Пусть производится стрельба по заданной мишени до первого попадания, при этом вероятность p попадания в цель в каждом выстреле одна и та же и не зависит от результатов предыдущих выстрелов. Другими словами, в рассматриваемом опыте осуществляется схема Бернулли. В качестве случайной величины X будем рассматривать число произведенных выстрелов. Очевидно, что возможными значениями случайной величины X являются натуральные числа: x 1 =1, x 2 =2, … тогда вероятность того, что понадобится k выстрелов будет равна

Полагая в этой формуле k =1,2, … получим геометрическую прогрессию с первым членом p и множителем q :

По этой причине распределение, определяемое формулой (6.11) называется геометрическим .

Используя формулу суммы бесконечно убывающей геометрической прогрессии, легко убедится, что

.

Найдем числовые характеристики геометрического распределения.

По определению математического ожидания для ДСВ имеем

.

Дисперсию вычислим по формуле

.

Для этого найдем

.

Следовательно,

.

Итак, математическое ожидание и дисперсия геометрического распределения равна

. (6.12)

6.4.* Производящая функция

При решении задач, связанных с ДСВ, часто используются методы комбинаторики. Одним из наиболее развитых теоретических методов комбинаторного анализа является метод производящих функций, который является одним из самых сильных методов и в применениях. Кратко познакомимся с ним.

Если случайная величина  принимает только целые неотрицательные значения, т.е.

,

то производящей функцией распределения вероятностей случайной величины  называется функция

, (6.13)

где z – действительная или комплексная переменная. Отметим, что между множеством производящих функций   (x ) и множеством распределений {P(=k )} существует взаимно однозначное соответствие .

Пусть случайная величина  имеет биномиальное распределение

.

Тогда, используя формулу бинома Ньютона, получим

,

т.е. производящая функция биномиального распределения имеет вид

. (6.14)

Добавление. Производящая функция распределения Пуассона

имеет вид

. (6.15)

Производящая функция геометрического распределения

имеет вид

. (6.16)

При помощи производящих функций удобно находить основные числовые характеристики ДСВ. Например, первый и второй начальный моменты связаны с производящей функцией следующими равенствами:

, (6.17)

. (6.18)

Метод производящих функций часто бывает удобен тем, что в некоторых случаях функцию распределения ДСВ очень трудно определить, тогда как производящую функцию порой легко найти. Например, рассмотрим схему последовательных независимых испытаний Бернулли, но внесем в нее одно изменение. Пусть вероятность осуществления события A от испытания к испытанию меняется. Это означает, что формула Бернулли для такой схемы становится неприменимой. Задача нахождения функции распределения в таком случае представляет значительные трудности. Однако для данной схемы легко находится производящая функция, а, следовательно, легко находятся и соответствующие числовые характеристики.

Широкое применение производящих функций основано на том, что изучение сумм случайных величин можно заменить изучением произведений соответствующих производящих функций. Так, если  1 ,  2 , …,  n независимы, то

Пусть p k =P k (A ) – вероятность "успеха" в k -м испытании в схеме Бернулли (соответственно, q k =1–p k – вероятность "неуспеха" в k -м испытании). Тогда, в соответствие с формулой (6.19), производящая функция будет иметь вид

. (6.20)

Пользуясь данной производящей функцией, можем написать

.

Здесь учтено, что p k + q k =1. Теперь по формуле (6.1) найдем второй начальный момент. Для этого предварительно вычислим

и
.

В частном случае p 1 =p 2 =…=p n =p (т.е. в случае биномиального распределения) из полученных формул следует, что M=np , D=npq .

В геометрическом распределении опыты в схеме Бернулли проводятся до первого успеха, с вероятностью успеха р в единичном опыте.
Примерами таких величин могут быть:

  • число выстрелов до первого попадания;
  • число испытаний прибора до первого отказа;
  • число шаров до первого появления белого. см. решение ;
  • число бросаний монеты до первого выпадения решки и т.д.
Ряд геометрического распределения ДСВ имеет вид:
X 1 2 3 m
p p qp q 2 p q m-1 p

Вероятности образуют геометрическую прогрессию с первым членом р и знаменателем q .
Математическое ожидание и дисперсия случайной величины Х, имеющей геометрическое распределение с параметром р, равны:

Гипергеометрическое распределение

Дискретная случайная величина имеет гипергеометрическое распределение с параметрами n, k, m, если она принимает значения 0, 1, 2, ... с вероятностями .
Гипергеометрическое распределение имеет случайная величина Х, равная числу объектов, обладающих заданным свойством, среди m объектов, случайно извлеченных (без возврата) из совокупности n объектов, k из которых обладают этим свойством.
Например:
  • В партии из 10 деталей 3 бракованных. Извлекается 4 детали. Х – число годных деталей среди извлеченных. (m = 4, n = 10, k = 3). см. решение
Математическое ожидание случайной величины Х, имеющей гипергеометрическое распределение, и ее дисперсия равны:

