Нагревая газ в закрытом цилиндре, например в папиновом котле, можно по манометру заметить, что давление газа увеличивается. Следя по термометру за повышением температуры, легко установить, что при постоянном объеме давление газа подрастает пропорционально повышению температуры.

Аналогично тому, как для характеристики теплового расширения газов мы ввели коэффициент объемного расширения, введём величину, характеризующую изменение давления газа при изменении его температуры. Обозначим буквой р 0 давление газа при 0°С, a p t – давление при t o . Увеличение давления, приходящееся на каждую единицу начального давления при нагревании на 1 град, будет равно:

? = p t – p 0: p 0 t (1)

Величина? (греч. «гамма») называется термическим коэффициентом давления газа.

Измерения показывают, что величина термического коэффициента давления для всех газов одинакова и равна 1 / 273 град -1 .

Определяя из формулы (1) величину p t получим:

P t = p 0 (1 + ?t) (2)

Положим в формуле (2) ? = 1 / 273 , t = 1 o C; тогда p t = p 0 + 1 / 273 p 0

Отсюда следует, что давление данной массы газа при нагревании на 1 град при постоянном объёме увеличивается на 1 / 273 того давления, которым обладал газ при 0°С.

Этот закон называется законом Шарля , по имени французского учёного, открывшего его в 1787 г.

Из закона Шарля следует, что термический коэффициент давления газа? равен коэффициенту объёмного расширения?. Это равенство вытекает из закона Бойля – Мариотта. Докажем это.

Пусть некоторая масса газа заключена в цилиндре под поршнем и пусть температура её в этом начальном состоянии равна 0°, объём V 0 и давление р 0 . Закрепим поршень АВ и нагреем газ до температуры t°; тогда давление газа увеличится и станет равным p t , объём же его останется прежним. По закону Шарля: pt = р0 (1 + ?t).

Будем теперь газ нагревать от 0 до t°, предоставив поршню возможность свободно перемещаться. Давление газа останется таким же, каким было в начальном его состоянии, т. е. р 0 , объем же увеличится до V t . По закону Гей-Люссака:

V t = V 0 (1 + ?t)

Итак, имеем: при температуре t° объём данной массы газа V 0 и давление p t = p 0 (1 + ?t); при той же температуре: давление р 0 и объём V t = V 0 (1+ ?t). По закону Бойля – Мариотта:

p 0 V 0 (1 + ?t) = p 0 V 0 (1 = ?t)

После упрощения этого выражения получаем равенство:

Выразим сначала в виде таблицы, а потом графически зависимость давления газа от температуры. Для этого воспользуемся уравнением:

p t = p 0 (1 + ?t), или p t = p 0 + ?p 0 t

Отложим по оси абсцисс в некотором условном масштабе температуры газа, а по оси ординат – соответствующие этим температурам давления, взятые из написанной выше таблицы.

Соединяя на графике отмеченные точки, получим прямую LM, представляющую собой график зависимости давления газа от температуры при постоянном объёме.

Процесс изменения состояния газа, происходящий при неизменном объёме газа, называется изохорным процессом, а линия LM, изображающая изменение давления газа при постоянном объёме в зависимости от температуры, называется изохорой.

Законы Гей-Люссака и Шарля так же, как и закон Бойля-Мариотта, лишь приближенно отражают свойства газов. Это можно видеть хотя бы из того факта, что для разных газов величины? и? несколько различаются между собой.

Точные измерения показывают, что для каждого данного газа значения? и? получаются разные в зависимости от того, в каком температурном интервале и при каком давлении они определены.

Первый газовый закон был открыт Робертом Бойлем и опубликован в 1660 г. в работе «Новые эксперименты, касающиеся воздушной пружины». Р. Бойль на основе тщательно поставленного количественного эксперимента доказал, что «упругости [давления] газа обратно пропорциональны объемам». В ходе исследований им была предпринята попытка количественно исследовать зависимость объема сжатого газа от температуры. Однако точных данных, подтверждающих эту зависимость, Р. Бойль не получил.

Исследования по расширению воздуха при нагревании проводил Г. Амонтон. Позднее аналогичные опыты ставили А. Вольта, Д. Дальтон, Дж. Пристли, Т. Соссюра и др.

Считается, что первые удовлетворительные измерения при исследовании теплового расширения газов получил в 1801 г. английский физик и химик Джон Дальтон (1766–1844 гг.). Он обнаружил, что кислород, водород и углекислый газ при нагревании вели себя одинаково.

