Сегодня гальванические элементы являются одними из наиболее распространенных химических Несмотря на их недостатки, они активно используются в электротехнике и постоянно совершенствуются.

Принцип действия

Наиболее простой пример работы гальванического элемента выглядит так. В стеклянную банку с водным раствором серной кислоты погружают две пластины: одна - медная, вторая - цинковая. Они становятся положительным и отрицательным полюсами элемента. Если эти полюса соединить проводником, получится простейшая Внутри элемента ток будет течь от цинковой пластины, имеющей отрицательный заряд, к медной, заряженной положительно. Во внешней цепи движение заряженных частиц будет происходить в обратном направлении.

Под действием тока ионы водорода и кислотного остатка серной кислоты будут двигаться в разных направлениях. Водород будет отдавать свои заряды медной пластине, а кислотный остаток - цинковой. Так на зажимах элемента будет поддерживаться напряжение. В то же время на поверхности медной пластины будут оседать пузырьки водорода, который будет ослаблять действие гальванического элемента. Водород создает вместе с металлом пластины дополнительное напряжение, которое называется электродвижущей силой поляризации. Направление заряда этой ЭДС противоположно направлению заряда ЭДС гальванического элемента. Сами же пузырьки создают дополнительное сопротивление в элементе.

Рассмотренный нами элемент - это классический пример. В реальности подобные гальванические элементы просто не используются из-за большой поляризации. Чтобы она не происходила, при изготовлении элементов в их состав вводят специальное вещество, поглощающее атомы водорода, которое называется деполяризатором. Как правило, это препараты, содержащие кислород или хлор.

Преимущества и недостатки современных гальванических элементов

Современные гальванические элементы изготавливаются из разных материалов. Наиболее распространенный и знакомый нам тип - это угольно-цинковые элементы, применяемые в пальчиковых батарейках. К их плюсам можно отнести относительную дешевизну, к минусам - небольшой срок хранения и невысокую мощность.

Более удобный вариант - это щелочные гальванические элементы. Их еще называют марганцево-цинковыми. Здесь электролитом служит не сухое вещество типа угля, а щелочной раствор. Разряжаясь, такие элементы практически не выделяют газ, благодаря чему их можно изготавливать герметичными. Срок хранения таких элементов выше, чем угольно-цинковых.

Ртутные элементы похожи по своей конструкции на щелочные. Здесь применяют оксид ртути. Такие источники тока используют, например, для медицинской аппаратуры. Их преимущества - устойчивость к высоким температурам (до +50, а в некоторых моделях до +70 ˚С), стабильное напряжение, высокая механическая прочность. Недостаток - токсичные свойства ртути, из-за которых с отработавшими свой срок элементами нужно обращаться очень осторожно и отправлять на переработку.

В некоторых элементах применяют оксид серебра для изготовления катодов, но из-за дороговизны металла их использование экономически невыгодно. Более распространены элементы с литиевыми анодами. Они тоже отличаются высокой стоимостью, но имеют наибольшее напряжение среди всех рассмотренных типов гальванических элементов.

Еще один тип гальванических элементов - это концентрационные гальванические элементы. В них процесс движения частиц может протекать с переносом и без переноса ионов. Первый тип - это элемент, в котором два одинаковых электрода погружаются в разной концентрации, разделенные полупроницаемой перегородкой. В таких элементах ЭДС возникает благодаря тому, что ионы переносятся в раствор с меньшей концентрацией. В элементах второго типа электроды сделаны из разных металлов, а концентрация выравнивается за счет химических процессов, которые происходят на каждом из электродов. у этих элементов выше, чем у элементов первого типа.

Подробности Категория: Просмотров: 1740

ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ , первичные элементы, источники электрической энергии, получаемой непосредственно в самих приборах за счет химической энергии входящих в них веществ, способных к диссоциации электролитической. Известны случаи (концентрационные цепи), когда возможно гальваническое получение электрической энергии, не связанное с химическими превращениями; поэтому более широкое понятие - гальванической цепи - охватывает и группу явлений чисто физического характера, которые, однако, в качестве источника электрической энергии в виде особого прибора не применяются.

Внутреннее устройство всякого гальванического элемента включает следующие части: 1) ионизированную среду, составленную из проводников второго класса (электролитов), представляющих в практически применяемых гальванических элементах (гидроэлектрических элементах) водные растворы химических соединений; 2) электроды из проводников первого класса (металлов, окислов с металлической проводимостью и т. п.), соприкасающихся с электролитами и снабженных выводами во внешнюю цепь. Вышеуказанные составные части д. б. правильно составлены в гальваническую цепь, условное обозначение которой, образованной, например, из металлов М 1 и М 2 и растворов их солей М 1 Х 1 и М 2 Х 2 , следующее:

где стрелками обозначено направление тока внутренней и внешней цепей, причем ЭДС, возникающие в местах соприкосновения разнородных частей цепи, должны быть направлены от одного электрода к другому.

На фиг. 1 показана правильно составленная цепь: результирующая ЭДС направлена от одного электрода к другому; на фиг. 2 - неправильно составленная цепь: две коротко замкнутые цепи, ЭДС которых направлены вдоль электродов и результирующая равна нулю. Схема токопрохождения в замкнутой гальванической цепи представлена на фиг. 3.

Для электрода, на котором происходит разряд отрицательно заряженных ионов, (анионов), в электрохимии установилось название анода ; для того же, на котором происходит разряд положительных ионов катионов), - катода . Таким образом, во внутренней цепи гальванического элемента анодом является отрицательный электрод, а катодом - положительный. При пропускании же тока извне возникающее обратное направление тока, или разряд анионов на положительном электроде, сделает его анодом, а разряд катионов сделает отрицательный электрод катодом. С точки зрения химии, процесс, происходящий на аноде, идентичен реакции окисления, а обратный процесс на катоде - реакции восстановления.

I. Теория гальванических элементов . Как источник электрического тока гальванический элемент изучают: 1) со стороны его электрических характеристик, 2) со стороны связанных с прохождением тока химических превращений и 3) со стороны физического состояния и физико-химических свойств действующих веществ.

Общие характеристики гальванического элемента . Характерными величинами всякого гальванического элемента служат: Е - ЭДС; V = f(I, R, t) - напряжение замкнутого элемента, как функция силы тока I, внешнего сопротивления R и времени разрядки t; r - внутреннее сопротивление, зависящее от размеров электродов и сопротивления электролита; иногда r = f(t, t"), т. е. r является функцией времени разрядки t или времени хранения t"; ЭДС поляризации Ер = f(I, t) иногда объединяется с r под общим названием - внутренние потери, иногда Ep выражается в % от Е. Уравнения, связывающие эти величины, следующие:

Полагая ЭДС поляризации пропорциональной силе тока, т. е. Ер = k∙I, что близко к действительности, и принимая k + r = c, получим выражение внешней характеристики гальванического элемента:

где с" = c∙V, и силы тока:

при последовательном соединении n элементов в батарею:

при параллельном соединении n элементов:

иная группировка элементов в батареях в настоящее время почти не применяется. Электродвижущая сила:

мощность

максимальная мощность при R = с

Графически внешние характеристики для гальванического элемента, у которого Е = 1 V и с = 1 Ом, изображены на фиг. 4; очевидно, что гальванические элементы по существу дела предназначены для работы при весьма малой разрядной мощности, т. к. максимальная полезная мощность составляет лишь 25% возможной при данной силе тока и напряжении цепи = ЭДС источника.

Емкость по току; при I = Const,

при R = Const,

где t 0 - разрядный период в часах.

Емкость по энергии:

при I = Const,

при R = Const,

Термодинамические теории . Химические процессы, имеющие место в гальванических элементах, с точки зрения термодинамики рассматривают как изотермически обратимые и, прилагая к ним уравнение свободной энергии, получают выражение, связывающее тепловой эффект химической реакции с электродвижущей силой гальванических элементов. Уравнение Гельмгольца:

где Е - ЭДС гальванического элемента в V; Q - тепловой эффект в cal; n - число валентностей ионов, вступающих в химическую реакцию, тепловой эффект которой Q; F - фарадей = 96540 С = 26,8 Ah; 0,239 - коэффициент перевода J в cal; Т - абсолютная температура химического процесса; dE/dT - температурный коэффициент ЭДС; для гальванических элементов он обычно меньше 1 mV на 1° (см. табл. 1).