Пример №1 . В урне 2 белых и 3 черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается. Составить таблицу распределения случайной величины X – числа произведенных опытов, найти F(x), P(X ≤ 2), M(X), D(X).·
Решение: Обозначим через А – появление белого шара. Опыт может быть проведен только один раз, если белый шар появится сразу:. Если же в первый раз белый шар не появился, а появился при втором извлечении, то X=2. Вероятность такого события равна . Аналогично: , , . Запишем данные в таблицу:


X

1

2

3

4

P

0,4

0,3

0,2

0,1

НайдемF(x):

Найдем P(X ≤ 2) = P(X = 1 или X = 2) = 0,4 + 0,3 = 0,7
M(X) = 1 · 0,4 + 2 · 0,3 +3 · 0,2 + 4 · 0,1 = 2.
D(X) = (1-2) 2 · 0,4 + (2-2) 2 · 0,3 +(3-2) 2 · 0,2 + (4-2) 2 · 0,1 = 1.

Пример №2 . В ящике содержится 11 деталей, среди которых 5 бракованных. Сборщик наудачу извлекает 4 деталей.
1. Найти вероятность того, что среди извлеченных деталей: a ) 4 бракованных; b ) одна бракованная; c ) две бракованные; d ) хотя бы одна бракованная.
2. Составить закон распределения случайной величины X – числа бракованных деталей среди извлеченных.
3. Найти M(X), D(X), σ(X).
4. Вычислить P(1
Решение:
1. Найти вероятность того, что среди извлеченных деталей:
a ) 4 бракованных;

b ) одна бракованная;
Общее число возможных элементарных исходов для данных испытаний равно числу способов, которыми можно извлечь 4 детали из 11:

Подсчитаем число исходов, благоприятствующих данному событию (среди 4 деталей ровно 1 деталь дефектная):

Остальные 3 детали можно выбрать из 7:

Следовательно, число благоприятствующих исходов равно: 5*20 = 100
Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех элементарных исходов: P(1) = 100/330 = 0,303
c ) две бракованные;

d ) хотя бы одна бракованная.
Вероятность того, что нет дефектных деталей. X = 0.

Тогда вероятность того, что хотя бы одна бракованная составит:
P = 1 – P(0) = 1 – 0,0455 = 0,95

2. Составим закон распределения P(x), X -числа бракованных деталей среди извлеченных.
Найдем вероятность появления трех бракованных изделий.


X

0

1

2

3

4

P

0,0455

0,303

0,4545

0,182

0,015

2. Найдем M(X), D(X), σ(X).
Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 0*0.0455 + 1*0.303 + 2*0.4545 + 3*0.182 + 4*0.015 = 1.818
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 0 2 *0.0455 + 1 2 *0.303 + 2 2 *0.4545 + 3 2 *0.182 + 4 2 *0.015 - 1.818 2 = 0.694
Среднее квадратическое отклонение σ(x) .

3. Вычислим P(1F(x≤0) = 0
F(0< x ≤1) = 0.0455
F(1< x ≤2) = 0.303 + 0.0455 = 0.349
F(2< x ≤3) = 0.455 + 0.349 = 0.803
F(3< x ≤4) = 0.182 + 0.803 = 0.985
F(x>4) = 1
Вероятность попадания СВ в тот ли иной интервал находится по формуле:
P(a ≤ X < b) = F(b) - F(a)
Найдем вероятность того, что СВ будет находиться в интервале 1 ≤ X < 4
P(1 ≤ X < 4) = F(4) - F(1) = 0.985 - 0.0455 = 0.9395

Пример №3 . В партии 7 деталей 3 бракованные. Контролер наудачу достает 4 детали. Составить закон распределения случайной величины Х – числа годных деталей в выборке. Найти математическое ожидание и дисперсию Х. Построить график функции распределения.
Всего исправных деталей: 7-3 = 4
1. Найдем вероятность того, что среди выбранных 4 деталей одна исправная.
Общее число возможных элементарных исходов для данных испытаний равно числу способов, которыми можно извлечь 4 детали из 7:

Подсчитаем число исходов, благоприятствующих данному событию.

ЛЕКЦИЯ 8

Распределения вероятностей дискретных случайных величин. Биномиальное распределение. Распределение Пуассона. Геометрическое распределение. Производящая функция.

6. РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ
ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН

Биномиальное распределение

Пусть производится n независимых испытаний, в каждом из которых событие A может либо появится, либо не появится. Вероятность p появления события A во всех испытаниях постоянна и не изменяется от испытания к испытанию. Рассмотрим в качестве случайной величины X число появлений события A в этих испытаниях. Формула, позволяющая найти вероятность появления события A
ровно k раз в n испытаниях, как известно, описывается формулой Бернулли

Распределение вероятностей, определяемое формулой Бернулли, называется биномиальным .

