Амфотерными являются следующие оксиды элементов главных подгрупп: BeO, A1 2 O 3 , Ga 2 O 3 , GeO 2 , SnO, SnO 2 , PbO, Sb 2 O 3 , РоO 2 . Амфотерными гидроксидами являются следующие гидроксиды элементов глав­ных подгрупп: Ве(ОН) 2 , А1(ОН) 3 , Sc(OH) 3 , Ga(OH) 3 , In(OH) 3 , Sn(OH) 2 , SnО 2 ·nH 2 О, Pb(OH) 2 , PbО 2 ·nH 2 О.

Основный характер оксидов и гидроксидов элементов одной подгруппы усили­вается с возрастанием порядкового номера элемента (при сравнении оксидов и гидроксидов элементов в одной и той же степени окисления). Например, N 2 O 3 , Р 2 O 3 , As 2 O 3 – кис­лотные оксиды, Sb 2 O 3 – амфотерный оксид, Bi 2 O 3 – основ­ный оксид.

Рассмотрим амфотерные свойства гидрокси­дов на примере соединений бериллия и алюминия.

Гидроксид алюминия проявляет амфотерные свойства, реагирует как с основаниями, так и с кислотами и образует два ряда солей:

1) в которых элемент А1 нахо­дится в форме катиона;

2А1(ОН) 3 + 6НС1 = 2А1С1 3 + 6Н 2 O А1(ОН) 3 + 3Н + = А1 3+ + 3Н 2 O

В этой реакции А1(ОН) 3 выполняет функцию основа­ния, образуя соль, в которой алюминий является катио­ном А1 3+ ;

2) в которых элемент А1 входит в сос­тав аниона (алюминаты).

А1(ОН) 3 + NaOH = NaA1O 2 + 2Н 2 O.

В этой реакции А1(ОН) 3 выполняет функцию кисло­ты, образуя соль, в которой алюминий входит в состав аниона AlO 2 – .

Формулы растворенных алюминатов записывают упро­щенно, имея ввиду продукт, образующийся при обезвожи­вании соли.

В химической литературе можно встретить разные фор­мулы соединений, образующихся при растворении гидроксида алюминия в щёлочи: NaA1О 2 (метаалюминат натрия), Na тетрагидроксоалюминат натрия. Эти формулы не противоречат друг другу, так как их различие связано с разной степенью гидратации этих соединений: NaA1О 2 ·2Н 2 О – это иная запись Na. При растворении А1(ОН) 3 в избытке щелочи образуется тетрагидроксоалюминат натрия:

А1(ОН) 3 + NaOH = Na.

При спекании реагентов – образуется метаалюминат натрия:

А1(ОН) 3 + NaOH ==== NaA1О 2 + 2Н 2 О.

Таким образом, можно говорить, что в водных растворах присутствуют одновременно такие ионы, как [А1(ОН) 4 ] – или [А1(ОН) 4 (Н 2 О) 2 ] – (для случая, когда составляется уравнение реакции с учетом гидратной оболочки), а запись A1О 2 – явля­ется упрощенной.

Из-за способности реагировать со щелочами гидроксид алюминия, как правило, не получают действием щелочи на растворы солей алюминия, а используют раствор аммиака:

A1 2 (SО 4) 3 + 6 NH 3 ·Н 2 О = 2А1(ОН) 3 + 3(NH 4) 2 SО 4 .

Среди гидроксидов элементов второго периода амфотерные свойства проявляют гидроксид бериллия (сам бериллий проявляет диагональное сходство с алюминием).

С кислотами:

Ве(ОН) 2 + 2НС1 = ВеС1 2 + 2Н 2 О.

С основаниями:

Ве(ОН) 2 + 2NaOH = Na 2 (тетрагидроксобериллат натрия).

В упрощенном виде (если представить Ве(ОН) 2 как кис­лоту Н 2 ВеО 2)

Ве(ОН) 2 + 2NaOH(конц.горяч.) = Na 2 BeО 2 + 2H 2 О.