Для данного гальванического элемента температурный коэффициент ЭДС может менять свою величину и знак в зависимости от концентрации реагирующих веществ и Т°. Приводимая табл. 2, дающая значения ЭДС гальванических элементов при различных температурах, позволяет вычислить также и соответственные значения температурного коэффициента ЭДС и убедиться в его изменчивости.

Гальванические элементы, обладающие наименьшим температурным коэффициентом, при соблюдении ряда других условий применяются как эталоны ЭДС. При значении dE/dT близком или равном нулю, для вычисления ЭДС гальванических элементов применима более простая формула (правило Томсона):

Пользование вышеприведенными формулами требует экспериментального определения dE/dT и точного учета суммарного теплового эффекта химических реакций гальванических элементов, что затруднительно и не всегда возможно. Это затруднение устраняется с помощью 3-го начала термодинамики, дающего возможность исчислять ЭДС гальванических элементов из одних термических данных.

Осмотическая теория гальванических элементов . Потенциал ε соприкосновения пары электрод-электролит на основании осмотической теории гальванических элементов Нернста выражается следующей формулой:

где n и Т имеют указанные выше значения; R/F – электролитическая газовая константа, численное значение которой 0,864х10 –4 , если ε выражено в V; Р - упругость растворения электродного материала; р = kС есть давление ионов в растворе, где С - концентрация ионов, выраженная в грамм-ионах/л. Формула Нернста позволяет изучать в отдельности явления на аноде и катоде. Более удобно для пользования ее выражение в зависимости от концентрации ионов в электролите:

где ε 0 - постоянная, характерная для каждого иона величина, называемая электролитическим потенциалом соответствующего электрода относительно электролита, содержащего 1 испытуемый грамм-ион в литре (ε 0 дается для 18° со знаком, отвечающим электроду в справочных таблицах нормальных потенциалов), (0,058∙lg С)/n - поправочный член на изменение концентрации, - берется со знаком (+) в случае образования катионов Мà М + и со знаком (-) в случае образования анионов Хà Х – . ЭДС гальванической цепи получается как разность потенциалов отдельных электродов:

При непосредственном измерении ε в качестве условного нуля применяются вспомогательные электроды, обычно нормальные: водородный ε н или каломельный ε с, связанные уравнением:

Абсолютный потенциал (не общепризнанная величина) испытуемого электрода через вспомогательный определяется из уравнений:

или графически - см. фиг. 5 и табл. 3.

На фиг. 5 С указывает на потенциал относительно каломельного электрода, Н - относительно водородного электрода, pH - концентрация ионов водорода, N - нормальный раствор.

Явления в замкнутой цепи (поляризация гальванического элемента) . При прохождении тока потенциалы электродов, а с ними и ЭДС, изменяют свои первоначальные значения в разомкнутой цепи в зависимости от плотности тока на электродах и времени разрядки гальванического элемента, благодаря изменению сопротивления электролита и отчасти электродов и в связи с изменением во времени состава и концентрации действующих веществ. Совокупное действие этих причин, выражающееся в нарастании внутренних потерь гальванического элемента по мере его разрядки, носит название поляризации гальванического элемента. Характером и степенью поляризации (в этом общем смысле) обусловлены наиболее важные технические свойства гальванического элемента. Различают следующие виды гальванической поляризации (табл. 4):

Деполяризация . В применении к гальваническим элементам под деполяризацией обычно подразумевают лишь катодную деполяризацию в виду того, что против анодной, по незначительности ее, мер не принимается. Отсюда под названием деполяризатор понимают не добавочный материал, а основное, действующее на катоде вещество, что, разумеется, не совсем правильно. В силу технических и экономических причин наибольшее практическое значение приобрели гальванические элементы, в которых в качестве анода применен сплошной металлический, т. н. растворимый, электрод, а в качестве катода - пористый, нерастворимый, большей частью кислородный электрод.

Явления в разомкнутой цепи (саморазряд гальванических элементов). Побочные процессы в гальванических элементах связаны с второстепенными реакциями, имеющими место при разомкнутой внешней цепи. Они имеют большое значение для хранения гальванических элементов, вызывая так называемый саморазряд элементов. Внутренние причины (исключая, разумеется, короткие замыкания, небрежное изготовление и прочее), саморазряда сгруппированы в табл. 5.

Степень действия металлических пар (группа А, а) обусловлена не столько ЭДС цепи

сколько ЭДС следующей цепи:

которая определяется величиной добавочного напряжения (перенапряжения), необходимого для выделения водорода на поверхности данного материала. Величины этих добавочных напряжений для наиболее важных материалов при гладкой поверхности даны в табл.6.

Этим, например, объясняется безвредность присутствия свинца в цинке гальванических элементов.

II. Основные виды гальванических элементов . видна из табл. 7.

Эта сводка доказывает, что в отношении анода вопрос технически удовлетворительно был решен уже в первом гальваническом элементе Вольта. Цинк и по настоящее время, за исключением, очень редких случаев, является незаменимым материалом в качестве анода. Вся история гальванических элементов связана с отысканием наиболее подходящего материала в качестве катода вообще, кислородного электрода в частности и отчасти состава и обработки электролита.

Может быть произведена по разным признакам. Конструктивное деление на элементы с одной и элементы с двумя жидкостями в настоящее время устарело. Существенное значение, подтверждаемое историей элементного дела, имеет химический состав и исходное физическое состояние катодного материала (табл. 8).

Изображения типичных представителей разных групп гальванических элементов даны в табл. I, где указаны и основные химические процессы и соответствующие последним электродвижущие силы.

а) Гальванические элементы с жидким катодным материалом (деполяризатором). Гальванические элементы группы «а» - в большинстве случаев элементы с двумя жидкостями, с проницаемой перегородкой или без нее, имеют гл. обр. исторический интерес и академическое значение (классическая гальваническая цепь Даниеля). Находят более заметное применение в телеграфной практике элементы Мейдингера без диафрагмы. Более поздние гальванические элементы этой группы - элементы Шустера с диафрагмой:

и Л. Даримонта с полупроницаемой перепонкой в порах перегородки.

б) Гальванические элементы с твердым катодным материалом . Гальванические элементы группы «б» имеют в настоящее время наибольшее практическое значение. По разряду «А» к ним относятся, помимо указанного в табл. I элемента с хлористым серебром, применяющегося для медицинских целей, известные как эталоны напряжения нормальные элементы - Кларка:

Zn + Hg 2 SО 4 = ZnSО 4 + 2 Hg , ЭДС 1,433 V при 15°,

и Вестона:

Cd + Hg 2 SО 4 = СdSО 4 + 2 Hg , ЭДС 1,0184 V при 20°;

по разряду «Б» к этой группе гальванических элементов относятся, помимо многочисленных форм выполнения известных элементов Лекланше с нейтральным электролитом, несколько типов элементов со щелочным электролитом (Лаланда, Эдисона, Ведекинда и других), работающих по следующей схеме:

химическая реакция:

Одна из подобных современных американских конструкций представлена на фиг. 6 (левый рисунок - гальванический элемент, не бывший в употреблении, правый - разряженный); разрядный график показан на фиг. 7.

Эти элементы применяются для железнодорожной и другой сигнализации и изготовляются размерами на 100-600 Ah емкости.

Вследствие их низкого напряжения эксплуатация обходится дорого; элементы эти чувствительны к колебаниям температуры. Известны также элементы этой группы с кислотным электролитом, работающие по схеме:

химическая реакция:

Форма выполнения элемента этого типа для карманного фонаря изображена на фиг. 8.

в) Гальванические элементы с газообразным катодным материалом . Гальванические элементы группы «в» в последние годы начинают приобретать промышленное значение (до сих пор, главным обр., во Франции); известны как элементы с воздушной деполяризацией, вернее - деполяризацией кислородом воздуха. Одним из первых получил более широкое признание элемент Фери. Своей работой с газовым электродом Фери не только дал пути к разрешению вопроса о значительной экономии расхода цинка в гальванических элементах, но и удачно обошел затруднения, связанные с переходом кислорода из газа в ионное состояние, попутно осветив опытным путем механизм деполяризации. Сущность устройства (фиг. 9) этого элемента такова: на дне сосуда расположена горизонтально цинковая пластинка; в непосредственной с ней близости находится вертикальный угольный электрод, особым образом изготовленный, с высокой пористостью и электропроводностью, выступающий над электролитом (раствором хлористого аммония).