Этот закон назван "биномиальным" потому, что правую часть можно рассматривать как общий член разложения бинома Ньютона

Запишем биномиальный закон в виде таблицы

X n n –1 k
P p n np n –1 q q n

Найдем числовые характеристики этого распределения.

.

Запишем равенство, являющееся бином Ньютона

.

и продифференцируем его по p. В результате получим

.

Умножим левую и правую часть на p :

.

Учитывая, что p+q =1, имеем

(6.2)

Итак, математическое ожидание числа появлений событий в n независимых испытаниях равно произведению числа испытаний n на вероятность p появления события в каждом испытании .

Дисперсию вычислим по формуле

Для этого найдем

.

Предварительно продифференцируем формулу бинома Ньютона два раза по p :

и умножим обе части равенства на p 2:

Следовательно,

Итак, дисперсия биномиального распределения равна

. (6.3)

Данные результаты можно получить и из чисто качественных рассуждений. Общее число X появлений события A во всех испытаниях складываются из числа появлений события в отдельных испытаниях. Поэтому если X 1 – число появлений события в первом испытании, X 2 – во втором и т.д., то общее число появлений события A во всех испытаниях равно X=X 1 +X 2 +…+X n . По свойству математического ожидания:



Каждое из слагаемых правой части равенства есть математическое ожидание числа событий в одном испытании, которое равно вероятности события. Таким образом,

По свойству дисперсии:

Так как , а математическое ожидание случайной величины , которое может принимать только два значения, а именно 1 2 с вероятностью p и 0 2 с вероятностью q , то . Таким образом, В результате, получаем

Воспользовавшись понятием начальных и центральных моментов, можно получить формулы для асимметрии и эксцесса:

. (6.4)

Многоугольник биномиального распределения имеет следующий вид (см. рис. 6.1). Вероятность P n (k ) сначала возрастает при увеличении k , достигает наибольшего значения и далее начинает убывать. Биномиальное распределение асимметрично, за исключением случая p =0,5. Отметим, что при большом числе испытаний n биномиальное распределение весьма близко к нормальному. (Обоснование этого предложения связано с локальной теоремой Муавра-Лапласа.)

Число m 0 наступлений события называется наивероятнейшим , если вероятность наступления события данное число раз в этой серии испытаний наибольшая (максимум в многоугольнике распределения) . Для биномиального распределения

. (6.5)

Замечание. Данное неравенство можно доказать, используя рекуррентную формулу для биномиальных вероятностей:

(6.6)

Пример 6.1. Доля изделий высшего сорта на данном предприятии составляет 31%. Чему равно математического ожидание и дисперсия, также наивероятнейшее число изделий высшего сорта в случайно отобранной партии из 75 изделий?

Решение. Поскольку p =0,31, q =0,69, n =75, то

M[X ] = np = 75×0,31 = 23,25; D[X ] = npq = 75×0,31×0,69 = 16,04.

Для нахождения наивероятнейшего числа m 0 , составим двойное неравенство

Отсюда следует, что m 0 = 23.

Распределение Пуассона

Как было уже отмечено, биномиальное распределение приближается к нормальному при n ®¥. Однако это не имеет места, если наряду с увеличением n одна из величин p или q стремится к нулю. В этом случае имеет место асимптотическая формула Пуассона, т.е. при n ®¥, p ®0

, (6.7)

где l=np . Эта формула определяет закон распределения Пуассона , который имеет самостоятельное значение, а не только как частный случай биномиального распределения. В отличие от биномиального распределения здесь случайная величина k может принимать бесконечное множество значений: k =0,1,2,…

Закон Пуассона описывает число событий k, происходящих за одинаковые промежутки времени при условии, что события происходят независимо друг от друга с постоянной средней интенсивностью, которая характеризуется параметром l. Многоугольник распределения Пуассона показан на рис. 6.2. Отметим, что при больших l рас
пределение Пуассона приближается к нормальному. Поэтому распределение Пуассона применяется, как правило, в тех случаях, когда l имеет порядок единицы, при этом число испытаний n должно быть велико, а вероятность появления события p в каждом испытании мала. В связи с этим закон Пуассона часто называют еще законом распределения редких явлений .

Примерами ситуаций, в которых возникает распределение Пуассона, могут служить распределения: 1) числа определенных микробов в единице объема; 2) числа вылетевших электронов с накаленного катода за единицу времени; 3) числа a-частиц, испускаемых радиоактивным источником за определенных промежуток времени; 4) числа вызовов, поступающих на телефонную станцию за определенное время суток и т.д.

