в мягких условиях, однако образующиеся продукты, как правило,
термодинамически не устойчивы. Поэтому реакции протекают обратимо, и содержание
продуктов присоединения в равновесной смеси может быть низким.

Присоединение воды.

Альдегиды и кетоны присоединяют воду с
образованием гидратов. Реакция протекает обратимо. Образующиеся гидраты
термодинамически не стабильны. Равновесие смещено в сторону продуктов
присоединения только в случае активных карбонильных соединений.

Продукт гидратации трихлоруксусного альдегида
хлоральгидрат – устойчивое кристаллическое соединение, которое используется в
медицине как успокаивающее и снотворное средство.

Присоединение спиртов и
тиолов.

Альдегиды присоединяют спирты с образованием полуацеталей . При избытке спирта и в присутствии кислотного катализатора
реакция идет дальше – до образования ацеталей

Реакция образования полуацеталя протекает как
нуклеофильное присоединение и ускоряется в присутствии кислот или
оснований.

Процесс образования ацеталя идет как
нуклеофильное замещение ОН группы в полуацетале и возможен только в условиях
кислотного катализа, когда группа ОН превращается в хорошую уходящую группу
(H 2 O).

Образование ацеталей – обратимый процесс. В
кислой среде полуацетали и ацетали легко гидролизуются. В щелочной среде
гидролиз не идет. Реакции образования и гидролиза ацеталей играют важную роль в
химии углеводов.

Кетоны в аналогичных условиях кеталей не
дают.

Тиолы как более сильные нуклеофилы, чем спирты,
образуют продукты присоединения и с альдегидами, и с кетонами.

Присоединение синильной
кислоты

Синильная кислота присоединяется к карбонильным соединением в условиях
основного катализа с образованием циангидринов.

Реакция имеет препаративное значение и
используется в синтезе a -гидрокси- и a -аминокислот (см. лек. № 14). Плоды некоторых растений
(например, горький миндаль) содержат циангидрины. Выделяющаяся при их
расщеплении синильная кислота оказывает отравляющее действие
.

Присоединение бисульфита
натрия.

Альдегиды и метилкетоны присоединяют бисульфит натрия NaHSO 3 c образованием бисульфитных производных.

Бисульфитные производные карбонильных соединений
– кристаллические вещества, не растворимые в избытке раствора бисульфита натрия.
Реакция используется выделения карбонильных соединений из смесей. Карбонильное
соединение может быть легко регенерировано обработкой бисульфитного производного
кислотой или щелочью.

Взаимодействие с соединениями общей
формулы NH
2 X.

Реакции протекают по общей схеме как процесс
присоединения-отщепления. Образующийся на первой стадии продукт присоединения не
устойчив и легко отщепляет воду.

По приведенной схеме с карбонильными
соединениями реагируют аммиак, первичные амины, гидразин, замещенные гидразины,
гидроксиламин.

Образующиеся производные представляют собой
кристаллические вещества, которые используют для выделения и идентификации
карбонильных соединений.

Имины (основания Шиффа) являются промежуточными
продуктами во многих ферментативных процессах (трансаминирование под действием
кофермента пиридоксальфосфата; восстановительное аминирование кетокислот при
участии кофермента НАД Н). При каталитическом гидрировании иминов образуются
амины. Процесс используется для синтеза аминов из альдегидов и кетонов и
называется восстановительным аминированием.

Восстановительное аминирование протекает in vivo
в ходе синтеза аминокислот (см. лек. № 16)

2.2. Реакции по a -углеродному атому.

Кето-енольная таутомерия.

Водород в a -положении к карбонильной группе обладает кислотными
свойствами, так как образующийся при его отщеплении анион стабилизируется за
счет резонанса.

Результатом протонной подвижности атома водорода
в a -положении
является способность карбонильных соединений к образованию енольных форм за счет
миграции протона из
a -положения к атому кислорода карбонильной группы.

Кетон и енол являются таутомерами .
Таутомеры – это изомеры, способные быстро и обратимо превращаться друг в друга
за счет миграции какой-либо группы (в данном случае – протона). Равновесие между
кетоном и енолом называют кето-енольной таутомерией.

Процесс енолизации катализируется кислотами и
основаниями. Енолизация под действием основания может быть представлена
следующей схемой:

Большинство карбонильных соединений существуют
преимущественно в кетонной форме. Содержание енольной формы возрастает с
увеличением кислотности карбонильного соединения, а также в случае
дополнительной стабилизации енольной формы за счет водородной связи или за счет
сопряжения.

Таблица 8. Содержание енольных форм и
кислотность карбонильных соединений

Например, в 1,3-дикарбонильных соединениях
подвижность протонов метиленовой группы резко увеличивается за счет
электроноакцепторного влияния двух карбонильных групп. Кроме того, енольная
форма стабилизируется за счет наличия в ней системы сопряженных p -связей и внутримолекулярной
водородной связи.

Если соединение в енольной форме представляет
собой сопряженную систему с высокой энергией стабилизации, то енольная форма
преобладает. Например, фенол существует только в енольной форме.