бериллат Na

Гидроксиды элементов побочных подгрупп, соответствующие высшим степеням окисления, чаще всего имеют кислотные свойства: например, Мn 2 О 7 – НМnО 4 ; CrО 3 – H 2 CrО 4 . Для низших оксидов и гидроксидов харак­терно преобладание основных свойств: СrО – Сr(ОН) 2 ; МnО – Mn(OH) 2 ; FeO – Fe(OH) 2 . Промежуточные соедине­ния, соответствующие степеням окисления +3 и +4, часто проявляют амфотерные свойства: Сr 2 О 3 – Cr(OH) 3 ; Fe 2 О 3 – Fe(OH) 3 . Проиллюстрируем эту закономерность на примере соеди­нений хрома (таблица 9).

Таблица 9 – Зависимость характера оксидов и соответствующих им гидроксидов от степени окисления элемента

Взаимодействие с кислотами приводит к образованию соли, в которой элемент хром находится в форме катиона:

2Cr(OH) 3 + 3H 2 SO 4 = Cr 2 (SO 4) 3 + 6H 2 O.

сульфат Cr(III)

Взаимодействие с основаниями приводит к образованию соли, в которой элемент хром входит в состав аниона:

Cr(OH) 3 + 3NaOH = Na 3 + 3H 2 О.

гексагидроксохромат (III) Na

Оксид и гидроксид цинка ZnO, Zn(OH) 2 – типично ам­фотерные соединения, Zn(OH) 2 легко растворяется в раство­рах кислот и щелочей.

Взаимодействие с кислотами приводит к образованию соли, в которой элемент цинк находится в форме катиона:

Zn(OH) 2 + 2HC1 = ZnCl 2 + 2H 2 O.

Взаимодействие с основаниями приводит к образованию соли, в которой элемент цинк находится в составе аниона. При взаимодействии со щелочами в растворах образуются тетрагидроксоцинкаты, при сплавлении – цинкаты:

Zn(OH) 2 + 2NaOH = Na 2 .

Или при сплавлении:

Zn(OH) 2 + 2NaOH = Na 2 ZnO 2 + 2Н 2 O.

Получают гидроксид цинка аналогично гидроксиду алю­миния.

Амфотерными называются такие гидроксиды, которые в зависимости от условий проявляют свойства либо оснований, либо кислот.

К амфотерным гидроксидам относятся:

Ве(ОН) 2 , Zn(ОН) 2 , А1(ОН) 3 , Сr(ОН) 3 , Sn(ОН) 2 , Рb(OH) 2

и некоторые другие.

Амфотерные гидроксиды реагируют :

а) с кислотами,

Например:

А1(ОН) 3 + ЗНС1 = А1С1 3 + ЗН 2 О,

Zn(ОН) 2 + Н 2 SО 4 = ZnSO 4 + 2Н 2 О;

б) с кислотными оксидами,

2А1(ОН) 3 +3SiO 2 А1 2 (SiO 3) 3 + ЗН 2 О.

В этих реакциях амфотерные гидроксиды проявляют свойства оснований.

в) с основаниями ,

при сплавлении твердых веществ образуются соли.

Например:

А1(ОН) 3 + NaОН тв. NaА1O 2 + 2Н 2 О,

Zn(ОН) 2 + 2КОН тв. К 2 ZnO 2 + 2H 2 O.

В этих реакциях амфотерные гидроксиды проявляют свойства кислот.

В реакциях с водными растворами щелочей образуются соответствующие комплексные соединения.

Например:

А1(ОН) 3 + NaОН раствор = Na[А1(OH) 4 ],

тетрагидроксоалюминат натрия

Zn(ОН) 2 + 2КОН раствор = K 2

тетрагидроксоцинкат калия

г) с основными оксидами :

2Cr(OH) 3 + K 2 O 2KCrO 2 + 3H 2 O.

В этой реакции амфотерный гидроксид проявляет кислотные свойства. Реакция протекает при сплавлении реагентов.

Способы получения оснований

1. Общим способом получения оснований является реакция обмена раствора соли сраствором щелочи. При взаимодействии образуется новое основание и новая соль.

