Определение функции распределения

Пусть $X$ – случайная величина, а $x$ – вероятность распределения этой случайной величины .

Определение 1

Функцией распределения называется функция $F(x)$ удовлетворяющая условию $F\left(x\right)=P(X

Также иначе функцию распределения иногда называются интегральной функцией распределения или интегральным законом распределения.

В общем виде график функции распределения представляет собой график неубывающей функции с областью значений, принадлежащей отрезку $\left$ (причем 0 и 1 обязательно входят в область значений). При этом функция может, как иметь, так и не иметь скачков функции (рис. 1)

Рисунок 1. Пример графика функции распределения

Функция распределения дискретной случайной величины

Пусть случайная величина $X$ является дискретной. И пусть для нее дан ряд её распределения. Для такой величины функцию распределения вероятностей можно записать в следующем виде:

Функция распределения непрерывной случайной величины

Пусть случайная величина $X$ теперь является непрерывной.

График функции распределения такой случайной величины всегда представляет собой неубывающую непрерывную функцию (рис. 3).

Рассмотрим теперь случай, где случайная величина $X$ является смешанной.

График функции распределения такой случайной величины всегда представляет собой неубывающую функцию, которая имеет минимальное значение в 0, максимальное значение в 1, но которая не на всей области определения является непрерывной функцией (то есть имеет скачки в отдельных точках) (рис. 4).

Рисунок 4. Функция распределения смешанной случайной величины

Примеры задач на нахождение функции распределения

Пример 1

Приведен ряд распределений появления события $A$ в трех опытах

Рисунок 5.

Найти функцию распределения вероятностей и построить её график.

Решение.

Так как случайная величина является дискретной, то мы можем пользоваться формулой $\ F\left(x\right)=\sum\limits_{x_i

При $x>3$, $F\left(x\right)=0,2+0,1+0,3+0,4=1$;

Отсюда получаем следующую функцию распределения вероятностей:

Рисунок 6.

Построим ее график:

Рисунок 7.

Пример 2

Проводится один опыт, в котором событие $A$ может, как произойти, так и не произойти. Вероятность того, что данное событие произойдет равно $0,6$. Найти и построить функцию распределения случайной величины.

Решение.

Так как вероятность того, что событие $A$ произойдет равно $0,6$, то вероятность того, что данное событие не произойдет равно $1-0,6=0,4$.

Построим для начала ряд распределения данной случайной величины:

Рисунок 8.

Так как случайная величина является дискретной, найдем функцию распределения по аналогии с задачей 1:

При $x\le 0$, $F\left(x\right)=0$;

При $x>1$, $F\left(x\right)=0,4+0,6=1$;

Таким образом, получаем следующую функцию распределения:

Рисунок 9.

Построим ее график:

Рисунок 10.

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x) Задана функция распределения F(x)

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть равна приращению функции распределения вероятностей на этом интервале. P{Α ≤X<Β}=F(Β)-F(Α).

4. F(x 2)≥ F(x 1), если x 2, > x 1 , т.е. функция распределения вероятностей является неубывающей функцией.

5. Функция распределения вероятностей непрерывна слева. FΨ(x o -0)=limFΨ(x)=FΨ(x o) при х→ x o

Различия между функциями распределения вероятностей дискретной и непрерывной случайных величин хорошо иллюстрировать графиками. Пусть, например, дискретная случайная величина имеет n возможных значений, вероятности которых равны P{X=x k }=p k , k=1,2,..n. Если x ≤ x 1 , то F(Х)=0, так как левее х нет возможных значений случайной величины. Если x 1 < x ≤ x 2 , то левее х находится всего одно возможное значение, а именно, значение х 1 .

Значит, F(x)=P{X=x 1 }=p 1 .При x 2 < x ≤ x 3 слева от х находится уже два возможных значения, поэтому F(x)=P{X=x 1 }+P{X=x 2 }=p 1 +p 2 . Рассуждая аналогично,приходим к выводу, что если х k < x≤ x k+1 , то F(x)=1, так как функция будет равна сумме вероятностей всех возможных значений, которая по условию нормировки равна еденице. Таким образом, график функции распределения дискретной случайной величины является ступенчатым. Возможные значения непрерывной величины располагаются плотно на интервале задания этой величины, что обеспечивает плавное возрастания функции распределения F(x), т.е. ее непрерывность.