Енолизация и образование енолят-анионов являются
первыми стадиями реакций карбонильных соединений, протекающих по a -углеродному атому. Важнейшими
из них являются галогенирование и альдольно-кротоновая
конденсация
.

Галогенирование.

Альдегиды и кетоны легко вступают в реакцию с галогенами (Cl 2 ,
Br 2 , I 2 ) с образованием
исключительно
a -галогенпроизводных.

Реакция катализируется кислотами или
основаниями. Скорость реакции не зависит от концентрации и природы галогена.
Процесс протекает через образование енольной формы (медленная стадия), которая
затем реагирует с галогеном (быстрая стадия). Таким образом, галоген не
участвует в скорость —определяющей стадии
процесса.

Если карбонильное соединение содержит несколько a -водородных
атомов, то замещение каждого последующего происходит быстрее, чем предыдущего,
вследствие увеличения их кислотности под действием электроноакцепторного влияния
галогена. В щелочной среде ацетальдегид и метилкетоны дают
тригалогенпроизводные, которые затем расщеплятся под действием избытка щелочи с
образованием тригалогенметанов (галоформная реакция)
.

Расщепление трииодацетона протекает как реакция
нуклеофильного замещения. группы CI 3 — гидроксид-анионом, подобно S N -реакциям в карбоксильной группе (см. лек. №12).

Иодоформ выпадает из реакционной смеси в виде
бледно-желтого кристаллического осадка с характерным запахом. Иодоформную
реакцию используют в аналитических целях для обнаружения соединений типа
СH 3 -CO-R, в том числе в
клинических лабораториях для диагностики сахарного диабета.

Реакции конденсации.

В присутствии каталитических количеств кислот
или щелочей карбонильные соединения, содержащие a -водородные атомы,
претерпевают конденсацию с образованием
b -гидроксикарбонильных соединений.

В образовании связи С-С участвуют карбонильный
атом углерода одной молекулы (карбонильной компоненты ) и a -углеродный атом другой
молекулы (метиленовой компоненты ). Эта реакция носит название альдольной конденсации (по названию продукта конденсации ацетальдегида –
альдоля).

При нагревании реакционной смеси продукт легко
дегидратируется с образованием a ,b -непредельного карбонильного
соединения.

Такой тип конденсации носит название кротоновой (по названию продукта конденсации ацетальдегида – кротонового
альдегида).

Рассмотрим механизм альдольной конденсации в
щелочной среде. На первой стадии гидроксид-анион отрывает протон из a -положения карбонильного
соединения с образованием енолят-аниона. Затем енолят анион как нуклеофил
атакует карбонильный атом углерода другой молекулы карбонильного соединения.
Образующийся тетраэдрический интермедиат (алкоксид-анион) является сильным
основанием и отрывает далее протон от молекулы воды.

При альдольной конденсации двух различных
карбонильных соединений (перекрестная альдольная конденсация) возможно
образование 4-х разных продуктов. Однако этого можно избежать, если одно из
карбонильных соединений не содержит a -водородных атомов (например, ароматические альдегиды
или формальдегид) и не может выступать в качестве метиленовой компоненты.

В качестве метиленовой компоненты в реакциях
конденсации могут выступать не только карбонильные соединения, но и другие
С-Н-кислоты. Реакции конденсации имеют препаративное значение, так как позволяют
наращивать цепь углеродных атомов. По типу альдольной конденсации и
ретроальдольного распада (обратный процесс) протекают многие биохимические
процессы: гликолиз, синтез лимонной кислоты в цикле Кребса, синтез нейраминовой
кислоты.

2.3. Реакции окисления и
восстановления

Восстановление

Карбонильные соединения восстанавливаются до
спиртов в результате каталитического гидрирования или под действием
восстановителей, которые являются донорами гидрид-анионов.

[H]: H 2 /кат., кат. – Ni, Pt,
Pd;

LiAlH 4 ; NaBH 4 .

Восстановление карбонильных соединений
комплексными гидридами металлов включает нуклеофильную атаку карбонильной группы
гидрид-анионом. При последующем гидролизе образуется спирт.

Аналогично происходит восстановление
карбонильной группы in vivo под действием кофермента НАД Н, который является
донором гидрид-иона (см. лек. №19).

Окисление

Альдегиды окисляются очень легко практически
любыми окислителями, даже такими слабыми, как кислород воздуха и соединения
серебра (I) и меди (II).

Две последние реакции используются как
качественные на альдегидную группу.

В присутствии щелочей альдегиды, не содержащие a -водородных атомов
диспропорционируют с образованием спирта и кислоты (реакция Канницаро).

2HCHO + NaOH ® HCOONa + CH 3 OH

Это является причиной того, что водный раствор
формальдегида (формалин) при длительном хранении приобретает кислую
реакцию.

Кетоны устойчивы к действию окислителей в
нейтральной среде. В кислой и щелочной средах под действием сильных
окислителей (KMnO 4 ) они
окисляются с разрывом связи С-С. Расщепление углеродного скелета происходит по
двойной углерод-углеродной связи енольных форм карбонильного соединения, подобно
окислению двойных связей в алкенах. При этом образуется смесь продуктов,
содержащая карбоновые кислоты или карбоновые кислоты и кетоны.