Лекция 6.

Градиентные методы решения задач нелинейного программирования.

Вопросы: 1. Общая характеристика методов.

2. Метод градиента.

3. Метод наискорейшего спуска.

4. Метод Франка-Фулфа.

5. Метод штрафных функций.

1. Общая характеристика методов.

Градиентные методы представляют собой приближенные (итерационные) методы решения задачи нелинейного программирования и позволяют решить практически любую задачу. Однако при этом определяется локальный экстремум. Поэтому целесообразно применять эти методы для решения задач выпуклого программирования, в которых каждый локальный экстремум является и глобальным. Процесс решения задачи состоит в том, что, начиная с некоторой точки х (начальной), осуществляется последовательный переход в направлении gradF(x), если определяется точка максимума, и –gradF(x) (антиградиента), если определяется точка минимума, до точки, являющейся решением задачи. При этом эта точка может оказаться как внутри области допустимых значений, так и на ее границе.

Градиентные методы можно разделить на два класса (группы). К первой группе относятся методы, в которых все исследуемые точки принадлежат допустимой области. К таким методам относятся: метод градиента, наискорейшего спуска, Франка-Вулфа и др. Ко второй группе относятся методы, в которых исследуемые точки могут и не принадлежать допустимой области. Общим из таких методов является метод штрафных функций. Все методы штрафных функций отличаются друг от друга способом определения «штрафа».

Основным понятием, используемым во всех градиентных методах, является понятие градиента функции, как направления наискорейшего возрастания функции.

При определении решения градиентными методами итерационный процесс продолжается до тех пор, пока:

Либо grad F(x*) = 0, (точное решение);

где
- две последовательные точки,
- малое число, характеризующее точность решения.

2. Метод градиента.

Представим человека, стоящего на склоне оврага, которому необходимо спуститься вниз (на дно). Наиболее естественным, кажется, направление в сторону наибольшей крутизны спуска, т.е. направление (-grad F(x)). Получаемая при этом стратегия, называемая градиентным методом , представляет собой последовательность шагов, каждый из которых содержит две операции:

а) определение направления наибольшей крутизны спуска (подъема);

б) перемещение в выбранном направлении на некоторый шаг.

Правильный выбор шага имеет существенное значение. Чем шаг меньше, тем точнее результат, но больше вычислений. Различные модификации градиентного метода и состоят в использовании различных способов определения шага. Если на каком-либо шаге значение F(x) не уменьшилось, это означает, что точку минимума «проскочили», в этом случае необходимо вернуться к предыдущей точке и уменьшить шаг, например, вдвое.

Схема решения.

принадлежащей допустимой области

3. Выбор шага h.

x (k+1) = x (k)

«-» - если min.

5. Определение F(x (k +1)) и:

Если
, решение найдено;

Замечание. Если grad F(x (k)) = 0, то решение будет точным.

Пример. F(x) = -6x 1 + 2x 1 2 – 2x 1 x 2 + 2x 2 2
min,

x 1 +x 2 2,x 1 0, x 2 0,= 0,1.

3. Метод наискорейшего спуска.

В отличие от метода градиента, в котором градиент определяют на каждом шаге, в методе наискорейшего спуска градиент находят в начальной точке и движение в найденном направлении продолжают одинаковыми шагами до тех пор, пока значение функции уменьшается (увеличивается). Если на каком-либо шаге F(x) возросло (уменьшилось), то движение в данном направлении прекращается, последний шаг снимается полностью или наполовину и вычисляется новое значение градиента и новое направление.

Схема решения.

1. Определение х 0 = (х 1 ,x 2 ,…,x n),

принадлежащей допустимой области,

и F(x 0), k = 0.

2. Определение grad F(x 0) или –gradF(x 0).

3. Выбор шага h.

4. Определение следующей точки по формуле

x (k+1) = x (k) h grad F(x (k)), «+» - если max,

«-» - если min.