Физико-химические процессы элемента Фери . Теоретическое уравнение

не совсем точно. Фактически процесс распадается на две фазы. В первой фазе:

образуется ZnCl 2 , как и в обычном элементе Лекланше, но затем, по мере работы, происходит расслоение электролита на три слоя: удельно тяжелый ZnCl 2 (слабо кислая среда) остается на дне и покрывает цинк (фиг. 10), предохраняя его от неравномерного разъедания; образующийся на угле удельно более легкий раствор NH 4 OH всплывает наверх (слабощелочная среда), а посредине остается по преимуществу нейтральный раствор неизрасходованного NH 4 Cl по мере сближения крайних слоев и уменьшения общего содержания NH 4 Cl в растворе наступает вторая фаза процесса:

причем NH 4 Cl частично регенерируется, а осадок окиси цинка выпадает на границе соединения крайних слоев; нижняя, обращенная к цинку, часть угольного электрода все время остается чистой и, главное, погруженной в раствор ZnCl 2 .

Противоположно направленная ЭДС жидкостной пары (фиг. 11)

приблизительно равная 0,25 V, не уменьшает основной ЭДС, т. к. замкнута накоротко угольным электродом.

Угольный (газовый) электрод в нижней части насыщается адсорбированным водородом, в верхней - кислородом. Степень деполяризации этого электрода обусловливается работой коротко замкнутой пары:

с ЭДС ~ 0,5-1,0 V.

Этим объясняется устойчивость работы элемента, которая зависит гл. обр. от качества угольного электрода.

Сравнение гальванических элементов с газовым, твердым и жидким катодным материалом . Сравнительный график разрядок элемента Фери с элементом Лекланше показан на фиг. 12.

Сравнительный расход материалов в элементах с различным физическим состоянием катодного материала показан в табл. 9 для случая разрядки очень слабым током или более сильным с перерывами.

Фери дает следующие сравнительные стоимости выработки одного Ah:

Кроме элементов Фери, в настоящее время известны элементы с воздушной деполяризацией Le Carbone и со щелочным электролитом Нея, Нюберга и Юнгнера. На фиг. 13 дан разрядный график гальванических элементов фирмы Le Carbone, тип AD 220, на постоянное сопротивление 5 Ом.

Гальванические элементы мокрые и сухие различают по состоянию их электролита: в виде жидкого водного раствора, или превращенного в желеобразную, клейкую массу каким-либо загустителем (крахмал), или, наконец, в виде малоподвижного и невыливающегося, для чего жидким электролитом пропитывают пористую инертную массу-наполнитель, (древесные опилки, гипс, песок, картон).

Гальванические элементы типа Лекланше с сухим электролитом издавна получили наибольшее практическое применение и промышленное значение. В связи с этим в последнее время проделано много работ для освещения происходящих в нем физико-химических процессов. Схема гальванической цепи этого элемента:

Установлено раскисление MnО 2 до Mn 2 О 3 . В отличие от элемента Фери (вертикальное расположение электродов и присутствие в электролите ZnCl 2), расслоение малоподвижного электролита здесь наступает в меньшей степени. Различают три стадии химических реакций:

Кроме того, взаимодействие NH 4 OH и ZnCl 2 при некоторых условиях сопровождается образованием также и хлорокиси цинка по следующему уравнению:

Фактический расход МnO 2 иногда меньше, чем требуется уравнениями 1, 2 или 3, что объясняется участием в реакциях кислорода воздуха, поскольку обеспечен доступ последнего, или может быть другими, еще мало освещенными явлениями адсорбции на катоде. Поляризация электродов обусловлена главным образом повышением концентрации ионов ОН- и в меньшей степени Zn++ (табл. 10).

Имеет место также механическая поляризация (см. табл. 4) осадками ZnCl 2 ∙2NH 3 ; Zn(OH) 2 и Zn(ОН)Сl. Особенно вредны два последних, закрывающие доступ электролита внутрь пористого катода (агломерата). Саморазряд сухих элементов по сравнению с мокрыми, за исключением элемента Фери, значительно меньше, но в значительной степени зависит от способа и качества изготовления.

Классификация сухих гальванических элементов . В случае необходимости иметь запас на несколько лет, а также в других специфических условиях работы (например, в тропических странах), предпочитают применять незаряженные или не вполне заряженные гальванические элементы длительного хранения, которые перед употреблением должны быть приведены в действующее состояние. Но при этом надо иметь в виду, что срок службы таких элементов меньше, чем обычных сухих гальванических элементов.

В виду большого разнообразия в выполнении сухих гальванических элементов ниже приведена их классификация (табл. 11) по конструктивным признакам с кратким указанием того, в какой мере и как выполняются условия длительного хранения; кроме того, в табл. II показаны примерные формы выполнения некоторых из них.

III. Применение гальванических элементов . Стоимость электрической энергии от гальванических элементов . Теоретический расход материалов, которые могут быть применены в качестве электродных, и соотношение стоимостей (до войны 1914-18 гг.) этих материалов на 1 Wh (табл. 12) показывают, что выбор последних ограничивается либо высокой стоимостью (особенно Cd, Ag, Ni, Pb), либо техническими затруднениями например, Аl, Н 2).

Кроме того, если учесть, что стоимость 1 полезного Wh от практически наиболее экономично работающего элемента Фери обходится около 80 коп., считая один лишь расход материалов, то станет понятным, что и по экономическим и по техническим причинам Гальванические элементы находят применение лишь в случаях потребления приемником малого расхода энергии вообще и с малой разрядной мощностью в частности. Кроме того, во многих случаях применение гальванических элементов диктуется не столько их экономичностью, сколько их незаменимостью и рядом практических удобств. Последним объясняется преимущественное распространение элементов типа Лекланше, в особенности сухих.

Электротехнически применение гальванических элементов можно объединить в режимах, указанных в табл. 13.

Если сравнить технические данные элементов различных видов, например, элементов типа Фери с сухими типа Лекланше, то оказывается, что одно и то же удельное использование порядка 50 Wh/л может быть получено при удельной нагрузке для элементов типа Лекланше 0,1-0,25 А/л, для элементов же типа Фери лишь при 0,02-0,05 А/л. Этим объясняется сравнительно малый успех гальванических элементов типа Фери, несмотря на их преимущество в отношении экономичности. При более полной сравнительной оценке необходимо принять во внимание также и допустимый диапазон разрядного напряжения и ряд других условий. Наиболее удачной системой, легче других приспосабливаемой к различным встречающимся на практике режимам работы приемников, до настоящего времени следует считать систему Лекланше, чем и объясняется ее широкое распространение.

Промышленное изготовление гальванических элементов . Наибольшее промышленное значение имеют гальванические элементы группы «1, б» (табл. 13), т. е. сухие с желеобразным электролитом. Масштаб производства этих гальванических элементов виден из табл. 14.

В настоящее время во многих странах проведена нормализация продукции гальванических элементов. В Германии стандартизованы 8 типов сухих элементов, 2 типа мокрых и 1 тип карманных батареек. В Америке - 2 типа сухих элементов, 5 типов карманных батареек и 2 типа анодных радиобатарей. Проект общесоюзного стандарта на гальванические элементы цинк-уголь-перекись марганца с неподвижным электролитом (табл. 15) предусматривает 7 типов сухих и водоналивных гальванических элементов.

К производству радиобатарей (анодные и накала), в особенности первых, предъявляются наиболее высокие требования, например, в отношении однородности элементов. В настоящее время конструкцию их еще нельзя считать окончательно установленной не только у нас, но и за границей, хотя в последнее время, особенно в Америке, техника их изготовления достигла большого совершенства.

На фиг. 14 показаны графики периодической разрядки анодной батареи, а на фиг. 15 дан вид одного из элементов радиобатареи.