Рассмотрим вероятность попадания случайной величины в интервал , Δx>0: P{x≤X< x+Δx}=F(x+ Δx)-F(x). Перейдем к пределу при Δx→0:

lim (Δx→0) P{x≤ X < x+Δx}=lim (Δx→0) F(x+Δx)-F(x). Предел равен вероятности того, что случайная величина примет значение, равное х. Если функция F(x) непрерывна в точке х, то lim (Δx→0) F(x+Δx)=F(x), т.е. P{X=x}=0.

Если F(x) имеет разрыв в точке х, то вероятность P{X=x} будет равна скачку функции в этой точке. Таким образом, вероятность появления любого возможного значения для непрерывной величины равна нулю. Выражение P{X=x}=0 следует понимать как предел вероятности попадания случайной величины в бесконечно малую окрестность точки х при P{Α< X≤ Β},P{Α ≤ X< Β},P{Α< X< Β},P{Α ≤ X≤ Β} равны, если Х - непрерывная случайная величина.

Для дискретных величин эти вероятности неодинаковы в том случае, когда границы интервала Α и(или) Β совпадают с возможными значениями случайной величин. Для дискретной случайной величины необходимо строго учитывать тип неравенства в формуле P{Α ≤X<Β}=F(Β)-F(Α).

Функция распределения является наиболее общей формой задания закона распределения. Она используется для задания как дискретных, так и непрерывных случайных величин. Обычно ее обозначают .Функция распределения определяет вероятность того, что случайная величина принимает значения, меньшие фиксированного действительного числа, т. е.. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения. Ее еще называют интегральной функцией распределения.

Геометрическая интерпретация функции распределения очень проста. Если случайную величину рассматривать как случайную точку оси(рис. 6), которая в результате испытания может занять то или иное положение на этой оси, то функция распределенияесть вероятность того, что случайная точкав результате испытания попадет левее точки.

Для дискретной случайной величины , которая может принимать значения,, … ,, функция распределения имеет вид

,

где неравенство под знаком суммы означает, что суммирование распространяется на все те значения, которые по своей величине меньше. Из этой формулы следует, что функция распределения дискретной случайной величиныразрывна и возрастает скачками при переходе через точки,, … ,, причем величина скачка равна вероятности соответствующего значения (рис. 7). Сумма всех скачков функции распределения равна единице.

Непрерывная случайная величина имеет непрерывную функцию распределения, график этой функции имеет форму плавной кривой (рис. 8).

Рис. 7. Рис. 8.

Рассмотрим общие свойства функций распределения.

Свойство 1. Функция распределения есть неотрицательная функция, заключенная между нулем и единицей:

Справедливость этого свойства вытекает из того, что функция распределения определена как вероятность случайного события, состоящего в том, что.

Свойство 2. Вероятность попадания случайной величины в интервал равна разности значений функции распределения на концах этого интервала, т. е.

Отсюда следует, что вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Свойство 3. Функция распределения случайной величины есть неубывающая функция, т. е. при .

Свойство 4. На минус бесконечности функция распределения рана нулю, а на плюс бесконечности функция распределения рана единице, т. е. ,.

Пример 1. Функция распределения непрерывной случайной величины задана выражением

Найти коэффициент и построить график. Определить вероятность того, что случайная величинав результате опыта примет значение на интервале.

Решение. Так как функция распределения непрерывной случайной величины непрерывна, то приполучим:. Отсюда. График функцииизображен на рис. 9.

Исходя из второго свойства функции распределения, имеем:

.

4. Плотность распределения вероятности и ее свойства.

Функция распределения непрерывной случайной величины является ее вероятностной характеристикой. Но она имеет недостаток, заключающийся в том, что по ней трудно судить о характере распределения случайной величины в небольшой окрестности той или другой точки числовой оси. Более наглядное представление о характере распределения непрерывной случайной величины дает функция, которая называется плотностью распределения вероятности или дифференциальной функцией распределения случайной величины.