Например:

CuSO 4 + 2КОН = Cu(OH) 2 ↓ + К 2 SО 4 ,

K 2 CO 3 + Ва(ОН) 2 = 2КОН + ВаСО 3 ↓.

Этим методом могут быть получены как нерастворимые, так и растворимые основания.

2. Щелочи можно получить взаимодействием щелочных и щелочноземельных металлов с водой .

Например:

2Nа +2Н 2 О = 2NаОН + Н 2 ,

Са +2Н 2 О = Са(ОН) 2 + Н 2 .

3. Щелочи могут быть получены также взаимодействием оксидов щелочных и щелочноземельных металлов с водой.

Например:

Nа 2 О + Н 2 О = 2NаОН,

СаО+Н 2 О = Са(ОН) 2 .

4. В технике щелочи получают электролизом растворов солей (например, хлоридов).

Например:

2NaС1 + 2Н 2 О
2NаОН + Н 2 + С1 2 .

Области применения оснований

Гидроксиды натрия и калия (NаОН и КОН) используются для очистки нефтепродуктов, для производства мыла, искусственного шелка, бумаги, применяются в текстильной и кожевенной промышленности и др. Щелочи входят в состав растворов для химического обезжиривания поверхностей черных и некоторых цветных металлов перед нанесением защитных и декоративных покрытий.

Гидроксиды калия, кальция, бария применяются в нефтяной промышленности для приготовления ингибированных буровых растворов, позволяющих разбуривать неустойчивые горные породы. Закачка в пласт растворов щелочей способствует повышению нефтеотдачи продуктивных пластов.

Гидроксиды железа (III), кальция и натрия используются в качестве реагентов для очистки газов от сероводорода.

Гашеная известь Са(ОН) 2 применяется в качестве ингибитора коррозии металлов под действием морской воды, а также в качестве реагента для устранения жесткости воды и очистки мазута, идущего на приготовление смазочных масел.

Гидроксиды алюминия и железа (III) используются в качестве флокулянтов для очистки воды, а также для приготовления буровых растворов.

1) В реакциях с кислотами эти соединения проявляют основные свойства, как обычные основания:

Al(OH) 3 + 3HCl → AlCl 3 + 3H 2 O; Zn(OH) 2 + H 2 SO 4 → ZnSO 4 + 2H 2 O.

2) В реакциях с основаниями амфотерные гидроксиды проявляют кислотные свойства и образуют соли. В этом случае амфотерный металл входит в состав аниона кислоты. Амфотерные металлы могут образовывать разные кислотные остатки в зависимости от условий проведения реакции:

В водном растворе:

Al(OH) 3 + 3NaOH → Na 3 ; Zn(OH) 2 + 2NaOH →Na 2 ,

При сплавлении твёрдых веществ:

Al(OH) 3 + NaOH → NaAlO 2 + 2H 2 O; Zn(OH) 2 + 2NaOH →Na 2 ZnO 2 + 2H 2 O

Оксиды

Оксиды – это вещества, состоящие из двух элементов, один из которых кислород, который находится в степени окисления -2. Они делятся по своим свойствам на основные, амфотерные и кислотные.

Основные оксиды – это оксиды металлов с основными свойствами. К ним относятся большинство оксидов металлов со степенью окисления +1 и +2.

Амфотерные оксиды – в зависимости от условий могут проявлять основные или кислотные свойства. К ним относятся оксиды большинства металлов со степенью окисления +3 и +4, а также некоторые оксиды металлов со степенью окисления +2, например Al 2 O 3 , Cr 2 O 3 , ZnO, BeO.

Кислотные оксиды – это оксиды неметаллов и оксиды металлов, в которых степень окисления металла +5 и выше. Эти оксиды обладают кислотными свойствами и образуют кислоты.

Свойства основных оксидов

1) Основные оксиды реагируют с водой, если образуется растворимый гидроксид:

CaO + H 2 O → Ca(OH) 2 ; Na 2 O + H 2 O → 2NaOH.