Основные материалы для производства сухих элементов . Перекись или двуокись марганца, в виду ее малой проводимости, чаще всего применяется в тесной смеси с графитовым порошком, в виде так называемых агломератов - пористых (до 40%) тел, окружающих угольный токоотводящий стержень (см. табл. II). Баланс стоимости материалов в основном складывается (в процентах) из:

Промышленные требования максимального использования действующих материалов в гальванических элементах следует рассматривать с двух сторон: а) со стороны стойкости этих материалов к самопроизвольному расходованию и б) со стороны их активности во время работы. Первое требование относится по преимуществу к аноду, второе - к катоду. В отношении цинка установлено, что не меньшую (если не большую) роль, чем химический состав, играют состояние его поверхности и кристаллическая структура, т. е. свойства, зависящие от обработки этого прокатного материала. В качестве двуокиси марганца применяют: а) марганцевую руду (пиролюзит), б) искусственную (химически полученную) перекись марганца, в) смесь той и другой, например, 2 весовых частей первой и 1 весовая часть второй. Первая отличается большей стойкостью и электропроводностью, вторая - большей активностью. Минералогическое происхождение и степень полимеризации пиролюзита также имеют большое значение. В СССР применяется почти исключительно чиатурский пиролюзит. Использование МnO 2 в агломерате находится в весьма сложной зависимости от: а) природы применяемого графита, б) степени измельчения обоих ингредиентов (величина зерна порядка 0,05 мм), в) их электропроводности, г) состава смеси и ее приготовления (давления), и, наконец, д) адсорбирующей способности МnO 2 и графита. В среднем при непрерывной разрядке до 0,7 V использование пиролюзита в сухих элементах составляет не более 20-30% (раскисление до Мn 2 O 3), а искусственной перекиси марганца (МnO 2) составляет 60-70%. Отношение (МnO 2 /графит) в современных элементах равно 2-4.

Электролит сухих гальванических элементов . Качество сухих гальванических элементов, в особенности способность к хранению, в сильной степени зависит не только от химического состава электролита, но и от физических свойств, способа наполнения и пр. Зависимость разъедания гладкого металлического цинка в растворах нашатыря различной концентрации изображена на фиг. 16, из которой видно, что минимальная коррозия имеет место с 20%-ным чистым раствором NH 4 Cl (влияние отдельных примесей рассматривается Друкером).

Концентрацию NH 4 Cl в электролите сухих элементов, согласно теории, желательно иметь максимальную. Одной из полезных добавок в смысле уменьшения растворения цинка является хлористый цинк (см. уравнение Нернста), как видно из фиг. 17, для раствора, содержащего 25 г NH 4 Cl на 100 см 3 раствора ZnCl 2 различной концентрации.

Из этого графика также видно, что влияние амальгамирования цинка существенно сказывается на коррозии лишь в отсутствии ZnCl 2 , а также, что увеличение содержания ZnCl 2 сверх 25% (удельный вес 1,24) сказывается на коррозии значительно меньше, притом, как следует из теории, невыгодно в отношении скорого образования Zn(OH) 2 . Интересно отметить, что оптимальная, по-видимому, концентрация ZnCl 2 отвечает комплексу ZnCl 2 ∙2NH 4 Cl. Из других свойств электролита существенным оказывается его вязкость. По Друкеру, 5%-ный клейстер раствора NH 4 Cl оказывает меньшее действие на цинк, чем 10%-ный. Известны два метода желатинизации электролита: 1) жидким электролитом наполняют элемент и затем нагревают до образования клейстера (обычный способ) 2) желатинизацию производят при обыкновенной температуре действием хлористого цинка. В качестве загустителя обычно применяют смесь двух весовых частей крахмала на одну весовую часть муки. Установлено, что наиболее пригодной для сухих элементов является вязкая желтоватая масса, которая получается в случае состава с наименьшим временем желатинизации. Влияние концентрации ZnCl 2 на скорость желатинизации растворов видно на фиг. 18.

Полученные соотношения позволяют применять два негустеющих в отдельности состава (табл. 16), которые при сливании вместе при комнатной температуре дают массу требуемых свойств, и притом в заранее рассчитанное время.

Этим ценным качеством ZnCl 2 , наряду с отмеченными выше, а также в виду его гигроскопических и консервирующих свойств, объясняются как непонятное на первый взгляд введение в свежий гальванический элемент материала, образующегося как продукт работы элемента, так и те преимущества в отношении емкости и срока хранения, которыми обладают изготовленные сухими на заводе элементы перед наливными и другими их формами без применения ZnCl 2 . Образованию двойных соединений с NH 3 в последнее время препятствуют применением электролита без NH 4 Cl, а именно из хлористого магния с добавкой хлористого марганца. Способ напитывания агломерата электролитом и наполнение элемента следует рассматривать в отношении его сохраняемости как предохранение Zn от действия на него кислорода воздуха. Необходимый для правильного функционирования и безвредный для расположенного на дне цинка в элементах типа Фери кислород воздуха в сухих гальванических элементах, наоборот, оказывает сильное разрушительное действие на цинк, в особенности в соединении с концентрационной парой (фиг. 19), действующей вдоль электрода при вертикальном его расположении.

Технологические приемы производства гальванических элементов . Заводское производство гальванических элементов делится на следующие главные операции: а) изготовление цинковых полюсов, б) приготовление катодов (агломератов), в) приготовление электролита и г) сборка указанных составных частей. Первая операция состоит из обычных механических приемов: резки листового цинка, гнутья по шаблону и пайки; применяется также штамповка и электросварка цинковых полюсов. Приготовление агломератов из просеянных до определенного зерна и смешанных в определенной пропорции графита и пиролюзита состоит в прессовании брикетов нужных размеров. Известны два метода прессовки: 1) прессовка непосредственно на уголь и 2) прессовка на вынимающийся затем стержень-шаблон с последующим вставлением угля в образовавшийся канал. Преимущество первого метода заключается в уменьшении переходного сопротивления агломерат-уголь; второго - в возможности применения больших давлений при прессовке. В последнее время распространяется автоматическая прессовка. Отпрессованный агломерат, надетый на уголь, помещается в матерчатый или бумажный чехол, обычно затягиваемый по спирали тонким шнурком, для придания большей механической прочности и для предохранения массы от выкрашивания. Этот прием носит название обвязки агломерата и обычно производится ручным способом. В Америке практикуется более совершенный прием - картонной обшивки агломерата без хлопотливой обвязки, причем картонная оболочка, заполняя все пространство между агломератом и цинком, одновременно служит и в качестве сепаратора, а также играет роль наполнителя для электролита. Один из возможных приемов такой механизации обвязки для малых образцов изображен на фиг. 20, согласно которой агломераты с надетыми на них чехлами с легким трением продавливаются через отверстие холодной или подогретой матрицы, причем соответственно устроенный пуансон запечатывает донышки.

Для надевания зажимов - латунных колпачков - также применяются полуавтоматы. Устройство одного из них дано на фиг. 21.

Технические данные: вес 96 кг, потребляемая мощность 1/2 л. с., производительность 1500 шт. в ч. Подобно этому при массовом изготовлении б. или м. механизированы и другие приемы сборки гальванических элементов.

Испытание гальванических элементов . Испытание электрических свойств производится по двум методам: 1) постоянной силы тока I = Const и 2) на постоянное сопротивление R = Const. В виду простоты более распространен второй метод. Испытания делятся на следующие виды: 1) Испытание внешней характеристики или внутреннего сопротивления; для получения линейной зависимости V = f(I) отсчет V необходимо брать при установившемся его значении. 2) Испытание емкости непрерывной разрядкой V = f(t) при I = Const или R = Const. 3) Испытание способности к хранению; надежного метода до настоящего времени не выработано; косвенно и далеко не точно судят по изменению ЭДС или по увеличению внутренних потерь за определенный промежуток времени хранения гальванических элементов. 4) Испытание максимальной отдачи в условиях б. или м. близких к условиям действительной работы гальванических элементов (периодический разряд по американским нормам). В СССР применялись гл. обр. первые два вида испытаний; в настоящее время имеются попытки применения и третьего вида; наиболее распространена разрядка гальванических элементов на 10 Ом сопротивления.

