Свободная поверхность жидкости, находящейся в равновесии в поле тяжести, - плоская. Если под влиянием какого-либо внешнего воздействия поверхность жидкости в каком-нибудь месте выводится из ее равновесного положения, то в жидкости возникает движение. Это движение будет распространяться вдоль всей поверхности жидкости в виде волн, называемых гравитационными, поскольку они обусловливаются действием поля тяжести. Гравитационные волны происходят в основном на поверхности жидкости, захватывая внутренние ее слои тем меньше, чем глубже эти слои расположены.

Мы будем рассматривать здесь такие гравитационные волны, в которых скорость движущихся частиц жидкости настолько мала, что в уравнении Эйлера можно пренебречь членом по сравнению с Легко выяснить, что означает это условие физически. В течение промежутка времени порядка периода колебаний, совершаемых частицами жидкости в волне, эти частицы проходят расстояние порядка амплитуды а волны, поэтому скорость их движения - порядка Скорость v заметно меняется на протяжении интервалов времени порядка и на протяжении расстояний порядка вдоль направления распространения волны ( - длина волны). Поэтому производная от скорости по времени - порядка а по координатам - порядка Таким образом, условие эквивалентно требованию

т. е. амплитуда колебаний в волне должна быть мала по сравнению с длиной волны. В § 9 мы видели, что если в уравнении движения можно пренебречь членом то движение жидкости потенциально. Предполагая жидкость несжимаемой, мы можем воспользоваться поэтому уравнениями (10,6) и (10,7). В уравнении (10,7) мы можем теперь пренебречь членом содержащим квадрат скорости; положив и введя в поле тяжести член получим:

(12,2)

Ось выбираем, как обычно, вертикально вверх, а в качестве плоскости х, у выбираем равновесную плоскую поверхность жидкости.

Будем обозначать - координату точек поверхности жидкости посредством ; является функцией координат х, у и времени t. В равновесии так что есть вертикальное смещение жидкой поверхности при ее колебаниях.

Пусть на поверхность жидкости действует постоянное давление Тогда имеем на поверхности согласно (12,2)

Постоянную можно устранить переопределением потенциала (прибавлением к нему независящей от координат величины Тогда условие на поверхности жидкости примет вид

Малость амплитуды колебаний в волне означает, что смещение мало. Поэтому можно считать, в том же приближении, что вертикальная компонента скорости движения точек поверхности совпадает с производной по времени от смещения Но так что имеем:

В силу малости колебаний можно в этом условии взять значения производных при вместо Таким образом, получаем окончательно следующую систему уравнений, определяющих движение в гравитационной волне:

Будем рассматривать волны на поверхности жидкости, считая эту поверхность неограниченной. Будем также считать, что длина волны мала по сравнению с глубиной жидкости; тогда можно рассматривать жидкость как бесконечно глубокую. Поэтому мы не пишем граничных условий на боковых границах и на дне жидкости.

Рассмотрим гравитационную волну, распространяющуюся вдоль оси и однородную вдоль оси в такой волне все величины не зависят от координаты у. Будем искать решение, являющееся простой периодической функцией времени и координаты х:

где ( - циклическая частота (мы будем говорить о ней просто как о частоте), k - волновой вектор волны, - длина волны. Подставив это выражение в уравнение получим для функции уравнение

Его решение, затухающее в глубь жидкости (т. е. при ):

Мы должны еще удовлетворить граничному условию (12,5), Подставив в него (12,5), найдем связь между частотой b волновым вектором (или, как говорят, закон дисперсии волн):

Распределение скоростей в жидкости получается дифференцированием потенциала по координатам:

Мы видим, что скорость экспоненциально падает по направлению в глубь жидкости. В каждой заданной точке пространства (т. е. при заданных х, z) вектор скорости равномерно вращается в плоскости х, оставаясь постоянным по своей величине.

Определим еще траекторию частиц жидкости в волне. Обозначим временно посредством х, z координаты движущейся частицы жидкости (а не координаты неподвижной точки в пространстве), а посредством - значения х, для равновесного положения частицы. Тогда а в правой части (12,8) можно приближенно написать вместо , воспользовавшись малостью колебаний. Интегрирование по времени дает тогда:

Таким образом, частицы жидкости описывают окружности вокруг точек с радиусом, экспоненциально убывающим по направлению в глубь жидкости.

Скорость U распространения волны равна, как будет показано в § 67, Подставив сюда находим, что скорость распространения гравитационных волн на неограниченной поверхности бесконечно глубокой жидкости равна

Она растет при увеличении длины волны.

Длинные гравитационные волны

Рассмотрев гравитационные волны, длина которых мала по сравнению с глубиной жидкости, остановимся теперь на противоположном предельном случае волн, длина которых велика по сравнению с глубиной жидкости.

Такие волны называются длинными.

Рассмотрим сначала распространение длинных волн в канале. Длину канала (направленную вдоль оси х) будем считать неограниченной Сечение канала может иметь произвольную форму и может меняться вдоль его длины. Площадь поперечного сечения жидкости в канале обозначим посредством Глубина и ширина канала предполагаются малыми по сравнению с длиной волны.