2) Основные оксиды могут реагировать с кислотными оксидами:

CaO + SO 3 → CaSO 4 ; Na 2 O + CO 2 → Na 2 CO 3 .

3) Основные оксиды реагируют с кислотами:

MgO + 2HCl → MgCl 2 + H 2 O; Na 2 O + 2HNO 3 → 2NaNO 3 + H 2 O.

Свойства амфотерных оксидов

1) С кислотами они реагируют, как обычные основные оксиды:

Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O; ZnO + H 2 SO 4 → ZnSO 4 + 2H 2 O.

2) В реакциях с основаниями они проявляют кислотные свойства и образуют такие же кислотные анионы, как и амфотерные гидроксиды:

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3 ;

ZnO + 2NaOH + H 2 O → Na 2 .

При сплавлении твёрдых веществ:

Al 2 O 3 + 2NaOH → 2NaAlO 2 + H 2 O; ZnO + 2NaOH →Na 2 ZnO 2 + H 2 O.

Свойства кислотных оксидов

1) Реагируют с водой, если получается растворимая кислота:

SO 3 + H 2 O → H 2 SO 4 ; P 2 O 5 + 3H 2 O → 2H 3 PO 4 .

2) Кислотные оксиды могут реагировать с основными оксидами:

SO 3 + MgO → CaSO 4 ; CO 2 + CaO → CaCO 3 .


3) Кислотные оксиды реагируют с основаниями:

SO 3 + NaOН→ Na 2 SO 4 + H 2 O; CO 2 + Ca(OН) 2 → CaCO 3 + H 2 O.

Соли

Соли – это вещества, при первичной диссоциации которых не образуются ни ионы Н + , ни ионы ОН - . Это продукты взаимодействия кислот и оснований.

Например: NaCl=Na + +Cl - ;

Ca(HCO 3) 2 =Ca 2+ +2HCO 3 - ;

AlOH(NO 3) 2 =AlOH 2+ +2NO 3 -

Средние соли состоят из анионов и катионов, которые не содержат Н + и ОН - , например: Na 2 SO 4 – сульфат натрия, CaCO 3 – карбонат кальция. Кислые соли содержат катион водорода Н + , например: NaHCO 3 – гидрокарбонат натрия. Основные соли содержат анион ОН - , например (CaOH) 2 CO 3 – гидроксокарбонат кальция.

Для химических свойств всех солей характерны реакции обмена.

1) Соли могут реагировать с кислотами:

а) Сильная кислота вытесняет слабую кислоту из её соли.

Na 2 SiO 3 + 2HCl → 2NaCl + H 2 SiO 3 ↓.

б) Многоосновная кислота может реагировать со своей средней солью с образованием кислых солей.

Na 2 CO 3 + H 2 CO 3 → 2NaHCO 3 ; CuSO 4 + H 2 SO 4 → Cu(HSO 4) 2 .

2) Растворимые соли могут реагировать с растворимыми основаниями, если в результате реакции получится нерастворимое вещество:

2NaOH + CuSO 4 → Cu(OH) 2 ↓ + Na 2 SO 4 ;

Ba(OH) 2 + Na 2 SO 4 → BaSO 4 ↓ + 2NaOH.

3) Две растворимые соли могут реагировать друг с другом, если в результате реакции получится нерастворимое вещество:

NaCl + AgNO 3 → NaNO 3 + AgCl↓.

4) Соли могут реагировать с металлами. В этих реакциях активный металл вытесняет менее активный из его соли.

Существует три основных класса неорганических химических соединений: оксиды, гидроксиды и соли. Первые делятся на две группы: несолеобразующие (к ним относятся угарный газ, закись азота, монооксид азота и т. д.) и солеобразующие, которые, в свою очередь, бывают основными, кислотными и амфотерными. Гидроксиды делятся на кислоты, основания и амфотерные. Соли существуют основные, кислые, средние и двойные. Ниже будут более подробно описаны амфотерные оксиды и гидроксиды.

Что такое амфотерность?