Запишем закон Пуассона в виде таблицы

X k
P

Проверим, что сумма всех вероятностей равна единице:

Найдем числовые характеристики этого распределения. По определению математического ожидания для ДСВ имеем

Отметим, что в последней сумме суммирование начинается с k =1, т.к. первый член суммы, соответствующий k =0, равен нулю.

Для нахождения дисперсии найдем предварительно математического ожидание квадрата случайной:

Таким образом, математическое ожидание и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру этого распределения

. (6.8)

В этом состоит отличительная особенность распределения Пуассона. Так, если на основании опытных данных было получено, что математическое ожидание и дисперсия некоторой величины близки между собой, то есть основания предполагать, что данная случайная величина распределена в соответствии с законом Пуассона.

Воспользовавшись понятием начальных и центральных моментов, можно показать, что для распределения Пуассона коэффициент асимметрии и эксцесс равны:

. (6.9)

Поскольку параметр l всегда положителен, то у распределения Пуассона всегда положительная асимметрия и эксцесс.

Покажем теперь, что формулу Пуассона можно рассматривать как математическую модель простейшего потока событий.

Потоком событий называют последовательность событий, которые наступают в случайные моменты времени. Поток называется простейшим , если он обладает свойствами стационарности , отсутствия последействия и ординарности .

Интенсивностью потока l называют среднее число событий, которые появляются в единицу времени.

Если постоянная интенсивности потока l известна, то вероятность появления k событий простейшего потока за время t определяется формулой Пуассона:

. (6.10)

Эта формула отражает все свойства простейшего потока. Более того, любой простейший поток описывается формулой Пуассона, поэтому простейшие потоки часто называют пуассоновскими .

Свойство стационарности k событий в любом промежутке времени зависит только от числа k и от длительности t промежутка времени и не зависит от начала его отсчета. Другими словами, если поток обладает свойством стационарности, то вероятность появления k событий за промежуток времени t есть функция, зависящая только от k и от t .

В случае простейшего потока из формулы Пуассона (6.10) следует, что вероятность k событий за время t , при заданной интенсивности является функцией только двух аргументов: k и t , что характеризует свойство стационарности.

Свойство отсутствия последействия состоит в том, что вероятность появления k событий в любом промежутке времени зависит от того, появлялись или не появлялись события в моменты времени, предшествующие началу рассматриваемого промежутка. Другими словами, предыстория потока не влияет на вероятности появления событий в ближайшем будущем.

В случае простейшего потока в формуле Пуассона (6.10) не используется информация о появлении событий до начала рассматриваемого промежутка времени, что характеризует свойство отсутствия последействия.

Свойство ординарности состоит в том, что появление двух или более событий за малый промежуток времени практически невозможно. Другими словами, вероятность появление более одного события за малый промежуток времени пренебрежимо мала по сравнению с вероятностью появления только одного события.

Покажем, что формула Пуассона (6.10) отражает свойство ординарности. Положив k =0 и k =1, найдем соответственно вероятности не появления событий и появления одного события:

Следовательно, вероятность появления более одного события равна

Используя разложение функции в ряд Маклорена, после элементарных преобразований получим

.

Сравнивая P t (1) и P t (k >1), заключаем, что при малых значениях t вероятность появления более одного события пренебрежимо мала по сравнению с вероятностью наступления одного события, что характеризует свойство ординарности.

Пример 6.2. В наблюдениях Резерфорда и Гейгера радиоактивное вещество за промежуток времени 7,5 сек испускало в среднем 3,87 a-частицы. Найти вероятность того, что за 1 сек это вещество испустит хотя бы одну частицу.

Решение. Как мы уже отмечали, распределение числа a-частиц, испускаемых радиоактивным источником за определенных промежуток времени описывается формулой Пуассона, т.е. образует простейший поток событий. Поскольку интенсивность испускания a-частиц за 1 сек равно

,

то формула Пуассона (6.10) примет вид

Таким образом, вероятность того, что за t =1 сек вещество испустит хотя бы одну частицу будет равно

Геометрическое распределение

Пусть производится стрельба по заданной мишени до первого попадания, при этом вероятность p попадания в цель в каждом выстреле одна и та же и не зависит от результатов предыдущих выстрелов. Другими словами, в рассматриваемом опыте осуществляется схема Бернулли. В качестве случайной величины X будем рассматривать число произведенных выстрелов. Очевидно, что возможными значениями случайной величины X являются натуральные числа: x 1 =1, x 2 =2, … тогда вероятность того, что понадобится k выстрелов будет равна

. (6.11)

Полагая в этой формуле k =1,2, … получим геометрическую прогрессию с первым членом p и множителем q :

По этой причине распределение, определяемое формулой (6.11) называется геометрическим .

Используя формулу суммы бесконечно убывающей геометрической прогрессии, легко убедится, что

.