Мы будем рассматривать здесь продольные длинные волны, в которых жидкость движется вдоль канала. В таких волнах компонента скорости вдоль длины канала велика по сравнению с компонентами

Обозначив просто как v и опуская малые члены, мы можем написать -компоненту уравнения Эйлера в виде

а -компоненту - в виде

(квадратичные по скорости члены опускаем, поскольку амплитуда волны по-прежнему считается малой). Из второго уравнения имеем, замечая, что на свободной поверхности ) должно быть

Подставляя это выражение в первое уравнение, получаем:

Второе уравнение для определения двух неизвестных можно вывести методом, аналогичным выводу уравнения непрерывности. Это уравнение представляет собой по существу уравнение непрерывности применительно к рассматриваемому случаю. Рассмотрим объем жидкости, заключенный между двумя плоскостями поперечного сечения канала, находящимися на расстоянии друг от друга. За единицу времени через одну плоскость войдет объем жидкости, равный а через другую плоскость выйдет объем Поэтому объем жидкости между обеими плоскостями изменится на

Группа ученых из 16 стран впервые получила доказательство существования гравитационных волн на практике. В этом им помогли две черные дыры, которые соединились в одну 1,3 млрд лет назад. В процессе произошел такой выброс энергии, который заставил Землю трястись, как желе. «Фонтанка» попыталась разобраться в представленных доказательствах.

Источник: LIGO

«Мы зафиксировали гравитационную волну», – заявил на пресс-конференции в Вашингтоне исполнительный директор лазерно-интерферометрической гравитационно-волновой обсерватории LIGO Дэвид Рейтс. Его слова вызвали шквал аплодисментов. Все же не так часто фундаментальная наука радует открытиями вселенского масштаба.

Исследование действительно выходит за пределы планеты. Источник колебаний, который удалось обнаружить ученым, находится где-то в южной части звездного неба. Волна пришла со стороны Магеллановых Облаков, которые являются галактиками-спутниками Млечного пути. Возможное местонахождение источника с разной вероятностью отмечено на карте ниже.

Около 1,3 млрд лет назад, полагают ученые, там развивались фантастические события, когда две черные дыры попали под влияние друг друга и стали сближаться. Напомним, «черные дыры» – условное название для космических объектов, которые притягивают к себе все, что находится рядом. Сила притяжения настолько велика, что даже свет не может вырваться за их пределы. Из-за этого на фоне ярких звезд и освещаемых ими объектов «черные дыры» выглядят абсолютно темными.

И вот два таких объекта начали притягиваться друг к другу, двигаясь по улитке. Тем самым они создавали возмущения в гравитационном поле, и от их движения начали расходиться гравитационные волны. Процесс завершился логично: соединением в один космический объект. Визуально это похоже на деление клетки, которое знакомо всем из учебника по биологии, запущенное в обратном направлении.

Исследователи LIGO отмечают критический момент за миллисекунду до окончательного соединения двух «черных дыр» в одну, когда произошел выброс энергии, в 50 раз превышающий энергию всех звезд во Вселенной.

Источник: LIGO

Своеобразный «девятый вал» прошелся по Вселенной и докатился до Земли. Волна ударила в планету и повлияла на ее гравитационное поле. Для наглядности ученые пояснили, что эффект был похож на то, что будет, если ткнуть чем-нибудь желе и оно начнет трястись. Впрочем, для планеты такие сотрясения неопасны, и ничем, кроме сверхчувствительных приборов, они не зафиксированы. Сооснователь LIGO Райнер Вейс при этом наглядно продемонстрировал, как конкретно волна проходит через гравитационное поле.

К тому времени, как волна дошла до Земли, экспериментальные исследования в поисках гравитационных волн велись уже четверть века. Надо сказать, что теоретическая возможность существования гравитационных волн упоминается в нескольких теориях. Например, согласно общей теории относительности Эйнштейна скорость распространения гравитационной волны равняется скорости света в линейном приближении.

Однако экспериментально опровергнуть или подтвердить ни одну из теорий было невозможно, ввиду того, что обнаружить гравитационную волну очень сложно. Чтобы понять масштаб такого явления, надо знать, что в Солнечной системе самыми мощными источниками гравитационных волн являются, собственно, Солнце и Юпитер. И мощность этих волн составляет ничтожные, по сравнению с кинетической энергией этих тел, 5 киловатт.

Однако 14 сентября 2015 года сразу двум гравитационно-волновым обсерваториям в США удалось зафиксировать колебания, которые впоследствии были идентифицированы учеными как гравитационные волны. Сначала колебания зафиксировали в городе Хэнфорд штата Вашингтон, а через 7 миллисекунд в Ливингстоне штата Луизиана. Перепроверка всех данных заняла еще около полугода. После этого ученые смогли рассказать, как им удалось поймать гравитационную волну.

Для измерения использовался лазерный интерферометр. Суть его работы заключается в разделении лазерного луча на два, отличающиеся интенсивностью. Каждый из них далее доходит до зеркала, где отражается и возвращается в систему, а уже оттуда направляется на специальный фотодетектор. Принцип работы системы изображен на видео ниже.

Источник: LIGO

Зеркала находятся на значительном расстоянии от лазера и изолированы от посторонних колебаний. Когда гравитационная волна проходит сквозь Землю, меняется ее форма, а значит, и расстояние зеркал от источника излучения. В результате, после отражения лазерного луча от зеркала, лучу необходимо большее или меньшее расстояние, чтобы дойти до фотодетектора. Микроскопическая разница в попадании лазера на фотодетектор как раз и является методом определения гравитационной волны.