5. Определение F(x (k +1)) и:

Если
, решение найдено;

Если нет:

а) при поиске min: - если F(x (k +1))

Если F(x (k +1)) >F(x (k)) – переход к п. 2;

б) при поиске max: - еслиF(x (k +1)) >F(x (k)) – переход к п. 4;

Если F(x (k +1))

Замечания: 1. Если grad F(x (k)) = 0, то решение будет точным.

2. Преимуществом метода наискорейшего спуска является его простота и

сокращение расчетов, так как grad F(x) вычисляется не во всех точках, что

важно для задач большой размерности.

3. Недостатком является то, что шаги должны быть малыми, чтобы не

пропустить точку оптимума.

Пример. F(x) = 3x 1 – 0,2x 1 2 + x 2 - 0,2x 2 2
max,

x 1 + x 2 7, x 1 0,

x 1 + 2x 2 10, x 2 0.

4. Метод Франка-Вулфа.

Метод используется для оптимизации нелинейной целевой функции при линейных ограничениях. В окрестности исследуемой точки нелинейная целевая функция заменяется линейной функцией и задача сводится к последовательному решению задач линейного программирования.

Схема решения.

1. Определение х 0 = (х 1 ,x 2 ,…,x n), принадлежащей допустимой области, и F(x 0), k = 0.

2. Определение grad F(x (k)).

3. Строят функцию

(min – «-»;max– «+»).

4. Определение max(min)f(x) при исходных ограничениях. Пусть это будет точка z (k) .

5. Определение шага вычислений x (k +1) =x (k) + (k) (z (k) –x (k)), где (k) – шаг, коэффициент, 0 1. (k) выбирается так, чтобы значение функции F(x) было max (min) в точке х (k +1) . Для этого решают уравнение
и выбирают наименьший (наибольший) из корней, но 0 1.

6. Определение F(x (k +1)) и проверяют необходимость дальнейших вычислений:

Если
или grad F(x (k +1)) = 0, то решение найдено;

Если нет, то переход к п. 2.

Пример. F(x) = 4x 1 + 10x 2 –x 1 2 –x 2 2
max,

x 1 +x 2 4, x 1 0,

x 2 2, x 2 0.

5. Метод штрафных функций.

Пусть необходимо найти F(x 1 ,x 2 ,…,x n)
max(min),

g i (x 1 , x 2 ,…,x n) b i , i =
, x j 0, j =.

Функции F и g i – выпуклые или вогнутые.

Идея метода штрафных функций заключается в поиске оптимального значения новой целевой функции Q(x) = F(x) + H(x), которая является суммой исходной целевой функции и некоторой функции H(x), определяемой системой ограничений и называемой штрафной функцией. Штрафные функции строят таким образом, чтобы обеспечить либо быстрое возвращение в допустимую область, либо невозможность выходы из нее. Метод штрафных функций сводит задачу на условный экстремум к решению последовательности задач на безусловный экстремум, что проще. Существует множество способов построения штрафной функции. Наиболее часто она имеет вид:

H(x) =
,

где

- некоторые положительные Const.

Примечание :

Чем меньше , тем быстрее находится решение, однако, точность снижается;

Начинают решение с малых и увеличивают их на последующих шагах.

Используя штрафную функцию, последовательно переходят от одной точки к другой до тех пор, пока не получат приемлемое решение.

Схема решения.

1. Определение начальную точку х 0 = (х 1 ,x 2 ,…,x n), F(x 0) и k = 0.

2. Выбирают шаг вычислений h.

3. Определяют частные производные и.

4. Определяют координаты следующей точки по формуле:

x j (k +1)
.

5. Если x (k +1) Допустимой области, проверяют:

а) если
- решение найдено, если нет – переход к п. 2.

б) если grad F(x (k +1)) = 0, то найдено точное решение.

Если x (k +1) Допустимой области, задают новое значениеи переходят к п. 4.