По полученным результатам Д. Дальтон в чрезвычайно осторожной форме формулирует вывод: «В общем, я не вижу достаточной причины, мешающей нам заключить, что все «упругие» газы при одном и том же давлении одинаково расширяются при нагревании».

Аналогичный вывод получил Ж. Л. Гей-Люссак в 1802 г. Но его утверждение было более определенным, чем высказывание Д. Дальтона. Видимо, поэтому закон о тепловом расширении газов называют не именем Д. Дальтона, а именем Ж. Л. Гей-Люссака.

Прибор, которым пользовался Гей-Люссак, показан на Рис. 2. Газ, тщательно осушенный, находится в баллончике. В трубке находится капля ртути, запирающая газ. Трубки расположены горизонтально, поэтому изменения давления при расширении не происходит.


Рис. 2. Схема установки Гей-Люссака

Пятнадцатью годами раньше Гей-Люссака (в 1787 г.) исследования этого вопроса были, без какой бы то ни было публикации, предприняты французским физиком Жаком Шарлем (1746–1823 гг.). Шарль нашел, что кислород, азот, углекислый газ и воздух расширяются одинаково в интервале температур между 0 и 100 ºС. Гей-Люссак знал о работах коллеги и настоял на том, чтобы второй газовый закон носил имя Жака Александра Сезара Шарля. Следует отметить, что в некоторых странах, в том числе и в России, этот закон известен все же как закон Гей-Люссака. В публикациях по истории науки приоритет открытия третьего газового закона – закона изменения давления газа в зависимости от температуры – обычно не обсуждается. Исследованием этой зависимости, как и зависимости объема газа от температуры, занимались многие ученые, изучавшие свойства газов в XVII–XVIII столетиях. История открытия закона теплового расширения газов связана с историей изобретения и усовершенствования термометров.

Первым прибором для измерения «жары» и «холода» в теле является воздушный термоскоп Г. Галилея (1597 г.). Суть опыта, который послужил толчком к созданию термоскопа, состояла в следующем. Небольшую колбу, размером с яйцо, с длинным и тонким, как пшеничный стебель, горлышком, опущенным в чашу с водой, согревают руками. Если убрать руки, то вода из чаши, по мере остывания воздуха в колбе, начнет подниматься в горлышко. Бенедетто Кастелли, ученик Г. Галилея, в 1638 г. пишет: «Этот эффект вышеупомянутый синьор Галилей использовал для изготовления инструмента для определения степени жары и холода».

Эванджелиста Торричелли преобразовал воздушный термоскоп Г. Галилея в жидкостный (спиртовый) термометр. Термометр Э. Торричелли – так называемый «флорентийский термометр» – был очень удобен в использовании и поэтому получил в XVII веке всеобщее признание. Термометры этого типа были введены в Англии Р. Бойлем, они быстро распространились и во Франции.

Усовершенствованием воздушного термометра Г. Галилея занимался Г. Амонтон – французский физик, член Парижской академии наук (1699 г.). В 1702 г. он сконструировал термометр, очень похожий по своей принципиальной схеме на современный газовый. Термометр Г. Амонтона представлял собой U-образную стеклянную трубку, более короткое колено которой заканчивалось резервуаром, содержащим воздух. В длинное колено наливалась ртуть в количестве, необходимом для поддержания постоянства объема воздуха в резервуаре. По высоте столба ртути определялась температура воздуха в резервуаре.

Рис. 3. Термометр Амантона

Интересно отметить, что, работая с этим инструментом, именно Амонтон нашел прямо пропорциональную зависимость между температурой и давлением газа и пришел к понятию абсолютного нуля, который по его данным соответствовал температуре в –239,5 °С (1703 г.).

В 1954 X Генеральная конференция по мерам и весам установила термодинамическую температурную шкалу с одной реперной точкой - тройной точкой воды, температура которой принята 273,16 К (точно), что соответствует 0,01 °C, так что по шкале Цельсия абсолютному нулю соответствует температура −273,15 °C.

2. Приборы и материалы, необходимые для постановки опыта, принципиальная схема опытной установки

Установки для опытов по исследованию зависимости давления газа от температуры при постоянном объеме были достаточно сложными.