Установлено, что вид функции V = f(t) при R = Const для гальванических элементов с МnO 2 весьма близко выражается уравнением:

где V H. есть начальное напряжение, b - постоянная элемента, t - время. Это соотношение дает возможность аналитически определять среднее напряжение V ср. до любого конечного напряжения V K . из уравнения

а, следовательно, и соответственную емкость гальванического элемента

где t 0 - разрядный период в часах. Первое из уравнений применимо в пределах до V K . = 0,7V и ниже при разрядных режимах до 500 часов.

При более длинных режимах (обычно не применяющихся на практике) возможно наблюдающееся отклонение (не у всех гальванических элементов) кривой от своей первоначальной параболической формы (на фиг. 22 и 23 - кривые, снятые для гальванических элементов одних и тех нее размеров и в одинаковых условиях).

В этих случаях применение уравнения

ограничено более высоким конечным напряжением. Характер изменения емкости гальванических элементов русской продукции при различных режимах R = Const показан для нескольких размеров элементов на диаграмме «время разрядки-емкость» (фиг. 24).

Из диаграммы видно, что точки, отвечающие одним и тем же режимам для разных размеров гальванических элементов, лежат на прямых, проведенных из начала координат (лучи сопротивлений), как то следует из уравнения

так как, при весьма незначительных колебаниях V H. , V cp. = Const, а, следовательно, и величина I ср. , которая определяет наклон луча сопротивления к координатным осям, также = Const, другими словами - средняя разрядная сила тока практически может быть принята независимой от размеров и формы гальванических элементов и определяется лишь проводимостью внешней цепи (разрядным сопротивлением). Полученные простые соотношения позволяют легко из графика по времени разрядки определять емкость до того конечного напряжения, для которого построена диаграмма. Что касается изменения емкости гальванических элементов с разрядным режимом, то ряд появившихся в последнее время формул дает возможность с достаточной для практики точностью производить необходимые вычисления. При пользовании этими формулами не надо только забывать, что они являются эмпирическими и поэтому, строго говоря, применимы только к той продукции и в тех условиях, в которых эти формулы выводились. Для разрядок при I = Const к сухим элементам применима формула Пейкерта (см. Аккумуляторы электрические):

где t 0 - разрядный период в часах; для русской продукции значение показателя n до V K. = 0,7 V было найдено равным 1,3. Для американской продукции также была установлена справедливость формулы Пейкерта, причем до V K. = 0,75 V для одного из типов сухих элементов значение n = 2; постоянная k зависит от размеров элемента. Для разрядок при R = Const формула получает вид:

где n равно 1,5 до V K . = 0,75 V для американской продукции и 1,3 до V K. = 0,70 V для русской продукции. Вообще относительно постоянных n и k следует иметь в виду, что обе они зависят от V K . и, кроме того, k определяется количеством деполяризующейся массы и степенью ее использования, а n определяется формой элемента и главным образом толщиной активного слоя деполяризатора.

Зависимость разрядного напряжения сухих элементов от температуры и разрядного сопротивления видна на фиг. 25, которая показывает, что –22° является критической температурой для разрядок б. или м. значительным током.

Аппаратура для испытания гальванических элементов состоит из: 1) разрядной доски с набором сопротивлений и вольтметровым переключателем (фиг. 26);

2) установки для прерывистого испытания по американским нормам, в которой управляемые от часового механизма А реле С замыкают и размыкают испытуемые цепи Е (фиг. 27);

3) установки для испытания периодическим разрядом батарей запала по 2 часа в сутки (фиг. 28).

Гальванический элемент – это источник электрической энергии, принцип действия основан на химических реакциях. Большинство современных батареек и аккумуляторов подпадает под определение и относится к рассматриваемой категории. Физически гальванический элемент состоит из проводящих электродов, погруженных в одну или две жидкости (электролиты).

Общая информация

Гальванические элементы делятся на первичные и вторичные в соответствии со способностью вырабатывать электрический ток. Оба вида считаются источниками и служат для различных целей. Первые вырабатывают ток в ходе химической реакции, вторые функционируют исключительно после зарядки. Ниже обсудим обе разновидности. По количеству жидкостей различают две группы гальванических элементов:

Непостоянство источников питания с единственной жидкостью заметил Ом, открыв неприемлемость гальванического элемента Волластона для экспериментов по исследованию электричества. Динамика процесса такова, что в начальный момент времени ток велик и вначале растёт, потом за несколько часов падает до среднего значения. Современные аккумуляторы капризны.

История открытия химического электричества

Мало известен факт, что в 1752 году гальваническое электричество упоминалось Иоганном Георгом. Издание Исследование происхождения приятных и неприятных ощущений, выпущенное Берлинской академией наук, даже придавало явлению вполне правильное толкование. Опыт: серебряную и свинцовую пластины соединяли с одного конца, а противоположные с разных сторон прикладывались к языку. На рецепторах наблюдается вкус железного купороса. Читатели уже догадались, описанный способ проверки батареек часто использовали в СССР.

Объяснение явления: видимо, имеются некие частицы металла, раздражающие рецепторы языка. Частицы испускаются одной пластиной при соприкосновении. Причём один металл при этом растворяется. Собственно, налицо принцип действия гальванического элемента, где цинковая пластина постепенно исчезает, отдавая энергию химических связей электрическому току. Объяснение сделано за полвека до официального доклада Королевскому обществу Лондона Алессандро Вольта об открытии первого источника питания. Но, как происходит часто с открытиями, к примеру, электромагнитным взаимодействием, опыт остался незамечен широкой научной общественностью и не исследован должным образом.

Добавим, это оказалось связано с недавней отменой преследования за колдовство: немногие решались после печального опыта «ведьм» на изучение непонятных явлений. Иначе обстояло дело с Луиджи Гальвани, с 1775 года работающим на кафедре анатомии в Болонье. Его специализаций считались раздражители нервной системы, но светило оставил значимый след не в области физиологии. Ученик Беккарии активно занимался электричеством. Во второй половине 1780 года, как следует из воспоминаний учёного (1791, De Viribus Electricitatis in Motu Muscylary: Commentarii Bononiensi, том 7, стр. 363), в очередной раз производилось препарирование лягушки (опыты и потом длились долгие годы).

Примечательно, что необычное явление подмечено ассистентом, в точности, как с отклонением стрелки компаса проводом с электрическим током: открытие сделали лишь косвенно связанные с научными исследованиями люди. Наблюдение касалось подергиваний нижних конечностей лягушки. В ходе опыта ассистент задел внутренний бедренный нерв препарируемого животного, ножки дёрнулись. Рядом, на столе стоял электростатический генератор, на приборе проскочила искра. Луиджи Гальвани немедленно загорелся идеей повторить опыт. Что удалось. И опять на машине проскочила искра.

Образовалась параллель связи с электричеством, и Гальвани возжелал узнать, станет ли на лягушку действовать подобным образом гроза. Оказалось, что природные катаклизмы не оказывают заметного воздействия. Лягушки, прикреплённые медными крючками за спинной мозг к железной ограде, дёргались вне зависимости от погодных условий. Опыты не удавалось реализовать со 100-процентной повторяемостью, атмосфера воздействия не оказывала. В итоге Гальвани нашёл сонм пар, составленных из разных металлов, которые при соприкосновении между собой и нервом вызывали подёргивание лапок у лягушки. Сегодня явление объясняют различной степенью электроотрицательности материалов. К примеру, известно, что нельзя алюминиевые пластины клепать медью, металлы составляют гальваническую пару с ярко выраженными свойствами.

Гальвани справедливо заметил, что образуется замкнутая электрическая цепь, предположил, что лягушка содержит животное электричество, разряжаемое подобно лейденской банке. Алессандро Вольта не принял объяснения. Внимательно изучив описание экспериментов, Вольта выдвинул объяснение, что ток возникает при объединении двух металлов, непосредственно или через электролит тела биологического существа. Причина возникновения тока кроется в материалах, а лягушка служит простым индикатором явления. Цитата Вольты из письма, адресованного редактору научного журнала:

Проводники первого рода (твёрдые тела) и второго рода (жидкости) при соприкосновении в некоторой комбинации рождают импульс электричества, сегодня нельзя объяснить причины возникновения явления. Ток течёт по замкнутому контуру и исчезает, если целостность цепи нарушена.