Пример. F(x) = – x 1 2 – x 2 2
max,

(x 1 -5) 2 +(x 2 -5) 2 8, x 1 0, x 2 0.

Градиентные методы поиска оптимума целевой функции основаны на использовании двух основных свойств градиента функции.

1. Градиент функции – это вектор, который в каждой точке области определения функции
направлен по нормали к поверхности уровня, проведенной через эту точку.

Проекции градиента
на оси координат равны частным производным функции
по соответствующим переменным, т.е.

. (2.4)

К градиентным методам относятся: метод релаксации, градиента, наискорейшего спуска и ряд других .

Рассмотрим некоторые из градиентных методов.

Метод градиента

В этом методе спуск производится в направлении наибыстрейшего изменения целевой функции, что, естественно, ускоряет процесс поиска оптимума.

Поиск оптимума производится в два этапа. На первом этапе находятся значения частных производных по всем независимым переменным, которые определяют направление градиента в рассматриваемой точке. На втором этапе осуществляется шаг в направлении, обратном направлению градиента (при поиске минимума целевой функции).

При выполнении шага одновременно изменяются значения всех независимых переменных. Каждая из них получает приращение пропорциональное соответствующей составляющей градиента по данной оси.

Формульная запись алгоритма может иметь вид:

,
. (2.5)

В этом случае величина шага
при постоянном значении параметраhизменяется автоматически с изменением величины градиента и при приближении к оптимуму уменьшается.

Другая формульная запись алгоритма имеет вид:

,
. (2.6)

В этом алгоритме используется нормализованный вектор градиента, указывающий лишь направление наискорейшего изменения целевой функции, но не указывает скорости изменения по этому направлению.

В стратегии изменения шага
в этом случае используется то, что градиенты
и
отличаются по направлению. Изменение шага поиска производится в соответствии с правилом:

(2.7)

где
– угол поворота градиента наk-ом шаге, определяемый выражением

,

,
– допустимые пределы угла поворота градиента.

Характер поиска оптимума в методе градиента показан на рис. 2.1.

Момент окончания поиска можно найти проверкой на каждом шаге соотношения

,

где – заданная погрешность расчета.

Рис. 2.1. Характер движения к оптимуму в методе градиента с большой величиной шага

Недостатком градиентного метода является то, что при его использовании можно обнаружить только локальный минимум целевой функции. Для того, чтобы найти у функции другие локальные минимумы, необходимо производить поиск из других начальных точек.

Другим недостатком этого метода является значительный объем вычислений, т.к. на каждом шаге определяются значения всех частных производных оптимизируемой функции по всем независимым переменным.

Метод наискорейшего спуска

При применении метода градиента на каждом шаге нужно определять значения частных производных оптимизируемой функции по всем независимым переменным. Если число независимых переменных значительно, тогда объем вычислений существенно возрастает и время поиска оптимума увеличивается.

Сокращения объема вычислений можно добиться используя метод наискорейшего спуска.

Сущность метода заключается в следующем. После того как в начальной точке будет найден градиент оптимизируемой функции и тем самым определено направление ее наибыстрейшего убывания в указанной точке, в данном направлении делается шаг спуска (рис. 2.2).

Если значение функции в результате этого шага уменьшилось, производится очередной шаг в том же направлении, и так до тех пор, пока в этом направлении не будет найден минимум, после чего вычисляется градиент и определяется новое направление наибыстрейшего убывания целевой функции.

Рис. 2.2. Характер движения к оптимуму в методе наискорейшего спуска (–) и методе градиента (∙∙∙∙)

В сравнении с методом градиента метод наискорейшего спуска оказывается более выгодным из-за сокращения объема вычислений.

Важной особенностью метода наискорейшего спуска является то, что при его применении каждое новое направлении движения к оптимуму ортогонально предшествующему. Это объясняется тем, что движение в одном направлении производится до тех пор, пока направление движения не окажется касательным к какой-либо линии постоянного уровня.