Это способность неорганического химического вещества проявлять как кислотные, так и основные свойства, в зависимости от условий реакции. К веществам, которые обладают такого рода особенностью, могут относиться оксиды и гидроксиды. Среди первых можно назвать оксид и диоксид олова, бериллия, марганца, цинка, железа (ІІ), (ІІІ). Амфотерные гидроксиды представлены такими веществами: гидроксид бериллия, алюминия, железа (ІІ), метагидроксид железа, алюминия, дигидроксид-оксид титана. Самыми распространенными и часто используемыми из перечисленных выше соединений являются оксид железа и алюминия, а также гидроксиды этих металлов.

Химические свойства амфотерных оксидов

Амфотерные оксиды имеют одновременно как свойства кислотных, так и основных соединений. Как кислотные, они могут взаимодействовать со щелочами. При такого типа реакциях образуются соль и вода. Также они вступают в химическую реакцию с основными оксидами. Проявляя свои основные свойства, они вступают во взаимодействиескислотами, вследствие чего образуются соль и вода, а также с кислотными оксидами, благодаря чему можно получить соль.

Примеры уравнений реакций, в которых участвуют амфотерные оксиды

АІ 2 О 3 + 2КОН = 2КАІО 2 + Н 2 О — данная реакция показывает кислотные свойства амфотерных оксидов. 2АІ 2 О 3 + 6НСІ = 4АІСІ 3 + 3Н 2 О; АІ 2 О 3 + 3СО 2 = АІ2(СО 3) 3 — эти уравнения служат примером основных химических свойств таких оксидов.

Химические свойства амфотерных гидроксидов

Они способны вступать в химическое взаимодействие как с сильными кислотами, так и со щелочами, а некоторые из них реагируют также со слабыми кислотами. Все они при воздействии высоких температур распадаются на оксид и воду. При реакции амфотерного гидроксида с кислотой образуются соль и вода. Все такие гидроксиды нерастворимы в воде, поэтому могут реагировать только с растворами определенных соединений, но не с сухими веществами.

Физические свойства амфотерных оксидов, способы их получения и применение

Оксид ферума (ІІ) — пожалуй, самый распространенный амфотерный оксид. Способов его получения существует довольно много. Он широко используется в промышленности. Другие амфотерные оксиды также применяются во многих отраслях: от металлургии до пищевой промышленности.

Внешний вид, получение и использование ферум (ІІ) оксида

Он представляет собой твердое вещество черного цвета. Его кристаллическая решетка схожа с решеткой пищевой соли. В природе его можно найти в виде минерала вюстита.
Данное химическое соединение получают четырьмя различными способами. Первый — восстановление оксида железа (ІІІ) с использованием угарного газа. При этом, смешав одинаковое количество этих двух веществ, можно получить две части оксида железа (ІІ) и одну — углекислого газа. Второй метод получения — взаимодействие железа с его оксидами, к примеру, ферум (ІІІ) оксидом, при этом не образуется никаких побочных продуктов.

Однако для такой реакции необходимо создать условия в виде высокой температуры — 900-1000 градусов по Цельсию. Третий способ — реакция между железом и кислородом, в этом случае образуется только оксид железа (ІІ). Для осуществления данного процесса также понадобится нагревание исходных веществ. Четвертым методом получения является оксалата двухвалентного железа. Для такой реакции необходима высокая температура, а также вакуум. В результате образуются ферум (ІІ) оксид, углекислый и угарный газ в соотношении 1:1:1. Из написанного выше можно сделать вывод, что самым простым и не требующим специальных условий является первый способ получения данного вещества. Применяют оксид железа (ІІ) для выплавки чугуна, также он является одной из составляющих некоторых красителей, используется в процессе чернения стали.

Оксид железа (ІІІ)

Это не менее распространенный амфотерный оксид, чем описанный выше. При нормальных условиях он представляет собой твердое вещество, имеющее красно-коричневый цвет. В природе может встретиться в виде минерала гематита, который используется в изготовлении украшений. В промышленности данное вещество получило широкое применение: его используют для окрашивания некоторых строительных материалов, таких как кирпич, тротуарная плитка и т. д., в изготовлении красок, в том числе полиграфических, и эмалей. Также рассматриваемое вещество служит пищевым красителем под названием Е172. В химической отрасли его применяют при производстве аммиака в качестве катализатора.