Плотность распределения равна производной от функции распределения, т. е.

.

Смысл плотности распределения состоит в том, что она указывает на то, как часто появляется случайная величинав некоторой окрестности точкипри повторении опытов. Кривая, изображающая плотность распределенияслучайной величины, называетсякривой распределения .

Рассмотрим свойства плотности распределения.

Свойство 1. Плотность распределения неотрицательна, т. е.

Свойство 2. Функция распределения случайной величины равна интегралу от плотности в интервале от до, т. е.

Даны определения Функции распределения случайной величины и Плотности вероятности непрерывной случайной величины. Эти понятия активно используются в статьях о статистике сайта . Рассмотрены примеры вычисления Функции распределения и Плотности вероятности с помощью функций MS EXCEL .

Введем базовые понятия статистики, без которых невозможно объяснить более сложные понятия.

Генеральная совокупность и случайная величина

Пусть у нас имеется генеральная совокупность (population) из N объектов, каждому из которых присуще определенное значение некоторой числовой характеристики Х.

Примером генеральной совокупности (ГС) может служить совокупность весов однотипных деталей, которые производятся станком.

Поскольку в математической статистике, любой вывод делается только на основании характеристики Х (абстрагируясь от самих объектов), то с этой точки зрения генеральная совокупность представляет собой N чисел, среди которых, в общем случае, могут быть и одинаковые.

В нашем примере, ГС - это просто числовой массив значений весов деталей. Х – вес одной из деталей.

Если из заданной ГС мы выбираем случайным образом один объект, имеющей характеристику Х, то величина Х является случайной величиной . По определению, любая случайная величина имеет функцию распределения , которая обычно обозначается F(x).

Функция распределения

Функцией распределения вероятностей случайной величины Х называют функцию F(x), значение которой в точке х равно вероятности события X

F(x) = P(X

Поясним на примере нашего станка. Хотя предполагается, что наш станок производит только один тип деталей, но, очевидно, что вес изготовленных деталей будет слегка отличаться друг от друга. Это возможно из-за того, что при изготовлении мог быть использован разный материал, а условия обработки также могли слегка различаться и пр. Пусть самая тяжелая деталь, произведенная станком, весит 200 г, а самая легкая - 190 г. Вероятность того, что случайно выбранная деталь Х будет весить меньше 200 г равна 1. Вероятность того, что будет весить меньше 190 г равна 0. Промежуточные значения определяются формой Функции распределения. Например, если процесс настроен на изготовление деталей весом 195 г, то разумно предположить, что вероятность выбрать деталь легче 195 г равна 0,5.

Типичный график Функции распределения для непрерывной случайной величины приведен на картинке ниже (фиолетовая кривая, см. файл примера ):

В справке MS EXCEL Функцию распределения называют Интегральной функцией распределения (Cumulative Distribution Function , CDF ).

Приведем некоторые свойства Функции распределения:

  • Функция распределения F(x) изменяется в интервале , т.к. ее значения равны вероятностям соответствующих событий (по определению вероятность может быть в пределах от 0 до 1);
  • Функция распределения – неубывающая функция;
  • Вероятность того, что случайная величина приняла значение из некоторого диапазона плотность вероятности равна 1/(0,5-0)=2. А для с параметром лямбда =5, значение плотности вероятности в точке х=0,05 равно 3,894. Но, при этом можно убедиться, что вероятность на любом интервале будет, как обычно, от 0 до 1.

    Напомним, что плотность распределения является производной от функции распределения , т.е. «скоростью» ее изменения: p(x)=(F(x2)-F(x1))/Dx при Dx стремящемся к 0, где Dx=x2-x1. Т.е. тот факт, что плотность распределения >1 означает лишь, что функция распределения растет достаточно быстро (это очевидно на примере ).

    Примечание : Площадь, целиком заключенная под всей кривой, изображающей плотность распределения , равна 1.