В качестве критерия окончания поиска может использоваться то же условие, что и в рассмотренном выше методе.

Кроме того, можно также принять условие окончания поиска в форме соотношения

,

где
и
– координаты начальной и конечной точек последнего отрезка спуска. Этот же критерий может использоваться в сочетании с контролем значений целевой функции в точках
и

.

Совместное применение условий окончания поиска оправдано в тех случаях, когда оптимизируемая функция имеет резко выраженный минимум.

Рис. 2.3. К определению окончания поиска в методе наискорейшего спуска

В качестве стратегии изменения шага спуска можно использовать методы изложенные выше (2.7).

Метод релаксации

Алгоритм метода заключается в отыскании осевого направления, вдоль которого целевая функция уменьшается наиболее сильно (при поиске минимума). Рассмотрим задачу безусловной оптимизации

Для определения осевого направления в начальной точке поиска из области определяются производные , , по всем независимым переменным. Осевому направлению соответствует наибольшая по модулю производная .

Пусть – осевое направление, т.е. .

Если знак производной отрицательный, функция убывает в направлении оси, если положительный – в обратном направлении:

В точке вычисляют . По направлению убывания функции производится один шаг, определяется и в случае улучшения критерия шаги продолжаются до тех пор, пока не будет найдено минимальное значение по выбранному направлению. В этой точке вновь определяются производные по всем переменным, за исключением тех, по которой осуществляется спуск. Снова находится осевое направление наиболее быстрого убывания , по которому производятся дальнейшие шаги и т.д.

Эту процедуру повторяют до тех пор, пока не достигается оптимальная точка, при движении из которой по любому осевому направлению дальнейшего убывания не происходит. На практике критерием окончания поиска служит условие

которое при превращается в точное условие равенства нулю производных в точке экстремума. Естественно условие (3.7) может быть использовано только в том случае, если оптимум лежит внутри допустимой области изменения независимых переменных . Если же оптимум попадает на границу области , критерий типа (3.7) непригоден и вместо него следует применять положительности всех производных по допустимым осевым направлениям.

Алгоритм спуска для выбранного осевого направления может быть записан так

(3.8)

где -значение варьируемой переменной на каждом шаге спуска;

Величина k+1 шага, которая может изменяться в зависимости от номера шага:

– функция знака z;

Вектор точки, в которой последний раз производилось вычисление производных ;



Знак “+” в алгоритме (3.8) принимается при поиске max I, а знак “-” – при поиске min I.Чем меньше шаг h., тем больше количество вычислений на пути движения к оптимуму. Но при слишком большой величине h вблизи оптимума может возникнуть зацикливание процесса поиска. Вблизи оптимума необходимо, чтобы выполнялось условие h

Простейший алгоритм изменения шага h состоит в следующем. В начале спуска задается шаг , равный например, 10% от диапазона d; изменения с этим шагом производится спуск по выбранному направлению до тез пор, пока выполняется условие для двух последующих вычислений

При нарушении условия на каком-либо шаге направление спуска на оси изменяется на обратное и спуск продолжается из последней точки с уменьшенной вдвое величиной шага.

Формальная запись этого алгоритма следующая:

(3.9)

В результате использования такой стратегии ша спуска будет уменьшатся в районе оптимума по данному направлению и поиск по направлению можно прекратить, когда станет меньше E.

Затем отыскивается новое осевое направление начальный шаг для дальнейшего спуска, обычно меньший пройденного вдоль предыдущего осевого направления. Характер движения в оптимуме в данном методе показан на рисунке 3.4.

Рисунок 3.5 – Траектория движения к оптимуму в методе релаксации

Улучшение алгоритма поиска по данному методу может быть достигнуто путем применения методов однопараметрической оптимизации. При этом может быть предложена схема решения задачи:

Шаг 1. – осевое направление,

; , если ;

Шаг 2. – новое осевое направление;

Метод градиента

В этом методе используется градиент функции . Градиентом функции в точке называется вектор, проекциями которого на координатные оси являются частные производные функции по координатам (рис. 6.5)

Рисунок 3.6 – Градиент функции

.