Оксид алюминия

Амфотерные оксиды также включают в свой список и оксид алюминия. Данное вещество при нормальных условиях имеет твердое состояние. Цвет этого оксида белый. В природе его часть можно встретить в виде глинозема, а также сапфира и рубина. Используется в основном в химической промышленности в качестве катализатора. Но также его применяют и в изготовлении керамики.

Оксид цинка

Это химическое соединение также обладает амфотерностью. Это твердое вещество, не имеющее цвета, в воде не растворяется. Получают его в основном посредством разложения различных соединений цинка. К примеру, его нитрата. При этом выделяется оксид цинка, диоксид азота и кислород. Также можно добыть данное вещество посредством разложения карбоната цинка. При такой реакции, кроме нужного соединения, выделяется еще и углекислый газ. Также возможен распад гидроксида цинка на его оксид и воду. Для того чтобы осуществить все три выше перечисленных процесса, требуется воздействие высокой температуры. Применяют оксид цинка в различных отраслях промышленности, например, в химической (в качестве катализатора) для изготовления стекла, в медицине для лечения кожных дефектов.

Оксид бериллия

Получают его в основном путем термического разложения гидроксида данного элемента. При этом также образуется вода. Он имеет вид твердого бесцветного вещества. Применение свое данный оксид находит в различных отраслях промышленности в качестве термостойкого материала.

Оксид олова

Имеет темный цвет, обладает твердым состоянием при нормальных условиях. Получить его возможно, как и многие другие амфотерные оксиды, посредством разложения его гидроксида. В результате образуется рассматриваемое вещество и вода. Для этого также нужно воздействие высокой температуры. Используется данное соединение в химической промышленности в качестве восстановителя в окислительно-восстановительных реакциях, реже применяется как катализатор.

Свойства, получение и применение амфотерных гидроксидов

Амфотерные гидроксиды используются не менее широко, нежели оксиды. Благодаря своему разностороннему химическому поведению, они в основном применяются для получения всевозможных соединений. Кроме того, гидроксид железа (бесцветное твердое вещество) используется в изготовлении аккумуляторов; гидроксид алюминия — для очистки воды; гидроксид бериллия — для получения оксида.

Амфотерные соединения

Химия – это всегда единство противоположностей.

Посмотрите на периодическую систему.

Некоторые элементы (почти все металлы, проявляющие степени окисления +1 и +2) образуют основные оксиды и гидроксиды. Например, калий образует оксид K 2 O, и гидроксид KOH. Они проявляют основные свойства, например взаимодействуют с кислотами.

K2O + HCl → KCl + H2O

Некоторые элементы (большинство неметаллов и металлы со степенями окисления +5, +6, +7) образуют кислотные оксиды и гидроксиды. Кислотные гидроксиды – это кислородсодержащие кислоты, их называют гидроксидами, потому что в строении есть гидроксильная группа, например, сера образует кислотный оксид SO 3 и кислотный гидроксид H 2 SO 4 (серную кислоту):

Такие соединения проявляют кислотные свойства, например они реагируют с основаниями:

H2SO4 + 2KOH → K2SO4 + 2H2O

А есть элементы, образующие такие оксиды и гидроксиды, которые проявляют и кислотные, и основные свойства. Это явление называется амфотерностью . Таким оксидам и гидроксидам и будет приковано наше внимание в этой статье. Все амфотерные оксиды и гидроксиды — твердые вещества, нерастворимые в воде.