Найдем числовые характеристики геометрического распределения.

По определению математического ожидания для ДСВ имеем

.

Дисперсию вычислим по формуле

.

Для этого найдем

.

Следовательно,

.

Итак, математическое ожидание и дисперсия геометрического распределения равна

. (6.12)

6.4.* Производящая функция

При решении задач, связанных с ДСВ, часто используются методы комбинаторики. Одним из наиболее развитых теоретических методов комбинаторного анализа является метод производящих функций, который является одним из самых сильных методов и в применениях. Кратко познакомимся с ним.

Если случайная величина x принимает только целые неотрицательные значения, т.е.

,

то производящей функцией распределения вероятностей случайной величины x называется функция

, (6.13)

где z – действительная или комплексная переменная. Отметим, что между множеством производящих функций j x (x ) и множеством распределений {P(x=k )} существует взаимно однозначное соответствие .

Пусть случайная величина x имеет биномиальное распределение

.

Тогда, используя формулу бинома Ньютона, получим

,

т.е. производящая функция биномиального распределения имеет вид

. (6.14)

Добавление. Производящая функция распределения Пуассона

имеет вид

. (6.15)

Производящая функция геометрического распределения

имеет вид

. (6.16)

При помощи производящих функций удобно находить основные числовые характеристики ДСВ. Например, первый и второй начальный моменты связаны с производящей функцией следующими равенствами:

, (6.17)

. (6.18)

Метод производящих функций часто бывает удобен тем, что в некоторых случаях функцию распределения ДСВ очень трудно определить, тогда как производящую функцию порой легко найти. Например, рассмотрим схему последовательных независимых испытаний Бернулли, но внесем в нее одно изменение. Пусть вероятность осуществления события A от испытания к испытанию меняется. Это означает, что формула Бернулли для такой схемы становится неприменимой. Задача нахождения функции распределения в таком случае представляет значительные трудности. Однако для данной схемы легко находится производящая функция, а, следовательно, легко находятся и соответствующие числовые характеристики.

Широкое применение производящих функций основано на том, что изучение сумм случайных величин можно заменить изучением произведений соответствующих производящих функций. Так, если x 1 , x 2 , …, x n независимы, то

Пусть p k =P k (A ) – вероятность "успеха" в k -м испытании в схеме Бернулли (соответственно, q k =1–p k – вероятность "неуспеха" в k -м испытании). Тогда, в соответствие с формулой (6.19), производящая функция будет иметь вид

. (6.20)

Пользуясь данной производящей функцией, можем написать

.

Здесь учтено, что p k +q k =1. Теперь по формуле (6.1) найдем второй начальный момент. Для этого предварительно вычислим

и .

В частном случае p 1 =p 2 =…=p n =p (т.е. в случае биномиального распределения) из полученных формул следует, что Mx=np , Dx=npq .

Рассмотрим Геометрическое распределение, вычислим его математическое ожидание и дисперсию. С помощью функции MS EXCEL ОТРБИНОМ.РАСП() построим графики функции распределения и плотности вероятности.

Геометрическое распределение (англ. Geometric distribution ) является частным случаем (при r=1).

Пусть проводятся испытания, в каждом из которых может произойти только событие «успех» с вероятностью p или событие «неудача» с вероятностью q =1-p ().

Определим x как номер испытания, в котором был зарегистрирован первый успех. В этом случае случайная величина x будет иметь Геометрическое распределение:

Геометрическое распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Отрицательного Биномиального распределения имеется функция ОТРБИНОМ.РАСП() , английское название NEGBINOM.DIST(), которая позволяет вычислить вероятность возникновения количества неудач до получения заданного числа успеха при заданной вероятности успеха.

Для Геометрического распределения второй аргумент этой функции должен быть 1, т.к. нас интересует только первый успех.

Это определение несколько отличается от формулировки приведенной выше, где вычисляется вероятность, что первый успех произойдет после x испытаний . Различие сводится к диапазону изменения диапазона x : если вероятность определена через количество испытаний, то х может принимать значения начиная с 1, а если через количество неудач, то – начиная с 0. Поэтому справедлива формула: p(x_неудач )= p(x_испытаний -1). См. файл примера лист Пример , где приведено 2 способа расчета.

Ниже используется подход, принятый в функции MS EXCEL: через количество неудач.

Чтобы вычислить функцию плотности вероятности p(x), см. формулу выше, необходимо установить четвертый аргумент в функции ОТРБИНОМ.РАСП() равным ЛОЖЬ. Для вычисления , необходимо установить четвертый аргумент равным ИСТИНА.

Примечание : До MS EXCEL 2010 в EXCEL была функция ОТРБИНОМРАСП() , которая позволяет вычислить только плотность вероятности . В файле примера приведена формула на основе функции ОТРБИНОМРАСП() для вычисления интегральной функции распределения . Там же приведена формула для вычисления вероятности через определение.