Рассмотрим принципиальную схему экспериментальной установки для исследования зависимости давления газа от температуры при постоянном объеме. Основной частью такой установки является большая колба, в которой находился газ. Колба помещается в сосуд с водой. Об изменении давления газа можно судить по показаниям ртутного манометра, соединенного с колбой. Температура газа измеряется с помощью ртутного термометра.

Ж. Шарль исследовал зависимость давления от температуры для следующих газов: кислород, азот, углекислый газ и воздух.

3. Порядок проведения опыта

Наполнив колбу тающим льдом, Шарль измерял давление, соответствующее температуре 0 ºС. Затем температура воды в большом сосуде менялась, что приводило к изменению высоты столба ртути в манометре. Подогревая воду в сосуде, окружающем колбу, Шарль отмечал температуру газа по термометру, а соответствующее давление – по манометру.

При проведении опыта влияние ряда факторов искажало ход эксперимента. Во-первых, вследствие нагревания, колба с газом частично меняла свой объем, соответственно строгое постоянство объема исследуемого газа не обеспечивалось. Во-вторых, газ, находящийся в так называемом «вредном пространстве» (в тонкой подводящей к манометру трубке), не нагревался так же, как в колбе. В-третьих, наличие в газе примесей (в частности, конденсирующихся паров) приводило к тому, что часть составляющих газ компонентов при повышении давления переходило в жидкое состояние. Действовали и другие факторы.

Попытки ученых исключить вредное воздействие побочных эффектов на ход эксперимента и приводили, как правило, к усложнению конструкции установки.

4. Основные результаты опыта

Опыты Ж. Шарля показали следующие результаты.

    Приращение давления газа некоторой массы при нагревании на 1 ºС составило определенную часть α p того давления, которое имел газ при температуре 0 ºС. Таким образом, приращение давления оказалось пропорциональным приращению температуры.

    Величину α p называют температурным коэффициентом давления. Исследовав ряд газов, Шарль получил для них примерно одинаковое значение температурного коэффициента давления, а именно величину, равную примерно 1/273 ºС –1 .

Таким образом, давление некоторой массы газа при нагревании на 1 ºС при неизменном объеме увеличивается на 1/273 часть давления, которое эта масса газа имела при 0 ºС.

5. Объяснение результатов опыта

В современной формулировке этот закон звучит следующим образом:

При неизменном объеме отношение давления данной массы газа к его абсолютной температуре есть величина постоянная.

Математически закон Ж. Шарля можно записать в виде:

где P 0 – давление газа при T = T 0 = 273,15 К (то есть при температуре 0 °С). Коэффициент, равный 1/273,15 К –1 , называют температурным коэффициентом давления.

На рисунке представлена зависимость давления данной массы газа от его температуры. Для различных температур газа расположение кривой зависимости на координатной плоскости различно. Изохоры, изображающие зависимость P от T для газа, который подчиняется закону Шарля, представляют собой прямые линии, располагающиеся на графике тем выше, чем меньше объем.

Закон Шарля справедлив только для идеального газа. Он применим с определенной степенью точности к реальным газам при низких давлениях и невысоких температурах (например, атмосферный воздух, продукты сгорания в газовых двигателях и пр.)

Объяснение закону, установленному Шарлем, может быть дано с позиций молекулярно-кинетических представлений о строении вещества.

С точки зрения молекулярной теории возможны две причины увеличения давления данного газа: во-первых, может увеличиться число ударов молекул за единицу времени на единицу площади; во-вторых, возможно увеличение импульса, передаваемого при ударе стенки сосуда одной молекулой. И та, и другая причина требуют увеличения скорости молекул (при этом объем данной массы газа остается неизменным). Отсюда становится ясным, что повышение температуры газа как макрохарактеристики соответствует увеличению скорости беспорядочного движения молекул как характеристики микромира.

При очень высоких давлениях увеличивается взаимодействие между молекулами газа и наблюдаются отклонения от линейного закона Шарля.

Закон Шарля выводится как частный случай из уравнения Менделеева–Клапейрона:

где k = 1,38 Дж/К – постоянная Больцмана.

Неоднозначность терминологии

В русско- и англоязычной научной литературе существуют некоторые различия в наименовании законов, связанных с именем Гей-Люссака. Эти различия представлены в следующей таблице.