Вольтов столб

Лепту в череду открытий внёс Джованни Фаброни, сообщивший, что при размещении двух пластинок гальванической пары в воду, одна начинает разрушаться. Следовательно, явление имеет отношение к химическим процессам. А Вольта тем временем изобрёл первый источник питания, долгое время служивший для исследования электричества. Учёный постоянно искал способы усиления действия гальванических пар, но не находил. В ходе опытов создана конструкция вольтова столба:

  1. Попарно брались цинковые и медные кружки в плотном соприкосновении друг с другом.
  2. Полученные пары разделялись мокрыми кружками картона и ставились друг над другом.

Легко догадаться, получилось последовательное соединение источников тока, которые суммируясь, усиливали эффект (разность потенциалов). Новый прибор вызывал при прикосновении ощутимый для руки человека удар. Подобно опытам Мушенбрука с лейденской банкой. Однако для повторения эффекта требовалось время. Стало очевидно, что источник энергии имеет химическое происхождение и постепенно возобновляется. Но привыкнуть к понятию нового электричества оказалось непросто. Вольтов столб вёл себя подобно заряженной лейденской банке, но…

Вольта организует дополнительный эксперимент. Снабжает каждый из кружков изолирующей ручкой, приводит в соприкосновение на некоторое время, потом размыкает и проводит исследование электроскопом. К тому времени уже стал известен закон Кулона, выясняется, что цинк зарядился положительно, а медь – отрицательно. Первый материал отдал электроны второму. По указанной причине цинковая пластина вольтова столба постепенно разрушается. Для изучение работы назначили комиссию, которой представили доводы Алессандро. Уже тогда путём умозаключений исследователь установил, что напряжение отдельных пар складывается.

Вольта объяснил, что без мокрых кружков, прокладываемых между металлами, конструкция ведёт себя как две пластинки: медная и цинковая. Усиления не происходит. Вольта нашёл первый ряд электроотрицательности: цинк, свинец, олово, железо, медь, серебро. И если исключить промежуточные металлы между крайними, «движущая сила» не изменяется. Вольта установил, что электричество существует, пока соприкасаются пластины: сила не видна, но легко чувствуется, следовательно, она истинна. Учёный 20 марта 1800 года пишет президенту Королевского общества Лондона сэру Джозефу Бэнксу, к которому обращался впервые и Майкл Фарадей.

Английские исследователи быстро обнаружили: если на верхнюю пластину (медь) капнуть воды, в указанной точке в районе контакта выделяется газ. Они проделали опыт с обоих сторон: провода подходящей цепи заключили в колбы с водой. Газ исследовали. Оказалось, что газ горючий, выделяется лишь с единственной стороны. С противоположной заметно окислилась проволока. Установлено, что первое является водородом, а второе явление происходит вследствие избытка кислорода. Установлено (2 мая 1800 года), что наблюдаемый процесс — разложение воды под действием электрического тока.

Уильям Крукшенк немедленно показал, что аналогичное допустимо проделать с растворами солей металлов, а Волластон окончательно доказал идентичность вольтова столба статическому электричеству. Как выразился учёный: действие слабее, но обладает большей продолжительностью. Мартин Ван Марум и Христиан Генрих Пфафф зарядили от элемента лейденскую банку. А профессор Хампфри Дэви установил, что чистая вода не может служить в этом случае электролитом. Напротив, чем сильнее жидкость способна окислять цинк, тем лучше действует вольтов столб, что вполне согласовывалось с наблюдениями Фаброни.

Кислота намного улучшает работоспособность, ускоряя процесс выработки электричества. В конце концов Дэви создал стройную теорию вольтова столба. Он пояснил, что металлы изначально обладают неким зарядом, при замыкании контактов вызывающим действие элемента. Если электролит способен окислять поверхность донора электронов, слой истощённых атомов постепенно удаляется, открывая новые слои, способные давать электричество.

В 1803 году Риттер собрал столб из чередующихся кружков серебра и мокрого сукна, прообраз первого аккумулятора. Риттер зарядил его от вольтова столба и наблюдал процесс разрядки. Правильное толкование явлению дал Алессандро Вольта. И лишь в 1825 году Огюст де ла Рив доказал, что перенос электричества в растворе осуществляется ионами вещества, наблюдая образование оксида цинка в камере с чистой водой, отделённой от соседней мембраной. Заявление помогло Берцелиусу создать физическую модель, в которой атому электролита представлялись составленными из двух противоположно заряженных полюсов (ионов), способных диссоциировать. В результате получилась стройная картина переноса электричества на расстояние.

Если отсутствует электрическая сеть, то для питания электроприборов применяют гальванические элементы и аккумуляторы, называемые иначе химическими источниками тока. Рассмотрим принцип их работы на примере первого простейшего элемента – элемента Вольта (рис. 1). Он состоит из медной (Сu) и цинковой (Zn) пластинок, опущенных в раствор серной кислоты (H2SO4). Вследствие химической реакции, происходящей между цинком и серной кислотой, на цинке образуется излишек электронов. Цинк заряжается отрицательно и является отрицательным полюсом. Раствор и медная пластинка, в него погруженная, заряжаются положительно. В результате возбуждается ЭДС, равная примерно одному вольту, которая сохраняется все время, пока цепь не замкнута.
Если замкнуть цепь, пойдет ток и внутри элемента усиленно начнет выделяться водород, покрывающий поверхность пластинок слоем пузырьков. Этот слой уменьшает напряжение на полюсах элемента. Такое явление носит название поляризации. Чем больше ток, тем сильнее поляризация и тем быстрее уменьшается напряжение элемента.

Рис.1. Простейший гальванический элемент Вольта.
Для устранения поляризации в элемент вводят вещества, способные поглощать водород и называемые деполяризаторами. Чтобы напряжение на полюсах оставалось постоянным, деполяризатор должен быстро поглощать водород, образующийся при работе элемента. Поглощая водород, деполяризатор постепенно приходит в негодность. Но обычно раньше этого портится электролит и под действием электролита разъедается цинк. Вообще электрическая энергия получается в элементе за счёт расхода цинка, электролита и деполяризатора; поэтому каждый элемент обладает определенным запасом энергии и может работать лишь ограниченное время.
Работа гальванических элементов объясняется с помощью теории электролитической диссоциации, согласно которой молекулы вещества, растворенного в воде распадаются (диссоциируют) на, ионы. Такое явление характерно для всех электролитов, представляющих собой растворы кислот, щелочей и солей. В элементе Вольта молекула серной кислоты (H2SO4) в водном растворе распадаются на отрицательный ион кислотного остатка (SO4) и положительный ион водорода (H2), что показано на рис. 2.
Химическая реакция между цинком и серной кислотой состоит в том, что положительные ионы цинка переходят в раствор, притягиваясь к отрицательным ионам электролита. При этом цинковый электрод сам заряжается отрицательно. Между ним и электролитом возникает разность потенциалов, а следовательно, и электрическое поле, которое препятствует дальнейшему переходу положительных ионов цинка в раствор. Поэтому создается некоторое равновесие с определенной разностью потенциалов между цинком и раствором. Для других металлов и растворов значение разности потенциалов будет иное.
Чтобы использовать возникшую разность потенциалов, в электролит помещают второй электрод, выполненный из другого металла. Если второй электрод – цинковый, то между ним и растворов получится такая же разность потенциалов, как у первого электрода но она будет действовать навстречу, и результирующая разность потенциалов между электродами будет равна нулю. У элементов отрицательный электрод, как правило, цинковый, а положительный электрод обычно медный или угольный.
Если соединить электроды элемента проводником, т. е. создать замкнутую цепь, то под действием разности потенциалов по внешней цепи от цинка будут двигаться электроны. Так как они уходят с цинкового электрода, то его отрицательный потенциал начинает уменьшаться и электрическое поле между ним и раствором ослабевает. Но тогда новые положительные ионы цинка переходят в раствор. Тем самым поддерживается определенный отрицательный потенциал цинкового электрода.