Для начала, как определить является ли оксид или гидроксид амфотерным? Есть правило, немного условное, но все-таки пользоваться им можно:

Амфотерные гидроксиды и оксиды образуются металлами, в степенях окисления +3 и +4 , например (Al 2 O 3 , Al (OH ) 3 , Fe 2 O 3 , Fe (OH ) 3)

И четыре исключения: металлы Zn , Be , Pb , Sn образуют следующие оксиды и гидроксиды: ZnO , Zn ( OH ) 2 , BeO , Be ( OH ) 2 , PbO , Pb ( OH ) 2 , SnO , Sn ( OH ) 2 , в которых проявляют степень окисления +2, но не смотря на это, эти соединения проявляют амфотерные свойства .

Наиболее часто встречающиеся амфотерные оксиды (и соответствующие им гидроксиды): ZnO, Zn(OH) 2 , BeO, Be(OH) 2 , PbO, Pb(OH) 2 , SnO, Sn(OH) 2 , Al 2 O 3 , Al(OH) 3 , Fe 2 O 3 , Fe(OH) 3 , Cr 2 O 3 , Cr(OH) 3 .

Свойства амфотерных соединений запомнить не сложно: они взаимодействуют с кислотами и щелочами .

  • с взаимодействием с кислотами все просто, в этих реакциях амфотерные соединения ведут себя как основные:

Al 2 O 3 + 6HCl → 2AlCl 3 + 3H 2 O

ZnO + H 2 SO 4 → ZnSO 4 + H 2 O

BeO + HNO 3 → Be(NO 3 ) 2 + H 2 O

Точно так же реагируют гидроксиды:

Fe(OH) 3 + 3HCl → FeCl 3 + 3H 2 O

Pb(OH) 2 + 2HCl → PbCl 2 + 2H 2 O

  • С взаимодействием со щелочами немного сложнее. В этих реакциях амфотерные соединения ведут себя как кислоты, и продукты реакции могут быть различными, все зависит от условий.

Или реакция происходит в растворе, или реагирующие вещества берутся твердые и сплавляются.

    Взаимодействие основных соединений с амфотерными при сплавлении.

Разберем на примере гидроксида цинка. Как уже говорилось ранее, амфотерные соединения взаимодействуя с основными, ведут себя как кислоты. Вот и запишем гидроксид цинка Zn (OH ) 2 как кислоту. У кислоты водород спереди, вынесем его: H 2 ZnO 2 . И реакция щелочи с гидроксидом будет протекать как будто он – кислота. «Кислотный остаток» ZnO 2 2- двухвалентный:

2K OH (тв.) + H 2 ZnO 2(тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

Полученное вещество K 2 ZnO 2 называется метацинкат калия (или просто цинкат калия). Это вещество – соль калия и гипотетической «цинковой кислоты» H 2 ZnO 2 (солями такие соединения называть не совсем правильно, но для собственного удобства мы про это забудем). Только гидроксид цинка записывать вот так: H 2 ZnO 2 – нехорошо. Пишем как обычно Zn (OH ) 2 , но подразумеваем (для собственного удобства), что это «кислота»:

2KOH (тв.) + Zn (OH ) 2(тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

С гидроксидами, в которых 2 группы ОН, все будет так же как и с цинком:

Be(OH) 2( тв .) + 2NaOH ( тв .) (t ,сплавление)→ 2H 2 O + Na 2 BeO 2 (метабериллат натрия, или бериллат)

Pb(OH) 2( тв .) + 2NaOH ( тв .) (t ,сплавление)→ 2H 2 O + Na 2 PbO 2 (метаплюмбат натрия, или плюмбат)

С амфотерными гидроксидов с тремя группами OH (Al (OH ) 3 , Cr (OH ) 3 , Fe (OH ) 3) немного иначе.

Разберем на примере гидроксида алюминия: Al (OH ) 3 , запишем в виде кислоты: H 3 AlO 3 , но в таком виде не оставляем, а выносим оттуда воду:

H 3 AlO 3 – H 2 O → HAlO 2 + H 2 O .