Для большей наглядности ученые определили цветом амплитуду гравитационной волны. Представитель LIGO из Университета Луизианы Габриэла Гонсалес также заявила, что гравитационная волна находится в том диапазоне, который может уловить человеческое ухо. «Мы буквально можем услышать гравитационную волну, мы можем услышать Вселенную. Однако эта волна настолько короткая, что мы услышим только звук, похожий на «плюк!», – пояснила Гонсалес.

Читателям «Фонтанки» также предлагаем услышать гравитационную волну, которая появилась около 1,3 млрд лет назад в результате соединения двух «черных дыр» в далекой-далекой галактике.

Спустя сто лет после теоретического предсказания, которое в рамках общей теории относительности сделал Альберт Эйнштейн, ученым удалось подтвердить существование гравитационных волн. Начинается эра принципиально нового метода изучения далекого космоса — гравитационно-волновой астрономии.

Открытия бывают разные. Бывают случайные, в астрономии они встречаются часто. Бывают не совсем случайные, сделанные в результате тщательного «прочесывания местности», как, например, открытие Урана Вильямом Гершелем. Бывают серендипические — когда искали одно, а нашли другое: так, например, открыли Америку. Но особое место в науке занимают запланированные открытия. Они основаны на четком теоретическом предсказании. Предсказанное ищут в первую очередь для того, чтобы подтвердить теорию. Именно к таким открытиям относятся обнаружение бозона Хиггса на Большом адронном коллайдере и регистрация гравитационных волн с помощью лазерно-интерферометрической гравитационно-волновой обсерватории LIGO. Но для того чтобы зарегистрировать какое-то предсказанное теорией явление, нужно довольно неплохо понимать, что именно и где искать, а также какие инструменты необходимы для этого.

Гравитационные волны традиционно называют предсказанием общей теории относительности (ОТО), и это в самом деле так (хотя сейчас такие волны есть во всех моделях, альтернативных ОТО или же дополняющих ее). К появлению волн приводит конечность скорости распространения гравитационного взаимодействия (в ОТО эта скорость в точности равна скорости света). Такие волны — возмущения пространства-времени, распространяющиеся от источника. Для возникновения гравитационных волн необходимо, чтобы источник пульсировал или ускоренно двигался, но определенным образом. Скажем, движения с идеальной сферической или цилиндрической симметрией не подходят. Таких источников достаточно много, но часто у них маленькая масса, недостаточная для того, чтобы породить мощный сигнал. Ведь гравитация — самое слабое из четырех фундаментальных взаимодействий, поэтому зарегистрировать гравитационный сигнал очень трудно. Кроме того, для регистрации нужно, чтобы сигнал быстро менялся во времени, то есть имел достаточно высокую частоту. Иначе нам не удастся его зарегистрировать, так как изменения будут слишком медленными. Значит, объекты должны быть еще и компактными.

Первоначально большой энтузиазм вызывали вспышки сверхновых, происходящие в галактиках вроде нашей раз в несколько десятков лет. Значит, если удастся достичь чувствительности, позволяющей видеть сигнал с расстояния в несколько миллионов световых лет, можно рассчитывать на несколько сигналов в год. Но позднее оказалось, что первоначальные оценки мощности выделения энергии в виде гравитационных волн во время взрыва сверхновой были слишком оптимистичными, и зарегистрировать подобный слабый сигнал можно было бы только в случае, если б сверхновая вспыхнула в нашей Галактике.

Еще один вариант массивных компактных объектов, совершающих быстрые движения, — нейтронные звезды или черные дыры. Мы можем увидеть или процесс их образования, или процесс взаимодействия друг с другом. Последние стадии коллапса звездных ядер, приводящие к образованию компактных объектов, а также последние стадии слияния нейтронных звезд и черных дыр имеют длительность порядка нескольких миллисекунд (что соответствует частоте в сотни герц) — как раз то что надо. При этом выделяется много энергии, в том числе (а иногда и в основном) в виде гравитационных волн, так как массивные компактные тела совершают те или иные быстрые движения. Вот они — наши идеальные источники.

Правда, сверхновые вспыхивают в Галактике раз в несколько десятков лет, слияния нейтронных звезд происходят раз в пару десятков тысяч лет, а черные дыры сливаются друг с другом еще реже. Зато сигнал гораздо мощнее, и его характеристики можно достаточно точно рассчитать. Но теперь нам надо научиться видеть сигнал с расстояния в несколько сотен миллионов световых лет, чтобы охватить несколько десятков тысяч галактик и обнаружить несколько сигналов за год.

Определившись с источниками, начнем проектировать детектор. Для этого надо понять, что же делает гравитационная волна. Не вдаваясь в детали, можно сказать, что прохождение гравитационной волны вызывает приливную силу (обычные лунные или солнечные приливы — это отдельное явление, и гравитационные волны тут ни при чем). Так что можно взять, например, металлический цилиндр, снабдить датчиками и изучать его колебания. Это несложно, поэтому такие установки начали делать еще полвека назад (есть они и в России, сейчас в Баксанской подземной лаборатории монтируется усовершенствованный детектор, разработанный командой Валентина Руденко из ГАИШ МГУ). Проблема в том, что такой прибор будет видеть сигнал без всяких гравитационных волн. Есть масса шумов, с которыми трудно бороться. Можно (и это было сделано!) установить детектор под землей, попытаться изолировать его, охладить до низких температур, но все равно для того, чтобы превысить уровень шума, понадобится очень мощный гравитационно-волновой сигнал. А мощные сигналы приходят редко.