В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения .

Примечание : Для удобства написания формул для параметра p в файле примера создано .

Примечание : В функции ОТРБИНОМ.РАСП() при нецелом значении х , . Например, следующие формулы вернут одно и тоже значение:
ОТРБИНОМ.РАСП(2 ; 1; 0,4; ИСТИНА)=
ОТРБИНОМ.РАСП(2,9 ; 1; 0,4; ИСТИНА)

Задачи

Решения задач приведены в файле примера на листе Пример .

Задача1 . Нефтяная компания бурит скважины для добычи нефти. Вероятность обнаружить нефть в скважине равна 20%.
Какова вероятность, что первая нефть будет получена именно в третью попытку?
Какова вероятность, что для обнаружения первой нефти потребуется три попытки?
Решение1 :
=ОТРБИНОМ.РАСП(3-1; 1; 0,2; ЛОЖЬ)
=ОТРБИНОМ.РАСП(3-1; 1; 0,2; ИСТИНА)

Задача2 . Рейтинговое агентство делает опрос случайных прохожих в городе о любимой марке автомобиля. Пусть известно, что у 1% горожан любимым автомобилем является Lada Granta . Какова вероятность, что встретить первого почитателя этой марки автомобиля после опроса 10 человек?
Решение2 : =ОТРБИНОМ.РАСП(10-1; 1; 0,01; ИСТИНА )=9,56%

Можно выделить наиболее часто встречающиеся законы распределения дискретных случайных величин:

  • Биномиальный закон распределения
  • Пуассоновский закон распределения
  • Геометрический закон распределения
  • Гипергеометрический закон распределения

Для данных распределений дискретных случайных величин расчет вероятностей их значений, а также числовых характеристик (математическое ожидание, дисперсия, и т.д.) производится по определенных «формулам». Поэтому очень важно знать данные типы распределений и их основные свойства.


1. Биномиальный закон распределения.

Дискретная случайная величина $X$ подчинена биномиальному закону распределения вероятностей, если она принимает значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$. Фактически, случайная величина $X$ - это число появлений события $A$ в $n$ независимых испытаний . Закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & \dots & n \\
\hline
p_i & P_n\left(0\right) & P_n\left(1\right) & \dots & P_n\left(n\right) \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание $M\left(X\right)=np$, дисперсия $D\left(X\right)=np\left(1-p\right)$.

Пример . В семье двое детей. Считая вероятности рождения мальчика и девочки равными $0,5$, найти закон распределения случайной величины $\xi $ - числа мальчиков в семье.

Пусть случайная величина $\xi $ - число мальчиков в семье. Значения, которые может принимать $\xi:\ 0,\ 1,\ 2$. Вероятности этих значений можно найти по формуле $P\left(\xi =k\right)=C^k_n\cdot p^k\cdot {\left(1-p\right)}^{n-k}$, где $n=2$ - число независимых испытаний, $p=0,5$ - вероятность появления события в серии из $n$ испытаний. Получаем:

$P\left(\xi =0\right)=C^0_2\cdot {0,5}^0\cdot {\left(1-0,5\right)}^{2-0}={0,5}^2=0,25;$

$P\left(\xi =1\right)=C^1_2\cdot 0,5\cdot {\left(1-0,5\right)}^{2-1}=2\cdot 0,5\cdot 0,5=0,5;$

$P\left(\xi =2\right)=C^2_2\cdot {0,5}^2\cdot {\left(1-0,5\right)}^{2-2}={0,5}^2=0,25.$

Тогда закон распределения случайной величины $\xi $ есть соответствие между значениями $0,\ 1,\ 2$ и их вероятностями, то есть:

$\begin{array}{|c|c|}
\hline
\xi & 0 & 1 & 2 \\
\hline
P(\xi) & 0,25 & 0,5 & 0,25 \\
\hline
\end{array}$

Сумма вероятностей в законе распределения должна быть равна $1$, то есть $\sum _{i=1}^{n}P(\xi _{{\rm i}})=0,25+0,5+0,25=1 $.

Математическое ожидание $M\left(\xi \right)=np=2\cdot 0,5=1$, дисперсия $D\left(\xi \right)=np\left(1-p\right)=2\cdot 0,5\cdot 0,5=0,5$, среднее квадратическое отклонение $\sigma \left(\xi \right)=\sqrt{D\left(\xi \right)}=\sqrt{0,5}\approx 0,707$.

2. Закон распределения Пуассона.

Если дискретная случайная величина $X$ может принимать только целые неотрицательные значения $0,\ 1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$, то говорят, что она подчинена закону распределения Пуассона с параметром $\lambda $. Для такой случайной величины математическое ожидание и дисперсия равны между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda $.