Рис.2. Ионы в электролите элемента Вольта.
При работе элемента непрерывно происходит растворение цинка в электролите, который постепенно превращается в раствор сернокислого цинка (ZnSO4). Положительные ионы цинка, переходящие все время в электролит, притягивают к себе отрицательные ионы кислотного остатка. Эти ионы в электролите данжутся в направлении от медной пластинки к цинковой. Зато положительные ионы водорода отталкиваются положительными ионами цинка и движутся в обратном направлении, то есть от цинка к меди. Таким об разом, если во внешней цепи ток представляет собой движение электронов (как и всегда в металлических проводниках), то в электролите ток является перемещением положительных и отрицательных ионов в противоположных направлениях. Ионы водорода подходят к медной пластинке и отнимают от нее электроны, превращаясь в нейтральные атомы. Вследствие этого на медной пластинке поддерживается определенный положительный потенциал, несмотря на то, что к ней из внешней цепи прибывают электроны. Однако медная пластинка постепенно покрывается слоем водорода. Между этим слоем и электролитом возникает разность потенциалов, действующая навстречу основной разности потенциалов, имеющейся между электродами. Возникновение такой противоэлетродвижущей силы и называется поляризацией элемента. Вследствие поляризации результирующая разность потенциалов уменьшается и действие элемента ухудшается.
Гальванические элементы характеризуются разными параметрами и прежде всего электродвижущей силой, внутренним сопротивлением, максимальным допустимым разрядным током и емкостью.
Электродвижущая сила обусловливается типом элемента, то есть материалом его электродов, веществом электролита и деполяризатора. Она совершенно не зависит от размеров элемента (размеров его электродов), количества электролита и количества деполяризатора.
Внутреннее сопротивление элемента зависит не только от его типа, но и от его размеров, а также от того, как долго работал элемент. Чем больше размеры элемента, тем меньше его внутреннее сопротивление. По мере работы элемента внутреннее сопротивление растет. Оно особенно резко возрастает у истощившихся элементов. Внутреннее сопротивление у элементов в начале их работы обычно бывает от единиц ом до десятых долей ома. Когда элемент присоединен к замкнутой цепи, напряжение на его зажимах всегда несколько меньше ЭДС и снижается при увеличении тока, так как возрастает потеря части ЭДС на внутреннем сопротивлении элемента. Иногда для элементов указывают напряжение при максимальном разрядном токе в начале работы элемента (начальное напряжение).
Каждый элемент можно разряжать током до определённого значения. Чрезмерно большой ток вызовет ускоренную поляризацию и напряжение быстро станет недопустимо низким. Подобное же явление, но в ещё большей степени происходит при коротком замыкании элемента. У большинства элементов максимальный допустимый разрядный ток составляет доли ампера. Чем больше размеры элемента, тем больше этот ток. Превышение тока приводит и быстрому истощению элемента.
Емкостью элемента называют количество электричества, которое он способен отдать при разряде током не свыше максимального допустимого. Обычно емкость элементов измеряют в ампер-часах (а-ч), то есть произведением разрядного тока в амперах и числа часов работы элемента. Элемент считают разряженным, если его напряжение уменьшилось примерно на 50 % по сравнению с первоначальным значением.
Время работы элемента можно определить, разделив емкость в ампер-часах на разрядный ток в амперах. При этом ток не должен превышать максимального допустимого значения.
Емкость элемента зависит от количества цинка, электролита и деполяризатора. Чем больше размеры элемента, тем больше количество входящих в его состав веществ и тем больше емкость. Кроме того, емкость зависит от разрядного тока, а также от перерывов во время разряда и их длительности. Нормальная емкость элемента соответствует максимальному допустимому разрядному току при непрерывном разряде. Если ток меньше максимального и если разряд происходит с перерывами то емкость увеличивается, а при токе свыше максимального ёмкость снижается, так как часть деполяризатора не участвует в реакциях. Емкость также уменьшается с понижением температуры. Поэтому расчет времени работы элемента по его номинальной емкости и разрядному току является приближенным.
2. МАРГАНЦОВО – ЦИНКОВЫЕ
И ОКСИДНО – РТУТНЫЕ ЭЛЕМЕНТЫ.
Широкое распространение получили марганцово – цинковые (МЦ) сухие элементы с деполяризатором из диоксида марганца.
Сухой элемент стаканчикового типа (рис. 3) имеет цинковый сосуд прямоугольной или цилиндрической формы, являющийся отрицательным электродом. Внутри него помещён положительный электрод в виде угольной
палочки или пластинки, которая находится в мешке, наполненном смесью диоксида марганца с порошком угля или графита. Уголь или графит добавляют для уменьшения сопротивления. Угольный стержень и мешок с деполяризующей массой называют агломератом. В качестве электролита используется паста, составленная из нашатыря (NH4Cl), крахмала и некоторых других веществ. У стаканчиковых элементов центральный вывод является положительным полюсом.
Рабочее напряжение сухого элемента несколько ниже, чем его ЭДС, равная 1,5 В, и составляет примерно 1,3 или 1,4 В. При длительном разряде напряжение по степенно уменьшается, так как деполяризатор не успевает поглощать весь выделяемый водород, и к концу раз ряда оно достигает 0,7 В.


Рис.3. Устройство сухого элемента.
Другая конструкция сухого элемента, так называемого галетного типа, показана на рис. 4. В нем положительным электродом является деполяризующая масса (угольного электрода нет). Галетные элементы имеют значительно лучшие характеристики, нежели стаканчиковые.


Рис. 4. Устройство сухого галетного элемента.
1 – деполяризатор – положительный электрод; 2 – цинк – отрицательный электрод; 3 – бумага;
4 – картон, пропитанный электролитом; 5 – полихлорвиниловая плёнка.
В каждом элементе, имеющем электролит, даже при разомкнутой внешней цепи происходит так называемый саморазряд, в результате которого разъедается цинковый электрод, а также истощаются электролит и деполяризатор. Поэтому сухой элемент при хранении постепенно проходит в негодность и электролит у него высыхает.
Когда сухие элементы полностью разрядятся, их агломераты ещё работоспособны и могут быть использованы для устройства самодельных наливных элементов. Такие элементы имеют агломерат и электрод из листового цинка в растворе нашатыря, находящемся в стеклянном или керамическом или пластмассовом стаканчике. При отсутствии нашатыря можно с несколько худшими результатами применить раствор обычной поваренной соли с небольшой добавкой сахара. Помимо сухих элементов типа МЦ, широко применяются элементы с марганцово – воздушной деполяризацией (МВЦ). Они устроены аналогично элементам МЦ, но у них положительный электрод сделан так, что к диоксиду марганца по особым каналам поступает наружный атмосферный воздух. Кислород воздуха возмещает потерю кислорода диоксидом марганца при деполяризации. Поэтому деполяризация может происходить значительно дольше и емкость элемента увеличивается.
Физико-химические процессы в элементах с диоксидом марганца происходят следующим образом. Нашатырь, то есть хлористый аммоний (NH4Cl), в водном растворе образует положительные ионы аммония (NH4) и отрицательные ионы хлора (Cl). Положительные ионы цинка переходят в раствор и цинк приобретает отрицательный потенциал. При замыкании цепи, когда во внешней цепи электроны движутся в направлении от цинка к углю всё время происходит растворение цинка. Его ионы переходят в электролит, за счёт чего поддерживается отрицательный потенциал цинка. Ионы цинка соединяются с ионами хлора, образуя раствор хлористого цинка (ZnCl2). В то же время ионы NH4 движутся к угольному электроду, отнимают от него электроны и распадаются на аммиак (NH3) и водород. Это происходит по уравнению
2NH4 = 2NH3 + H2.
Выделяющийся водород вступает в соединение с деполяризатором, то есть диоксидом марганца, образуя оксид марганца и воду:
H2 + MnО2 = MnО2 + Н2О.
В последние годы выпускаются еще сухие герметичные МЦ-элементы со щелочным электролитом (КОН). Они бывают цилиндрические, дисковые и галетные, ёмкостъ у них в три – пять раз больше, чем у элементов с электролитом из нашатыря. Кроме того, они допускают несколько циклов подзаряда током с отдачей 10% емкости. У таких элементов центральный электрод цинковый и является минусом, то есть полярность выводов противоположна полярности выводов обычных МЦ-элементов. Элементы со щелочным электролитом применяются для длительной работы, например, в электронных часах. В обозначениях таких элементов впереди ставится буква А.
У всех элементов начальное напряжение составляет примерно 1,3 – 1,5 В, а конечное напряжение равно 0,7 – 1 В. Хранение сухих элементов или батарей в бездействующем состоянии перед их использованием не должно продолжаться более срока, указанного на них; в противном случае сохранение работоспособности не гарантируется. Однако при хранении в течение указанного срока происходит некоторое снижение емкости, но не больше, чем на одну треть.
В последнее время выпускаются ещё малогабаритные оксидно – ртутные (ртутно – цинковые) герметичные элементы, имеющие более высокие качества, нежели элементы типа МЦ. Устройство оксидно – ртутных элементов показано на рис. 5. Элемент имеет стальной корпус состоящий из двух половин, отделенных друг от друга герметизирующей изоляционной прокладкой из резины.
В одну половину корпуса впрессована активная масса из оксида ртути (HgO) с графитом, являющаяся положительным электродом. Отрицательным электродом служит цинковый порошок, впрессованный в другую половину корпуса. Щелочной электролит (КОН) пропитывает пористую прокладку, разделяющую электроды. Эти элементы выпускаются разных размеров и разной емкости (от десятых долей ампер-часа до нескольких ампер-
часов). ЭДС у них составляет примерно 1,35 В. Срок хранения этих элементов 2,5 года. Саморазряд не превышает 1 % в год. По сравнению с МЦ-элементами ртут-