Поэтому был сделан выбор в пользу другой схемы, которую в 1962 году выдвинули Владислав Пусто-войт и Михаил Герценштейн. В статье, опубликованной в ЖЭТФ (Журнал экспериментальной и теоретической физики), они предложили использовать для регистрации гравитационных волн интерферометр Майкельсона. Луч лазера бегает между зеркалами в двух плечах интерферометра, а затем лучи из разных плеч складываются. Анализируя результат интерференции лучей, можно измерить относительное изменение длин плеч. Это очень точные измерения, поэтому, если победить шумы, можно достичь фантастической чувствительности.

В начале 1990-х было принято решение о строительстве нескольких детекторов по такой схеме. Первыми в строй должны были войти относительно небольшие установки, GEO600 в Европе и ТАМА300 в Японии (числа соответствуют длине плеч в метрах) для обкатки технологии. Но основными игроками должны были стать установки LIGO в США и VIRGO в Европе. Размер этих приборов измеряется уже километрами, а окончательная плановая чувствительность должна была бы позволить видеть десятки, если не сотни событий в год.

Почему нужны несколько приборов? В первую очередь для перекрестной проверки, поскольку существуют локальные шумы (например, сейсмические). Одновременная регистрация сигнала на северо-западе США и в Италии была бы прекрасным свидетельством его внешнего происхождения. Но есть и вторая причина: гравитационно-волновые детекторы очень плохо определяют направление на источник. А вот если разнесенных детекторов будет несколько, указать направление можно будет довольно точно.

Лазерные исполины

В своем первоначальном виде детекторы LIGO были построены в 2002 году, a VIRGO — в 2003-м. По плану это был лишь первый этап. Все установки поработали по несколько лет, а в 2010-2011 годах были остановлены для доработки, чтобы затем выйти на плановую высокую чувствительность. Первыми заработали детекторы LIGO в сентябре 2015 года, VIRGO должна присоединиться во второй половине 2016-го, и начиная с этого этапа чувствительность позволяет надеяться на регистрацию как минимум нескольких событий в год.

После начала работы LIGO ожидаемый темп всплесков составлял примерно одно событие в месяц. Астрофизики заранее оценили, что первыми ожидаемыми событиями должны стать слияния черных дыр. Связано это с тем, что черные дыры обычно раз в десять тяжелее нейтронных звезд, сигнал получается мощнее, и его «видно» с больших расстояний, что с лихвой компенсирует меньший темп событий в расчете на одну галактику. К счастью, долго ждать не пришлось. 14 сентября 201 5 года обе установки зарегистрировали практически идентичный сигнал, получивший наименование GW150914.

С помощью довольно простого анализа можно получить такие данные, как массы черных дыр, мощность сигнала и расстояние до источника. Масса и размер черных дыр связаны очень простым и хорошо известным образом, а по частоте сигнала сразу можно оценить размер области выделения энергии. В данном случае размер указывал на то, что из двух дыр массой 25-30 и 35-40 солнечных масс образовалась черная дыра с массой более 60 солнечных масс. Зная эти данные, можно получить и полную энергию всплеска. В гравитационное излучение перешло почти три массы Солнца. Это соответствует светимости 1023 светимостей Солнца — примерно столько же, сколько за это время (сотые доли секунды) излучают все звезды в видимой части Вселенной. А из известной энергии и величины измеренного сигнала получается расстояние. Большая масса слившихся тел позволила зарегистрировать событие, произошедшее в далекой галактике: сигнал шел к нам примерно 1,3 млрд лет.

Более детальный анализ позволяет уточнить отношение масс черных дыр и понять, как они вращались вокруг своей оси, а также определить и некоторые другие параметры. Кроме того, сигнал с двух установок позволяет примерно определить направление всплеска. К сожалению, пока тут точность не очень велика, но с вводом в строй обновленной VIRGO она возрастет. А еще через несколько лет начнет принимать сигналы японский детектор KAGRA. Затем один из детекторов LIGO (изначально их было три, одна из установок была сдвоенной) будет собран в Индии, и ожидается, что тогда будут регистрироваться многие десятки событий в год.

Эра новой астрономии

На данный момент самый важный результат работы LIGO — это подтверждение существования гравитационных волн. Кроме того, уже первый всплеск позволил улучшить ограничения на массу гравитона (в ОТО он имеет нулевую массу), а также сильнее ограничить отличие скорости распространения гравитации от скорости света. Но ученые надеются, что уже в 2016 году они смогут получать с помощью LIGO и VIRGO много новых астрофизических данных.

Во-первых, данные гравитационно-волновых обсерваторий — это новый канал изучения черных дыр. Если ранее можно было только наблюдать потоки вещества в окрестностях этих объектов, то теперь можно прямо «увидеть» процесс слияния и «успокоения» образующейся черной дыры, как колеблется ее горизонт, принимая свою окончательную форму (определяемую вращением). Наверное, вплоть до обнаружения хокинговского испарения черных дыр (пока что этот процесс остается гипотезой) изучение слияний будет давать лучшую непосредственную информацию о них.