Замечание . Особенность этого распределения заключается в том, что мы на основании опытных данных находим оценки $M\left(X\right),\ D\left(X\right)$, если полученные оценки близки между собой, то у нас есть основание утверждать, что случайная величина подчинена закону распределения Пуассона.

Пример . Примерами случайных величин, подчиненных закону распределения Пуассона, могут быть: число автомашин, которые будут обслужены завтра автозаправочной станцией; число бракованных изделий в произведенной продукции.

Пример . Завод отправил на базу $500$ изделий. Вероятность повреждения изделия в пути равна $0,002$. Найти закон распределения случайной величины $X$, равной числу поврежденных изделий; чему равно $M\left(X\right),\ D\left(X\right)$.

Пусть дискретная случайная величина $X$ - число поврежденных изделий. Такая случайная величина подчинена закону распределения Пуассона с параметром $\lambda =np=500\cdot 0,002=1$. Вероятности значений равны $P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$. Очевидно, что все вероятности всех значений $X=0,\ 1,\ \dots ,\ 500$ перечислить невозможно, поэтому мы ограничимся лишь первыми несколькими значениями.

$P\left(X=0\right)={{1^0}\over {0!}}\cdot e^{-1}=0,368;$

$P\left(X=1\right)={{1^1}\over {1!}}\cdot e^{-1}=0,368;$

$P\left(X=2\right)={{1^2}\over {2!}}\cdot e^{-1}=0,184;$

$P\left(X=3\right)={{1^3}\over {3!}}\cdot e^{-1}=0,061;$

$P\left(X=4\right)={{1^4}\over {4!}}\cdot e^{-1}=0,015;$

$P\left(X=5\right)={{1^5}\over {5!}}\cdot e^{-1}=0,003;$

$P\left(X=6\right)={{1^6}\over {6!}}\cdot e^{-1}=0,001;$

$P\left(X=k\right)={{{\lambda }^k}\over {k!}}\cdot e^{-\lambda }$

Закон распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & ... & k \\
\hline
P_i & 0,368; & 0,368 & 0,184 & 0,061 & 0,015 & 0,003 & 0,001 & ... & {{{\lambda }^k}\over {k!}}\cdot e^{-\lambda } \\
\hline
\end{array}$

Для такой случайной величины математическое ожидание и дисперсия равным между собой и равны параметру $\lambda $, то есть $M\left(X\right)=D\left(X\right)=\lambda =1$.

3. Геометрический закон распределения.

Если дискретная случайная величина $X$ может принимать только натуральные значения $1,\ 2,\ \dots ,\ n$ с вероятностями $P\left(X=k\right)=p{\left(1-p\right)}^{k-1},\ k=1,\ 2,\ 3,\ \dots $, то говорят, что такая случайная величина $X$ подчинена геометрическому закону распределения вероятностей. Фактически, геометрическое распределения представляется собой испытания Бернулли до первого успеха.

Пример . Примерами случайных величин, имеющих геометрическое распределение, могут быть: число выстрелов до первого попадания в цель; число испытаний прибора до первого отказа; число бросаний монеты до первого выпадения орла и т.д.

Математическое ожидание и дисперсия случайной величины, подчиненной геометрическому распределению, соответственно равны $M\left(X\right)=1/p$, $D\left(X\right)=\left(1-p\right)/p^2$.

Пример . На пути движения рыбы к месту нереста находится $4$ шлюза. Вероятность прохода рыбы через каждый шлюз $p=3/5$. Построить ряд распределения случайной величины $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Найти $M\left(X\right),\ D\left(X\right),\ \sigma \left(X\right)$.

Пусть случайная величина $X$ - число шлюзов, пройденных рыбой до первого задержания у шлюза. Такая случайная величина подчинена геометрическому закону распределения вероятностей. Значения, которые может принимать случайная величина $X:$ 1, 2, 3, 4. Вероятности этих значений вычисляются по формуле: $P\left(X=k\right)=pq^{k-1}$, где: $p=2/5$ - вероятность задержания рыбы через шлюз, $q=1-p=3/5$ - вероятность прохода рыбы через шлюз, $k=1,\ 2,\ 3,\ 4$.