Направление градиента – это направление наиболее быстрого возрастания функции (наиболее крутого “склона” поверхности отклика). Противоположное ему направление (направление антиградиента) – это направление наибыстрейшего убывания (направление наискорейшего “спуска” величин ).

Проекция градиента на плоскость переменных перпендикулярна касательной к линии уровня , т.е. градиент ортогонален к линиям постоянного уровня целевой функции (рис. 3.6).

Рисунок 3.7 – Траектория движения к оптимуму в методе

градиента

В отличие от метода релаксации в методе градиента шаги совершаются в направлении наибыстрейшего уменьшения (увеличения) функции .

Поиск оптимума производится в два этапа. На первом этапе находятся значения частных производных по всем переменным , которые определяют направление градиента в рассматриваемой точке. На втором этапе осуществляется шаг в направлении градиента при поиске максимума или в противоположном направлении – при поиске минимума.

Если аналитическое выражение неизвестно, то направление градиента определяется поиском на объекте пробных движений. Пусть начальная точка. Дается приращение величина , при этом . Определяют приращение и производную

Аналогично определяют производные по остальным переменным. После нахождения составляющих градиента пробные движения прекращаются и начинаются рабочие шаги по выбранному направлению. Причем величина шага тем больше, чем больше абсолютная величина вектора .

При выполнении шага одновременно изменяются значения всех независимых переменных. Каждая из них получает приращение, пропорциональное соответствующей составляющей градиента

, (3.10)

или в векторной форме

, (3.11)

где – положительная константа;

“+” – при поиске max I;

“-” – при поиске min I.

Алгоритм градиентного поиска при нормировании градиента (деление на модуль) применяется в виде

; (3.12)

(3.13)

Определяет величину шага по направлению градиента.

Алгоритм (3.10) обладает тем достоинством, что при приближении к оптимуму длина шага автоматически уменьшается. А при алгоритме (3.12) стратегию изменения можно строить независимо от абсолютной величины коэффициента.

В методе градиента каждый разделяется один рабочий шаг, после которого вновь вычисляются производные, определяется новое направление градиента и процесс поиска продолжается (рис. 3.5).

Если размер шага выбран слишком малым, то движение к оптимуму будет слишком долгим из-за необходимости вычисления в очень многих точках. Если же шаг выбран слишком большим, в район оптимума может возникнуть зацикливание.

Процесс поиска продолжается до тех пор, пока , , не станут близки к нулю или пока не будет достигнута граница области задания переменных.

В алгоритме с автоматическим уточнением шага величину уточняют так, чтобы изменение направления градиента в соседних точках и

Критерии окончания поиска оптимума:

; (3.16)

; (3.17)

где – норма вектора.

Поиск завершается при выполнении одного из условий (3.14) – (3.17).

Недостатком градиентного поиска (так же и рассмотренных выше методов) является то, что при его использовании можно обнаружить только локальный экстремум функции . Для отыскания других локальных экстремумов необходимо производить поиск из других начальных точек.

Метод Гаусса-Зейделя

Метод заключается в поочерёдном нахождении частных экстремумов целевой функции по каждому фактору. При этом на каждом этапе стабилизируют (k-1) факторов и варьируют только один i-ый фактор

Порядок расчёта: в локальной области факторного пространства на основании предварительных опытов выбирают точку, соответствующую наилучшему результату процесса, и из неё начинают движение к оптимуму. Шаг движения по каждому фактору задаётся исследователем. Вначале фиксируют все факторы на одном уровне и изменяют один фактор до тех пор, пока будет увеличение (уменьшение) функции отклика (Y), затем изменяют другой фактор при стабилизации остальных и т. д. до тех пор пока не получат желаемый результат (Y). Главное правильно выбрать шаг движения по каждому фактору.