11 февраля 2016-го года международная группа ученых, в том числе из России, на пресс-конференции в Вашингтоне объявила об открытии, которое рано или поздно изменит развитие цивилизации. Удалось на практике доказать гравитационные волны или волны пространства-времени. Их существование предсказал еще 100 лет назад Альберт Эйнштейн в своей .

Никто не сомневается, что это открытие будет удостоено Нобелевской премии. Учёные не торопятся говорить о его практическом применении. Но напоминают, что еще совсем недавно человечество точно также не знало, что делать с электромагнитными волнами, которые в итоге привели к настоящей научно-технической революции.

Что такое гравитационные волны простым языком

Гравитация и всемирное тяготение – это одно и то же. Гравитационные волны являются одним из решений ОТС. Распространяться они должны со скоростью света. Излучает его любое тело, движущееся с переменным ускорением.

Например, вращается по своей орбите с переменным ускорением, направленным к звезде. И это ускорение постоянно изменяется. Солнечная система излучает энергию порядка нескольких киловатт в гравитационных волнах. Это ничтожная величина, сравнимая с 3 старыми цветными телевизорами.

Другое дело – два вращающихся вокруг друг друга пульсара (нейтронных звезды). Они вращаются по очень тесным орбитам. Такая «парочка» была обнаружена астрофизиками и наблюдалась долгое время. Объекты готовы были друг на друга упасть, что косвенно свидетельствовало, что пульсары излучают волны пространства-времени, то есть энергию в их поле.

Гравитация – сила тяготения. Нас тянет к земле. А суть гравитационной волны – изменение этого поля, чрезвычайно слабое, когда до нас доходит. К примеру, возьмем уровень воды в водоёме. Напряженность гравитационного поля — ускорение свободного падения в конкретной точке. По нашему водоёму бежит волна, и вдруг меняется ускорение свободного падения, совсем чуть-чуть.

Такие опыты начались в 60-е годы прошлого столетия. В ту пору придумывали так: подвешивали огромный алюминиевый цилиндр, охлажденный во избежание внутренних тепловых колебаний. И ждали, когда до нас внезапно дойдет волна от столкновения, например, двух массивных черных дыр. Исследователи были полны энтузиазма и говорили, что весь земной шар может испытать воздействие гравитационной волны, прилетевшей из космического пространства. Планета начнет колебаться, и можно будет изучить эти сейсмические волны (сжатия, сдвига и поверхностные).

Важная статья об устройстве простым языком, и как американцы и LIGO украли идею советских учёных и построили интроферометры, позволившие сделать открытие. Никто не говорит об этом, все молчат!

Между прочим, гравитационное излучение больше интересно с позиции реликтового излучения, найти которое пытаются по изменению спектра электромагнитного излучения. Реликтовое и электромагнитное излучение появились 700 тыс. лет после Большого взрыва, затем в процессе расширения вселенной, заполненной горячим газом с бегающими ударными волнами, превратившимися позже в галактики. При этом, естественно, должны были излучаться гигантское, умопомрачительное количество волн пространства-времени, влияющих на длину волны реликтового излучения, которое в то время еще было оптическим. Отечественный астрофизик Сажин пишет и регулярно публикует статьи на эту тему.

Неверная интерпретация открытия гравитационных волн

«Висит зеркало, на него действует гравитационная волна, и оно начинает колебаться. И даже самые незначительные колебания амплитудой меньше размера атомного ядра замечаются приборами» — такая неверная интерпретация, например, используется в статье Википедии. Не поленитесь, найдите статью советских учёных 1962 года.

Во-первых, зеркало должно быть массивным, чтобы почувствовать «рябь». Во-вторых, его нужно охлаждать практически до абсолютного нуля (по Кельвину), чтобы избежать собственных тепловых колебаний. Скорее всего не то что в 21 веке, а вообще никогда не удастся обнаружить элементарную частицу — носителя гравитационных волн:

Гравитационные волны – изображение художника

Гравитационные волны - возмущения метрики пространства-времени, отрывающиеся от источника и распространяющиеся подобно волнам (так называемая «рябь пространства-времени»).

В общей теории относительности и в большинстве других современных теорий гравитации гравитационные волны порождаются движением массивных тел с переменным ускорением. Гравитационные волны свободно распространяются в пространстве со скоростью света. Ввиду относительной слабости гравитационных сил (по сравнению с прочими) эти волны имеют весьма малую величину, с трудом поддающуюся регистрации.

Поляризованная гравитационная волна

Гравитационные волны предсказываются общей теорией относительности (ОТО), многими другими . Впервые они были непосредственно обнаружены в сентябре 2015 года двумя детекторами-близнецами , на которых были зарегистрированы гравитационные волны, возникшие, вероятно, в результате слияния двух и образования одной более массивной вращающейся чёрной дыры. Косвенные свидетельства их существования были известны с 1970-х годов - ОТО предсказывает совпадающие с наблюдениями темпы сближения тесных систем за счёт потери энергии на излучение гравитационных волн. Прямая регистрация гравитационных волн и их использование для определения параметров астрофизических процессов является важной задачей современной физики и астрономии.