$P\left(X=1\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^0={{2}\over {5}}=0,4;$

$P\left(X=2\right)={{2}\over {5}}\cdot {{3}\over {5}}={{6}\over {25}}=0,24;$

$P\left(X=3\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^2={{2}\over {5}}\cdot {{9}\over {25}}={{18}\over {125}}=0,144;$

$P\left(X=4\right)={{2}\over {5}}\cdot {\left({{3}\over {5}}\right)}^3+{\left({{3}\over {5}}\right)}^4={{27}\over {125}}=0,216.$

$\begin{array}{|c|c|}
\hline
X_i & 1 & 2 & 3 & 4 \\
\hline
P\left(X_i\right) & 0,4 & 0,24 & 0,144 & 0,216 \\
\hline
\end{array}$

Математическое ожидание:

$M\left(X\right)=\sum^n_{i=1}{x_ip_i}=1\cdot 0,4+2\cdot 0,24+3\cdot 0,144+4\cdot 0,216=2,176.$

Дисперсия:

$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2=}0,4\cdot {\left(1-2,176\right)}^2+0,24\cdot {\left(2-2,176\right)}^2+0,144\cdot {\left(3-2,176\right)}^2+$

$+\ 0,216\cdot {\left(4-2,176\right)}^2\approx 1,377.$

Среднее квадратическое отклонение:

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{1,377}\approx 1,173.$

4. Гипергеометрический закон распределения.

Если $N$ объектов, среди которых $m$ объектов обладают заданным свойством. Случайных образом без возвращения извлекают $n$ объектов, среди которых оказалось $k$ объектов, обладающих заданным свойством. Гипергеометрическое распределение дает возможность оценить вероятность того, что ровно $k$ объектов в выборке обладают заданным свойством. Пусть случайная величина $X$ - число объектов в выборке, обладающих заданным свойством. Тогда вероятности значений случайной величины $X$:

$P\left(X=k\right)={{C^k_mC^{n-k}_{N-m}}\over {C^n_N}}$

Замечание . Статистическая функция ГИПЕРГЕОМЕТ мастера функций $f_x$ пакета Excel дает возможность определить вероятность того, что определенное количество испытаний будет успешным.

$f_x\to $ статистические $\to $ ГИПЕРГЕОМЕТ $\to $ ОК . Появится диалоговое окно, которое нужно заполнить. В графе Число_успехов_в_выборке указываем значение $k$. Размер_выборки равен $n$. В графе Число_успехов_в_совокупности указываем значение $m$. Размер_совокупности равен $N$.

Математическое ожидание и дисперсия дискретной случайной величины $X$, подчиненной геометрическому закону распределения, соответственно равны $M\left(X\right)=nm/N$, $D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}$.

Пример . В кредитном отделе банка работают 5 специалистов с высшим финансовым образованием и 3 специалиста с высшим юридическим образованием. Руководство банка решило направить 3 специалистов Для повышения квалификации, отбирая их в случайном порядке.

а) Составьте ряд распределения числа специалистов с высшим финансовым образованием, которые могут быть направлены на повышение квалификации;

б) Найдите числовые характеристики этого распределения.

Пусть случайная величина $X$ - число специалистов с высшим финансовым образованием среди трех отобранных. Значения, которые может принимать $X:0,\ 1,\ 2,\ 3$. Данная случайная величина $X$ распределена по гипергеометрическому распределению с параметрами: $N=8$ - размер совокупности, $m=5$ - число успехов в совокупности, $n=3$ - размер выборки, $k=0,\ 1,\ 2,\ 3$ - число успехов в выборке. Тогда вероятности $P\left(X=k\right)$ можно рассчитать по формуле: $P(X=k)={C_{m}^{k} \cdot C_{N-m}^{n-k} \over C_{N}^{n} } $. Имеем:

$P\left(X=0\right)={{C^0_5\cdot C^3_3}\over {C^3_8}}={{1}\over {56}}\approx 0,018;$

$P\left(X=1\right)={{C^1_5\cdot C^2_3}\over {C^3_8}}={{15}\over {56}}\approx 0,268;$

$P\left(X=2\right)={{C^2_5\cdot C^1_3}\over {C^3_8}}={{15}\over {28}}\approx 0,536;$

$P\left(X=3\right)={{C^3_5\cdot C^0_3}\over {C^3_8}}={{5}\over {28}}\approx 0,179.$

Тогда ряд распределения случайной величины $X$:

$\begin{array}{|c|c|}
\hline
X_i & 0 & 1 & 2 & 3 \\
\hline
p_i & 0,018 & 0,268 & 0,536 & 0,179 \\
\hline
\end{array}$

Рассчитаем числовые характеристики случайной величины $X$ по общим формулам гипергеометрического распределения.

$M\left(X\right)={{nm}\over {N}}={{3\cdot 5}\over {8}}={{15}\over {8}}=1,875.$

$D\left(X\right)={{nm\left(1-{{m}\over {N}}\right)\left(1-{{n}\over {N}}\right)}\over {N-1}}={{3\cdot 5\cdot \left(1-{{5}\over {8}}\right)\cdot \left(1-{{3}\over {8}}\right)}\over {8-1}}={{225}\over {448}}\approx 0,502.$

$\sigma \left(X\right)=\sqrt{D\left(X\right)}=\sqrt{0,502}\approx 0,7085.$