Этот способ наиболее прост, нагляден, но движение к оптимуму длительно и метод редко приводит в оптимальную точку. В настоящее время он иногда применяется при машинном эксперименте.

Эти методы обеспечивают движение к оптимуму по прямой перпендикулярной к линиям равного отклика, т. е. в направлении градиента функции отклика.

Градиентные методы имеют несколько разновидностей, различающихся правилами выбора ступеней варьирования и рабочих шагов на каждом этапе движения к экстремуму.

Сущность всех методов состоит в следующем: первоначально на основании предварительных опытов выбирают базовую точку. Затем на каждом этапе вокруг очередной базовой точки организуют пробные эксперименты, по результатам которых оценивают новое направление градиента, после чего в этом направлении совершают один рабочий шаг.

Метод градиента (обычный) осуществляется по следующей схеме:

а) выбирают базовую точку;

б) выбирают шаги движения по каждому фактору;

в) определяют координаты пробных точек;

г) проводят эксперименты в пробных точках. В результате получают значения параметра оптимизации (Y) в каждой точке.

д) по результатам опытов вычисляют оценки составляющих вектор-градиента в т. М для каждого i-го фактора:


где H i -шаг движения по X i .

X i – координаты предыдущей рабочей точки.

ж) координаты этой рабочей точки принимают за новую базовую точку, вокруг которой проводят эксперименты в пробных точках. Вычисляют градиент и т. д., пока не достигнут желаемого параметра оптимизации (Y). Корректировка направления движения производится после каждого шага.

Достоинства метода: простота, более высокая скорость движения к оптимуму.

Недостатки: большая чувствительность к помехам. Если кривая имеет сложную форму, метод может не привести к оптимуму. Если кривая отклика пологая - метод малоэффективен. Метод не даёт информации о взаимодействии факторов.

а) Метод крутого восхождения (Бокса - Уилсона).

б) Принятие решений после крутого восхождения.

в) Симплексный метод оптимизации.

г) Достоинства и недостатки методов.

5.7.3 Метод крутого восхождения (Бокса- Уилсона)

Этот метод является синтезом лучших черт градиентных методов, метода Гаусса-Зейделя и методов ПФЭ и ДФЭ – как средства получения математической модели процесса. Решение задачи оптимизации данным методом выполняется так, чтобы шаговое движение осуществлялось в направлении наискорейшего возрастания (убывания) параметра оптимизации. Корректировка направления движения (в отличие от градиентных методов) производится не после каждого шага, а по достижению частного экстремума целевой функции. Далее в точках частного экстремума ставится новый факторный эксперимент, составляется новая математическая модель и вновь повторяется крутое восхождение до достижения глобального оптимума. Движение по градиенту начинают из нулевой точки(центра плана).

Метод крутого восхождения предполагает движение к оптимуму по градиенту.

Где i,j,k-единичные векторы в направлении соответствующих координатных осей.

Порядок расчёта .

Исходными данными является математическая модель процесса, полученная любым способом (ПФЭ, ДФЭ и т.д.).

Расчеты проводят в следующем порядке:

а) уравнение регрессии лучше перевести в натуральный вид по формулам кодирования переменных:

где x i -кодированное значение переменной x i ;

X i - натуральное значение переменной x i ;

X i Ц -центральный уровень фактора в натуральном виде;

l i -интервал варьирования фактора x i в натуральном виде.

б) вычисляют шаги движения к оптимуму по каждому фактору.