В рамках ОТО гравитационные волны описываются решениями уравнений Эйнштейна волнового типа, представляющими собой движущееся со скоростью света (в линейном приближении) возмущение метрики пространства-времени. Проявлением этого возмущения должно быть, в частности, периодическое изменение расстояния между двумя свободно падающими (то есть не испытывающими влияния никаких сил) пробными массами. Амплитудой h гравитационной волны является безразмерная величина - относительное изменение расстояния. Предсказываемые максимальные амплитуды гравитационных волн от астрофизических объектов (например, компактных двойных систем) и явлений (взрывов , слияний , захватов чёрными дырами и т. п.) при измерениях в весьма малы (h =10 −18 -10 −23). Слабая (линейная) гравитационная волна согласно общей теории относительности переносит энергию и импульс, двигается со скоростью света, является поперечной, квадрупольной и описывается двумя независимыми компонентами, расположенными под углом 45° друг к другу (имеет два направления поляризации).

Различные теории по-разному предсказывают скорость распространения гравитационных волн. В общей теории относительности она равна скорости света (в линейном приближении). В других теориях гравитации она может принимать любые значения, в том числе до бесконечности. По данным первой регистрации гравитационных волн их дисперсия оказалась совместимой с безмассовым гравитоном, а скорость оценена как равная скорости света.

Генерация гравитационных волн

Система из двух нейтронных звезд порождает рябь пространства-времени

Гравитационную волну излучает любая материя, движущаяся с асимметричным ускорением. Для возникновения волны существенной амплитуды необходимы чрезвычайно большая масса излучателя или/и огромные ускорения, амплитуда гравитационной волны прямо пропорциональна первой производной ускорения и массе генератора, то есть ~ . Однако если некоторый объект движется ускоренно, то это означает, что на него действует некоторая сила со стороны другого объекта. В свою очередь, этот другой объект испытывает обратное действие (по 3-му закону Ньютона), при этом оказывается, что m 1 a 1 = − m 2 a 2 . Получается, что два объекта излучают гравитационные волны только в паре, причём в результате интерференции они взаимно гасятся почти полностью. Поэтому гравитационное излучение в общей теории относительности всегда носит по мультипольности характер как минимум квадрупольного излучения. Кроме того, для нерелятивистских излучателей в выражении для интенсивности излучения имеется малый параметр где - гравитационный радиус излучателя, r - его характерный размер, T - характерный период движения, c - скорость света в вакууме.

Наиболее сильными источниками гравитационных волн являются:

  • сталкивающиеся (гигантские массы, очень небольшие ускорения),
  • гравитационный коллапс двойной системы компактных объектов (колоссальные ускорения при довольно большой массе). Как частный и наиболее интересный случай - слияние нейтронных звёзд. У такой системы гравитационно-волновая светимость близка к максимально возможной в природе планковской светимости.

Гравитационные волны, излучаемые системой двух тел

Два тела, движущиеся по круговым орбитам вокруг общего центра масс

Два гравитационно связанных тела с массами m 1 и m 2 , движущиеся нерелятивистски (v << c ) по круговым орбитам вокруг их общего центра масс на расстоянии r друг от друга, излучают гравитационные волны следующей энергии, в среднем за период:

Вследствие этого система теряет энергию, что приводит к сближению тел, то есть к уменьшению расстояния между ними. Скорость сближения тел:

Для Солнечной системы, например, наибольшее гравитационное излучение производит подсистема и . Мощность этого излучения примерно 5 киловатт. Таким образом, энергия, теряемая Солнечной системой на гравитационное излучение за год, совершенно ничтожна по сравнению с характерной кинетической энергией тел.

Гравитационный коллапс двойной системы

Любая двойная звезда при вращении её компонент вокруг общего центра масс теряет энергию (как предполагается - за счёт излучения гравитационных волн) и, в конце концов, сливается воедино. Но для обычных, некомпактных, двойных звёзд этот процесс занимает очень много времени, много большее настоящего возраста . Если же двойная компактная система состоит из пары нейтронных звёзд, чёрных дыр или их комбинации, то слияние может произойти за несколько миллионов лет. Сначала объекты сближаются, а их период обращения уменьшается. Затем на заключительном этапе происходит столкновение и несимметричный гравитационный коллапс. Этот процесс длится доли секунды, и за это время в гравитационное излучение уходит энергия, составляющая по некоторым оценкам более 50 % от массы системы.

Основные точные решения уравнений Эйнштейна для гравитационных волн

Объёмные волны Бонди - Пирани - Робинсона

Эти волны описываются метрикой вида . Если ввести переменную и функцию , то из уравнений ОТО получим уравнение

Метрика Такено

имеет вид , -функции, удовлетворяют тому же уравнению.

Метрика Розена

Где удовлетворяют

Метрика Переса

При этом

Цилиндрические волны Эйнштейна - Розена

В цилиндрических координатах такие волны имеют вид и выполняются

Регистрация гравитационных волн

Регистрация гравитационных волн достаточно сложна ввиду слабости последних (малого искажения метрики). Приборами для их регистрации являются детекторы гравитационных волн. Попытки обнаружения гравитационных волн предпринимаются с конца 1960-х годов. Гравитационные волны детектируемой амплитуды рождаются при коллапсе двойного . Подобные события происходят в окрестностях ориентировочно раз в десятилетие.