Русскоязычное название Англоязычное название Формула
Закон Гей-Люссака Закон Шарля (en:Charles"s law)
Закон Гей-Люссака
Закон объёмов (Volumes Law)
Закон Шарля Закон Гей-Люссака (en:Gay Lussac"s law)
Второй закон Гей-Люссака
Закон объёмных отношений Закон Гей-Люссака (en:Gay Lussac"s law)

Формулировка закона

Формулировка закона Шарля следующая:

Давление газа фиксированной массы и фиксированного объёма прямо пропорционально абсолютной температуре газа.

Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в градусах Кельвина . Математически закон записывают так:

См. также

Примечания

Ссылки

Литература

  • Castka, Joseph F.; Metcalfe, H. Clark; Davis, Raymond E.; Williams, John E. Modern Chemistry. - Holt, Rinehart and Winston, 2002. - ISBN 0-03-056537-5
  • Guch, Ian The Complete Idiot"s Guide to Chemistry. - Alpha, Penguin Group Inc., 2003. - ISBN 1-59257-101-8
  • Mascetta, Joseph A. How to Prepare for the SAT II Chemistry. - Barron"s, 1998. - ISBN 0-7641-0331-8

Wikimedia Foundation . 2010 .

Смотреть что такое "Закон Шарля" в других словарях:

    ЗАКОН ШАРЛЯ, объем газа при постоянном давлении прямо пропорционален его абсолютной температуре. Эта зависимость была впервые выведена Жаком ШАРЛЕМ в 1787 г. Закон представляет собой частный случай ЗАКОНА ИДЕАЛЬНОГО ГАЗА. Его иногда называют… …

    ЗАКОН ШАРЛЯ - один из основных газовых законов, согласно которому давление р данной массы идеального газа при постоянном объёме изменяется пропорционально изменению термодинамической (абсолютной) температуры Т: Реальные газы подчиняются этому закону при… … Большая политехническая энциклопедия

    закон Шарля - Šarlio dėsnis statusas T sritis fizika atitikmenys: angl. Charles’ law vok. Charlessches Gesetz, n rus. закон Шарля, m pranc. loi de Charles, f … Fizikos terminų žodynas

    Закон Бойля Мариотта один из основных газовых законов. Закон назван в честь ирландского физика, химика и философа Роберта Бойля (1627 1691), открывшего его в 1662, а также в честь французского физика Эдма Мариотта (1620 1684), который открыл… … Википедия

    Воздух (или инертный газ), находящийся в запечатанном пакете с печеньем расширяется, когда продукт поднят на значительную высоту над уровнем моря (ок 2000 м) Закон Бойля Мариотта один из основных газовых з … Википедия

    ЗАКОН ИДЕАЛЬНОГО ГАЗА, закон, определяющий соотношение давления, температуры и объема идеального газа: pV = nRT, где п количество молекул газа, a R универсальная ГАЗОВАЯ ПОСТОЯННАЯ; закон гласит, что при постоянной температуре (Т) произведение… … Научно-технический энциклопедический словарь

    Анимация, представляющая зависимость объёма газа от температуры (закон Гей Люссака) Закон … Википедия

    Давление pt идеального газа неизменной массы и объёма возрастает при нагревании линейно: рt = р0(1 + αt), где рt и р0 давление газа при температурах t и 0°C, α = 1/273К 1. Открыт в 1787 французским учёным Ж. Шарлем, уточнён Ж. Гей Люссаком… … Энциклопедический словарь

    Уравнение состояния Статья является частью серии «Термодинамика». Уравнение состояния идеального газа Уравнение Ван дер Ваальса Уравнение Дитеричи Разделы термодинамики Начала термодинамики Уравнен … Википедия

Французский физик Шарль открыл закон (в 1787 г.), который выражает зависимость изменения давления газа от температуры при постоянном объеме.

Опыт показывает, что при нагревании газа при постоянном объеме давление газа увеличивается. Скалярная величина, измеряемая изменением единицы давления газа, взятого при 0 0 С, от изменения его температуры на 1 0 С, называется термическим коэффициентом давления γ.

Согласно определению, термический коэффициент давления?

где р 0 - давление газа при 0°С, р - давление газа после нагревания на . Проделаем такой опыт (рис. 13, а). Сосуд А поместим в воду со льдом при открытых кранах 1 и 2. Когда сосуд:: и содержащийся в нем воздух охладятся до 0°С , закроем кран 2. Начальное состояние воздуха в сосуде: t° = 0°C, р 0 = 1 ат. Не меняя объема воздуха, поместим сосуд в горячую воду. Воздух в сосуде нагревается, его давление увеличивается и при температуре t° 1 = 40°C оно становится p 1 = 1,15 ат. Термический коэффициент давления

Более точными опытами, определив термический коэффициент давления для различных газов, Шарль открыл, что при постоянном объеме все газы имеют один и тот же термический коэффициент давления

Из формулы термического коэффициента давления


Заменим t° = T-273° . Тогда

Заменив получим


следовательно, р = р 0 γТ.