Рис. 5. Устройство герметичного оксиднво-ртутного элемента;
1 – стальной корпус с положительным электродом; 2 – пористая прокладка; 3 – резиновая уплотняющая прокладка; 4 – крышка корпуса с отрицательным электродом.
но – цинковые элементы имеют большую емкость, меньшее внутреннее сопротивление, но более высокую стоимость. Они широко применяются в электронных часах, кардиостимуляторах, фотоэкспонометрах, измерительных приборах. У самых малогабаритных элементов размеры составляют всего лишь несколько миллиметров, а масса – десятые доли грамма.
Важной особенностью оксидно-ртутных элементов является стабильность напряжения при разряде. Только в самом конце разряда напряжение резко падает до нуля.
3. СОЕДИНЕНИЕ ЭЛЕМЕНТОВ В БАТАРЕИ.
Выше говорилось, что ЭДС обычного химического элемента приблизительно равна 1,5 В. Для увеличения ЭДС применяют батарею с последовательным соединением элементов. В этом случае “+” одного элемента соединяют с “–” другого и т. д. “Минус” первого и “плюс” последнего являются полюсами всей батареи (рис. 6.).
При последовательном соединении элементов ЭДС возрастает во столько раз, сколько соединено элементов.


Рис.6. Последовательное и параллельное соединение элементов в батарею.
Реже встречается параллельное соединение элементов, при котором положительные полюсы всех элементов соединяются вместе, образуя положительный полюс батареи, а отрицательный полюс батареи получается путем соединения отрицательных полюсов элементов (рис. 6). При параллельном соединении элементов ЭДС батареи не увеличивается, но возрастают емкость и максимальный разрядный ток. Поэтому параллельное соединение применяют, когда нужно получить больший разрядный ток и большую емкость, чем у одного элемента.
Значительно чаще прибегают к смешанному соединению, при котором увеличиваются и ЭДС, и емкость, и максимальный разрядный ток. В этом случае обычно соединяют параллельно несколько групп элементов, а в каждой группе соединяют последовательно столько элементов сколько нужно для получения необходимой ЭДС.


Рис. 7. Смешанное соединение элементов в батарею.
Число параллельных групп определяется необходимой величиной максимального разрядного тока (рис. 7). Вообще желательно составлять батареи из последовательно соединённых элементов с достаточным разрядным током. И только в случае, когда необходимо получить больший ток или увеличенную емкость, прибегают к смешанному соединению. Включение дополнительных элементов по принципу смешанного соединения применяется также для повышения напряжения, если элементы сильно разрядились.
Во время бездействия батареи параллельные группы элементов надо отсоединять друг от друга, так как за счет даже незначительной разницы в ЭДС одна группа может разряжаться на другую.

Для того чтобы составить схему гальванического элемента, необходимо понять принцип его действий, особенности строения.

Потребители редко обращают внимание на аккумуляторы и батарейки, при этом именно эти источники тока являются самыми востребованными.

Химические источники тока

Что собой представляет гальванический элемент? Схема его основывается на электролите. В устройство входит небольшой контейнер, где располагается электролит, адсорбируемый материалом сепаратора. Кроме того, схема двух гальванических элементов предполагает наличие Как называется такой гальванический элемент? Схема, связывающая между собой два металла, предполагает наличие окислительно-восстановительной реакции.

Простейший гальванический элемент

Он подразумевает наличие двух пластин либо стержней, выполненных из разных металлов, которые погружены в раствор сильного электролита. В процессе работы данного гальванического элемента, на аноде осуществляется процесс окисления, связанный с отдачей электронов.

На катоде - восстановление, сопровождающееся принятием отрицательных частиц. Происходит передача электронов по внешней цепи к окислителю от восстановителя.

Пример гальванического элемента

Для того чтобы составить электронные схемы гальванических элементов, необходимо знать величину их стандартного электродного потенциала. Проанализируем вариант медно-цинкового гальванического элемента, функционирующего на основе энергии, выделяющейся при взаимодействии сульфата меди с цинком.

Этот гальванический элемент, схема которого будет приведена ниже, называют элементом Якоби-Даниэля. Он включает в себя которая погружена в раствор медного купороса (медный электрод), а также он состоит из цинковой пластины, находящейся в растворе его сульфата (цинковый электрод). Растворы соприкасаются между собой, но для того, чтобы не допускать их смешивания, в элементе используется перегородка, выполненная из пористого материала.

Принцип действия

Как функционирует гальванический элемент, схема которого имеет вид Zn ½ ZnSO4 ½½ CuSO4 ½ Cu? Во время его работы, когда замкнута электрическая цепь, происходит процесс окисления металлического цинка.

На его поверхности соприкосновения с раствором соли наблюдается превращение атомов в катионы Zn2+. Процесс сопровождается выделением «свободных» электронов, которые передвигаются по внешней цепи.

Реакцию, протекающую на цинковом электроде, можно представить в следующем виде:

Восстановление катионов металла осуществляется на медном электроде. Отрицательные частицы, которые попадают сюда с цинкового электрода, объединяются с катионами меди, осаждая их в виде металла. Данный процесс имеет следующий вид:

Если сложить две реакции, рассмотренные выше, получается суммарное уравнение, описывающее работы цинково-медного гальванического элемента.

В качестве анода выступает цинковый электрод, катодом служит медь. Современные гальванические элементы и аккумуляторы предполагают применение одного раствора электролита, что расширяет сферы их применения, делает их эксплуатацию более комфортной и удобной.

Разновидности гальванических элементов

Самыми распространенными считают угольно-цинковые элементы. В них применяется пассивный угольный коллектор тока, контактирующий с анодом, в качестве которого выступает оксид марганца (4). Электролитом является хлорид аммония, применяемый в пастообразном виде.

Он не растекается, поэтому сам гальванический элемент называют сухим. Его особенностью является возможность «восстанавливаться» на протяжении работы, что позитивно отражается на продолжительности их эксплуатационного периода. Такие гальванические элементы имеют невысокую стоимость, но невысокую мощность. При понижении температуры они снижают свою эффективность, а при ее повышении происходит постепенное высыхание электролита.

Щелочные элементы предполагают использование раствора щелочи, поэтому имеют довольно много областей применения.

В литиевых элементах в качестве анода выступает активный металл, что позитивно отражается на сроке эксплуатации. Литий имеет отрицательный поэтому при небольших габаритах подобные элементы имеют максимальное номинальное напряжение. Среди недостатков подобных систем можно выделить высокую цену. Вскрытие литиевых источников тока является взрывоопасным.

Заключение

Принцип работы любого гальванического элемента основывается на окислительно-восстановительных процессах, протекающих на катоде и аноде. В зависимости от используемого металла, выбранного раствора электролита, меняется срок службы элемента, а также величина номинального напряжения. В настоящее время востребованы литиевые, кадмиевые гальванические элементы, имеющие достаточно продолжительный срок своей службы.