С другой стороны, общая теория относительности предсказывает ускорение взаимного вращения двойных звёзд из-за потери энергии на излучение гравитационных волн, и этот эффект надёжно зафиксирован в нескольких известных системах двойных компактных объектов (в частности, пульсаров с компактными компаньонами). В 1993 году «за открытие нового типа пульсаров, давшее новые возможности в изучении гравитации» открывателям первого двойного пульсара PSR B1913+16 Расселу Халсу и Джозефу Тейлору мл. была присуждена Нобелевская премия по физике. Ускорение вращения, наблюдаемое в этой системе, полностью совпадает с предсказаниями ОТО на излучение гравитационных волн. Такое же явление зафиксировано ещё в нескольких случаях: для пульсаров PSR J0737-3039, PSR J0437-4715, SDSS J065133.338+284423.37 (обычно сокращённо J0651) и системы двойных RX J0806. Например, расстояние между двумя компонентами A и B первой двойной звезды из двух пульсаров PSR J0737-3039 уменьшается примерно на 2,5 дюйма (6,35 см) в день из-за потерь энергии на гравитационные волны, причём это происходит в согласии с ОТО. Все эти данные интерпретируются как непрямые подтверждения существования гравитационных волн.

По оценкам наиболее сильными и достаточно частыми источниками гравитационных волн для гравитационных телескопов и антенн являются катастрофы, связанные с коллапсами двойных систем в ближайших галактиках. Ожидается, что в ближайшем будущем на усовершенствованных гравитационных детекторах будет регистрироваться несколько подобных событий в год, искажающих метрику в окрестности на 10 −21 -10 −23 . Первые наблюдения сигнала оптико-метрического параметрического резонанса, позволяющего обнаружить воздействие гравитационных волн от периодических источников типа тесной двойной на излучение космических мазеров, возможно, были получены на радиоастрономической обсерватории РАН, Пущино.

Ещё одной возможностью детектирования фона гравитационных волн, заполняющих Вселенную, является высокоточный тайминг удалённых пульсаров - анализ времени прихода их импульсов, которое характерным образом изменяется под действием проходящих через пространство между Землёй и пульсаром гравитационных волн. По оценкам на 2013 год, точность тайминга необходимо поднять примерно на один порядок, чтобы можно было задетектировать фоновые волны от множества источников в нашей Вселенной, и эта задача может быть решена до конца десятилетия.

Согласно современным представлениям, нашу Вселенную заполняют реликтовые гравитационные волны, появившиеся в первые моменты после . Их регистрация позволит получить информацию о процессах в начале рождения Вселенной. 17 марта 2014 года в 20:00 по московскому времени в Гарвард-Смитсоновском центре астрофизики американской группой исследователей, работающей над проектом BICEP 2, было объявлено о детектировании по поляризации реликтового излучения ненулевых тензорных возмущений в ранней Вселенной, что также является открытием этих реликтовых гравитационных волн. Однако почти сразу этот результат был оспорен, поскольку, как выяснилось, не был должным образом учтён вклад . Один из авторов, Дж. М. Ковац (Kovac J. M. ), признал, что «с интерпретацией и освещением данных эксперимента BICEP2 участники эксперимента и научные журналисты немного поторопились».

Экспериментальное подтверждение существования

Первый зафиксированный гравитационно-волновой сигнал. Слева данные с детектора в Хэнфорде (H1), справа - в Ливингстоне (L1). Время отсчитывается от 14 сентября 2015, 09:50:45 UTC. Для визуализации сигнала он отфильтрован частотным фильтром с полосой пропускания 35-350 Герц для подавления больших флуктуаций вне диапазона высокой чувствительности детекторов, также были применены полосовые режекторные фильтры для подавления шума самих установок. Верхний ряд: напряжения h в детекторах. GW150914 сначала прибыл на L1 и через 6 9 +0 5 −0 4 мс на H1; для визуального сравнения данные с H1 показаны на графике L1 в обращённом и сдвинутом по времени виде (чтобы учесть относительную ориентацию детекторов). Второй ряд: напряжения h от гравитационно-волнового сигнала, пропущенные через такой же полосный фильтр 35-350 Гц. Сплошная линия - результат численной относительности для системы с параметрами, совместимыми с найденными на базе изучения сигнала GW150914, полученный двумя независимыми кодами с результирующим совпадением 99,9. Серые толстые линии - области 90 % доверительной вероятности формы сигнала, восстановленные из данных детекторов двумя различными методами. Тёмно-серая линия моделирует ожидаемые сигналы от слияния чёрных дыр, светло-серая не использует астрофизических моделей, а представляет сигнал линейной комбинацией синусоидально-гауссовых вэйвлетов. Реконструкции перекрываются на 94 %. Третий ряд: Остаточные ошибки после извлечения отфильтрованного предсказания сигнала численной относительности из отфильтрованного сигнала детекторов. Нижний ряд: представление частотной карты напряжений, показывающее возрастание доминирующей частоты сигнала со временем.

11 февраля 2016 года коллаборациями LIGO и VIRGO. Сигнал слияния двух чёрных дыр с амплитудой в максимуме около 10 −21 был зарегистрирован 14 сентября 2015 года в 9:51 UTC двумя детекторами LIGO в Хэнфорде и Ливингстоне через 7 миллисекунд друг от друга, в области максимальной амплитуды сигнала (0,2 секунды) комбинированное отношение сигнал-шум составило 24:1. Сигнал был обозначен GW150914. Форма сигнала совпадает с предсказанием общей теории относительности для слияния двух чёрных дыр массами 36 и 29 солнечных; возникшая чёрная дыра должна иметь массу 62 солнечные и параметр вращения a = 0,67. Расстояние до источника около 1,3 миллиарда , излучённая за десятые доли секунды в слиянии энергия - эквивалент около 3 солнечных масс.