    Примечание : Напомним, что функцию распределения F(x) называют в функциях MS EXCEL интегральной функцией распределения . Этот термин присутствует в параметрах функций, например в НОРМ.РАСП (x; среднее; стандартное_откл; интегральная ). Если функция MS EXCEL должна вернуть Функцию распределения, то параметр интегральная , д.б. установлен ИСТИНА. Если требуется вычислить плотность вероятности , то параметр интегральная , д.б. ЛОЖЬ.

    Примечание : Для дискретного распределения вероятность случайной величине принять некое значение также часто называется плотностью вероятности (англ. probability mass function (pmf)). В справке MS EXCEL плотность вероятности может называть даже "функция вероятностной меры" (см. функцию БИНОМ.РАСП() ).

    Вычисление плотности вероятности с использованием функций MS EXCEL

    Понятно, что чтобы вычислить плотность вероятности для определенного значения случайной величины, нужно знать ее распределение.

    Найдем плотность вероятности для N(0;1) при x=2. Для этого необходимо записать формулу =НОРМ.СТ.РАСП(2;ЛОЖЬ) =0,054 или =НОРМ.РАСП(2;0;1;ЛОЖЬ) .

    Напомним, что вероятность того, что непрерывная случайная величина примет конкретное значение x равна 0. Для непрерывной случайной величины Х можно вычислить только вероятность события, что Х примет значение, заключенное в интервале (а; b).

    Вычисление вероятностей с использованием функций MS EXCEL

    1) Найдем вероятность, что случайная величина, распределенная по (см. картинку выше), приняла положительное значение. Согласно свойству Функции распределения вероятность равна F(+∞)-F(0)=1-0,5=0,5.

    НОРМ.СТ.РАСП(9,999E+307;ИСТИНА) -НОРМ.СТ.РАСП(0;ИСТИНА) =1-0,5.
    Вместо +∞ в формулу введено значение 9,999E+307= 9,999*10^307, которое является максимальным числом, которое можно ввести в ячейку MS EXCEL (так сказать, наиболее близкое к +∞).

    2) Найдем вероятность, что случайная величина, распределенная по , приняла отрицательное значение. Согласно определения Функции распределения, вероятность равна F(0)=0,5.

    В MS EXCEL для нахождения этой вероятности используйте формулу =НОРМ.СТ.РАСП(0;ИСТИНА) =0,5.

    3) Найдем вероятность того, что случайная величина, распределенная по стандартному нормальному распределению , примет значение, заключенное в интервале (0; 1). Вероятность равна F(1)-F(0), т.е. из вероятности выбрать Х из интервала (-∞;1) нужно вычесть вероятность выбрать Х из интервала (-∞;0). В MS EXCEL используйте формулу =НОРМ.СТ.РАСП(1;ИСТИНА) - НОРМ.СТ.РАСП(0;ИСТИНА) .

    Все расчеты, приведенные выше, относятся к случайной величине, распределенной по стандартному нормальному закону N(0;1). Понятно, что значения вероятностей зависят от конкретного распределения. В статье найти точку, для которой F(х)=0,5, а затем найти абсциссу этой точки. Абсцисса точки =0, т.е. вероятность, того что случайная величина Х примет значение <0, равна 0,5.

    В MS EXCEL используйте формулу =НОРМ.СТ.ОБР(0,5) =0.

    Однозначно вычислить значение случайной величины позволяет свойство монотонности функции распределения.

    Обратная функция распределения вычисляет , которые используются, например, при . Т.е. в нашем случае число 0 является 0,5-квантилем нормального распределения . В файле примера можно вычислить и другой квантиль этого распределения. Например, 0,8-квантиль равен 0,84.

    В англоязычной литературе обратная функция распределения часто называется как Percent Point Function (PPF).

    Примечание : При вычислении квантилей в MS EXCEL используются функции: НОРМ.СТ.ОБР() , ЛОГНОРМ.ОБР() , ХИ2.ОБР(), ГАММА.ОБР() и т.д. Подробнее о распределениях, представленных в MS EXCEL, можно прочитать в статье .