Для этого вычисляют произведения коэффициентов уравнения регрессии в натуральном виде на соответствующие интервалы варьирования

B i *.l I ,

Затем выбирают из полученных произведений максимальное по модулю,а соответствующий этому произведению фактор принимают за базовый фактор(B a l a). Для базового фактора следует установить шаг движения, который рекомендуется задавать меньшим или равным интервалу варьирования базового фактоpa


Знак шага движения l a ’ должен совпадать со знаком коэффициента уравнения регрессии, соответствующего базовому фактору (B a). Величина шагов для других факторов вычисляется пропорционально базовому по формуле:

Знаки шагов движения также должны совпадать со знаками соответствующих коэффициентов уравнения регрессии.

в) вычисляют функцию отклика в центре плана, т. е. при значениях факторов равных центральному уровню факторов, т. к. движение к оптимуму начинают из центра плана.

Далее производят вычисление параметра оптимизации, увеличивая значения факторов на величину соответствующего шага движения, если хотят получить Y max . В противном случае, если необходимо получить Y min , значения факторов уменьшают на величину шага движения.

Процедуру повторяют, последовательно увеличивая количество шагов до тех пор, пока не достигнут желаемого значения параметра оптимизации (Y). Каждый из факторов после g шагов будет иметь значение:

Если Y® max X i =X i ц +gl i ` ’

если Y® min .X i =X i ц -gl i ` . (5.36)

1. Какие высказывания неверны? Метод Данцига

Ответ: можно отнести к группе градиентных

2. Какие из нижеперечисленных высказываний истинны:

Ответ: Задача ЛП с несовместной системой ограничений называется открытой

3. Какие из перечисленных методов не являются активными

Ответ: золотого сечения

4. Какие из приведенных высказываний верны:

Ответ: задача транспортного типа – частный случай задачи линейного программирования

5. Какие из приведенных утверждений истинны: Метод наименьших квадратов

Ответ: сводится в итоге к решению системы n линейных уравнений при аппроксимации результатов многочленами n-го порядка

6. Какие из указанных методов не являются градиентными

Ответ: симплексный метод (метод Нелдера-Мида)

7. Какие из указанных методов позволяют найти глобальный экстремум полимодальной функции

Ответ: сканирования

8. Какие методы среди перечисленных являются методами покоординатного поиска

Ответ: касательный

9. Отметьте верные утверждения

Ответ: метод простого перебора нельзя использовать при отыскании экстремума согласно процедуре Гаусса-Зайделя

10. Укажите истинное высказывание

Ответ: планом называется любое допустимое решение задачи

11. Укажите неправильное высказывание

Ответ: плоскость, содержащая хотя бы одну угловую точку выпуклого многогранника называется опорной плоскостью этого многогранника

12. Укажите номера правильных утверждений

Ответ: задачи транспортного типа нельзя решать методом Данцига, так как они относятся к задачам дискретного программирования(1). Первоначальный план в симплексном методе получаем приравниваем нулю всех базисных переменных(3)

13. Укажите правильное утверждение?

Ответ: базисное решение задачи ЛП вырожденное, если хотя бы одна из свободных переменных равна нулю

14. Что из нижеследующего неверно:

Ответ: любая точка на прямой является выпуклой линейной комбинацией двух точек, через которые проведена эта прямая

15. Что истинно из высказываний ниже?

Ответ: задача о коммивояжере относится к области дискретного программирования

16. Что истинно из следующего:

Ответ: одна из основных проблем оптимизации – «проблема размерности»

17. Что неверно в приведенных высказываниях?

Ответ: если функция цели задачи ЛП достигает экстремума в нескольких точках, то она достигает того же значения в любой точке, являющейся выпуклой линейной комбинацией этих точек.

18. Что из приведенных высказываний неверно?

Ответ: задачу ЛП можно решить процедурой упорядоченного перехода от одного плана к другому.

19. Что из предлагаемого истинно

Ответ: внутри области допустимых решений задачи ЛП не может быть экстремум

20. Что ложно из нижеприведенного?

Ответ: Для отыскания экстремума линейной целевой функции симплексным методом необходимо выполнить n-m итераций, n- количество неизвестных задачи, m- число ограничений общего вида