История

История самого термина «гравитационная волна», теоретического и экспериментального поиска этих волн, а также их использования для исследований явлений недоступных иными методам.

  • 1900 - Лоренц предположил, что гравитация «…может распространятся со скоростью, не большей скорости света»;
  • 1905 - Пуанкаре впервые ввёл термин гравитационная волна (onde gravifique). Пуанкаре, на качественном уровне, снял устоявшиеся возражения Лапласа и показал, что связанные с гравитационными волнами поправки к общепринятым законам тяготения Ньютона порядка сокращаются, таким образом, предположение о существовании гравитационных волн не противоречит наблюдениям;
  • 1916 - Эйнштейн показал, что в рамках ОТО механическая система будет передавать энергию гравитационным волнам и, грубо говоря, любое вращение относительно неподвижных звёзд должно рано или поздно остановиться, хотя, конечно, в обычных условиях потери энергии порядка ничтожны и практически не поддаются измерению (в этой работе он ещё ошибочно полагал, что механическая система, постоянно сохраняющая сферическую симметрию, может излучать гравитационные волны);
  • 1918 - Эйнштейн вывел квадрупольную формулу, в которой излучение гравитационных волн оказывается эффектом порядка , тем самым исправив ошибку в своей предыдущей работе (осталась ошибка в коэффициенте, энергия волны в 2 раза меньше);
  • 1923 - Эддингтон - поставил под сомнение физическую реальность гравитационных волн «…распространяются… со скоростью мысли». В 1934 году, при подготовке русского перевода своей монографии «Теория относительности», Эддингтон добавил несколько глав, включая главы с двумя вариантами расчётов потерь энергии вращающимся стержнем, но отметил, что использованные методы приближенных расчётов ОТО, по его мнению, неприменимы к гравитационно связанным системам, поэтому сомнения остаются;
  • 1937 - Эйнштейн совместно с Розеном исследовал цилиндрические волновые решения точных уравнений гравитационного поля. В ходе этих исследований у них возникли сомнения, что гравитационные волны, возможно, являются артефактом приближенных решений уравнений ОТО (известна переписка относительно рецензии на статью Эйнштейна и Розена «Существуют ли гравитационные волны?»). Позднее он нашёл ошибку в рассуждениях, окончательный вариант статьи с фундаментальными правками был опубликован уже в «Journal of the Franklin Institute»;
  • 1957 - Герман Бонди и Ричард Фейнман предложили мысленный эксперимент «трость с бусинками» в котором обосновали существование физических последствий гравитационных волн в ОТО;
  • 1962 - Владислав Пустовойт и Михаил Герценштейн описали принципы использования интерферометров для обнаружения длинноволновых гравитационных волн;
  • 1964 - Филип Петерс и Джон Мэтью теоретически описали гравитационные волны, излучаемые двойными системами;
  • 1969 - Джозеф Вебер, основатель гравитационно-волновой астрономии, сообщает об обнаружении гравитационных волн с помощью резонансного детектора - механической гравитационной антенны. Эти сообщения порождают бурный рост работ в этом направлении, в частности, Ренье Вайс, один из основателей проекта LIGO, начал эксперименты в то время. На настоящий момент (2015) никому так и не удалось получить надёжных подтверждений этих событий;
  • 1978 - Джозеф Тейлор сообщил об обнаружении гравитационного излучения в двойной системе пульсара PSR B1913+16. Исследования Джозефа Тейлора и Рассела Халса заслужили Нобелевскую премию по физике за 1993 год. На начало 2015 года три пост-кеплеровских параметра, включающих уменьшение периода вследствие излучения гравитационных волн, было измерено, как минимум, для 8 подобных систем;
  • 2002 - Сергей Копейкин и Эдвард Фомалонт произвели с помощью радиоволной интерферометрии со сверхдлинной базой измерения отклонения света в гравитационном поле Юпитера в динамике, что для некоторого класса гипотетических расширений ОТО позволяет оценить скорость гравитации - отличие от скорости света не должно превышать 20 % (данная трактовка не общепринята);
  • 2006 - международная команда Марты Бургей (Обсерватория Паркса, Австралия) сообщила о существенно более точных подтверждениях ОТО и соответствия ей величины излучения гравитационных волн в системе двух пульсаров PSR J0737-3039A/B;
  • 2014 - астрономы Гарвард-Смитсоновского центра астрофизики (BICEP) сообщили об обнаружении первичных гравитационных волн при измерениях флуктуаций реликтового излучения. На настоящий момент (2016) обнаруженные флуктуации считаются не имеющими реликтового происхождения, а объясняются излучением пыли в Галактике;
  • 2016 - международная команда LIGO сообщила об обнаружении события прохождения гравитационных волн GW150914. Впервые сообщено о прямом наблюдении взаимодействующих массивных тел в сверхсильных гравитационных полях со сверхвысокими относительными скоростями (< 1,2 × R s , v/c > 0.5), что позволило проверить корректность ОТО с точностью до нескольких постньютоновских членов высоких порядков. Измеренная дисперсия гравитационных волн не противоречит сделанным ранее измерениям дисперсии и верхней границы массы гипотетического гравитона (< 1,2 × 10 −22 эВ), если он в некотором гипотетическом расширении ОТО будет существовать.