Если давление газа при температуре T 1 обозначить р 1 , а при температуре Т 2 - р 2 , то р 1 = γр 0 Т 1 и р 2 = γр 0 Т 2 . Сравнив давления, получим формулу закона Шарля:


Для данной массы газа при постоянном объеме давление газа изменяется прямо пропорционально изменению абсолютной температуры газа. Это и есть формулировка закона Шарля. Процесс изменения состояния газа при постоянном объеме называется изохорическим. Формула закона Шарля является уравнением?изохорического состояния газа. Чем выше температура газа, тем больше средняя кинетическая энергия молекул, а следовательно, больше и их скорость. В связи с этим увеличивается число ударов молекул о стенки сосуда, т. е. давление. На рис. 13, б изображен график закона Шарля.

С помощью уравнения состояния можно найти зависимость давления газа от температуры при постоянном объеме. Эту зависимость экспериментально установил французский физик Ж. Шарль (1746-1823) в 1787 г.* Располагая уравнением состояния идеального газа, прибегать к опыту уже нет необходимости.

* Ж. Шарль в 1787 г., т. е. раньше, чем Гей-Люссак, установил и зависимость объема от температуры при постоянном давлении, но он своевременно не опубликовал своих работ.

Закон Шарля

Согласно уравнению (3.9.9)

Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре. Вэтом и состоит закон Шарля.

Из закона Шарля следует, что отношение давлений данной массы газа при постоянном объеме равно отношению его абсолютных температур:

Процесс изменения давления газа, вызванный изменением температуры при постоянном объеме, называют изохорным (от греческих слов isos - равный и chora - занимаемое место). Зависимость давления газа от температуры графически изображается прямой линией - изохорой. Разным объемам соответствуют различные изохоры (рис. 3.14). Так как с ростом объема газа при постоянной температуре давление его падает (закон Бойля-Мариотта), то изохора, соответствующая объему V 2 , лежит ниже изохоры, соответствующей объему V 1 < V 2 .

Все прямые заканчиваются в начале координат. Значит, давление идеального газа при абсолютном нуле равно нулю, так же как и объем.

Предлагаем читателю самостоятельно убедиться в том, что закон Шарля можно записать в форме

(3.10.3)

где р 0 - давление газа при температуре Т = 273 К, а коэффициент γ, называемый температурным коэффициентом давления газа, равен температурному коэффициенту объемного расширения:

Коэффициент γ представляет собой относительное изменение давления при изменении температуры газа на 1 К.

Газовый термометр постоянного объема

В § 3.6 говорилось об идеальной газовой шкале температур. Для определения температуры по этой шкале используют газовые термометры. Наиболее простым газовым термометром является термометр постоянного объема. Измерение температуры с помощью этого термометра основано на законе Шарля (3.10.2).

Газовый термометр представляет собой сосуд, заполненный тем или иным газом: азотом, аргоном или гелием. Сосуд соединен гибкой трубкой с ртутным манометром, которым измеряют давление газа и поддерживают его постоянный объем (рис. 3.15, а, б). Сначала измеряют давление при некоторой фиксированной температуре Т 0 (см. рис. 3.15, а)*. Затем измеряют давление при температуре Т (см. рис. 3.15, б ). Зная давление р 0 при температуре То и давление р при температуре Т, температуру Т определяют по формуле

(3.10.4)

* В качестве этой температуры обычно выбирается температура тройной точки воды, т. е. температура состояния, в котором лед, вода и водяной пар находятся в тепловом равновесии.

а) б )

Газовый термометр для точных измерений - очень сложное устройство. Для измерения температуры при физических исследованиях он применяется редко. Основное его назначение - использование для градуировки более простых, вторичных термометров. Эта градуировка производится в бюро стандартов, в метрологических институтах и в отдельных физических лабораториях. Для градуировки обычных, широко применяемых термометров используются вторичные термометры.

На законе Шарля основано устройство газового термометра для определения температуры по идеальной газовой шкале.