Вот с этой «кислотой» (HAlO 2) мы и работаем:

HAlO 2 + KOH → H 2 O + KAlO 2 (метаалюминат калия, или просто алюминат)

Но гидроксид алюминия вот так HAlO 2 записывать нельзя, записываем как обычно, но подразумеваем там «кислоту»:

Al(OH) 3( тв .) + KOH ( тв .) (t ,сплавление)→ 2H 2 O + KAlO 2 (метаалюминат калия)

То же самое и с гидроксидом хрома:

Cr(OH) 3 → H 3 CrO 3 → HCrO 2

Cr(OH) 3( тв .) + KOH ( тв .) (t ,сплавление)→ 2H 2 O + KCrO 2 (метахромат калия,

НО НЕ ХРОМАТ, хроматы – это соли хромовой кислоты).

С гидроксидами содержащими четыре группы ОН точно так же: выносим вперед водород и убираем воду:

Sn(OH) 4 → H 4 SnO 4 → H 2 SnO 3

Pb(OH) 4 → H 4 PbO 4 → H 2 PbO 3

Следует помнить, что свинец и олово образуют по два амфотерных гидроксида: со степенью окисления +2 (Sn (OH ) 2 , Pb (OH ) 2), и +4 (Sn (OH ) 4 , Pb (OH ) 4).

И эти гидроксиды будут образовывать разные «соли»:

Степень окисления

Формула гидроксида

Sn (OH ) 2

Pb (OH ) 2

Sn (OH ) 4

Pb (OH ) 4

Формула гидроксида в виде кислоты

H 2 SnO 2

H 2 PbO 2

H 2 SnO 3

H 2 PbO 3

Соль (калиевая)

K 2 SnO 2

K 2 PbO 2

K 2 SnO 3

K 2 PbO 3

Название соли

метастаннАТ

метаблюмбАТ

Те же принципы, что и в названиях обычных «солей», элемент в высшей степени окисления – суффикс АТ, в промежуточной – ИТ.

Такие «соли» (метахроматы, метаалюминаты, метабериллаты, метацинкаты и т.д.) получаются не только в результате взаимодействия щелочей и амфотерных гидроксидов. Эти соединения всегда образуются, когда соприкасаются сильноосновный «мир» и амфотерный (при сплавлении). То есть точно так же как и амфотерные гидроксиды со щелочами будут реагировать и амфотерные оксиды, и соли металлов, образующих амфотерные оксиды (соли слабых кислот). И вместо щелочи можно взять сильноосновный оксид, и соль металла, образующего щелочь (соль слабой кислоты).

Взаимодействия:

Запомните, реакции, приведенные ниже, протекают при сплавлении.

    Амфотерного оксида с сильноосновным оксидом:

ZnO (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 (метацинкат калия, или просто цинкат калия)

    Амфотерного оксида со щелочью:

ZnO (тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + H 2 O

    Амфотерного оксида с солью слабой кислоты и металла, образующего щелочь:

ZnO (тв.) + K 2 CO 3( тв .) (t, сплавление)→ K 2 ZnO 2 + CO 2

    Амфотерного гидроксида с сильноосновным оксидом:

Zn(OH) 2 (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 + H 2 O

    Амфотерного гидроксида со щелочью:

Zn (OH ) 2(тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + 2H 2 O

    Амфотерного гидроксида с солью слабой кислоты и металла, образующего щелочь:

Zn (OH ) 2(тв.) + K 2 CO 3(тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2 + H 2 O

    Соли слабой кислоты и металла, образующего амфотерные соединение с сильноосновным оксидом:

ZnCO 3 (тв.) + K 2 O (тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2

    Соли слабой кислоты и металла, образующего амфотерные соединение со щелочью:

ZnCO 3(тв.) + 2KOH (тв.) (t ,сплавление)→ K 2 ZnO 2 + CO 2 + H 2 O

    Соли слабой кислоты и металла, образующего амфотерные соединение с солью слабой кислоты и металла, образующего щелочь:

ZnCO 3(тв.) + K 2 CO 3( тв .) (t, сплавление)→ K 2 ZnO 2 + 2CO 2

Ниже представлена информация по солям амфотерных гидроксидов, красным помечены наиболее встречающиеся в ЕГЭ.

Гидроксид

Гидроксид в виде кислоты

Кислотный остаток

Название соли

BeO

Be(OH) 2

H 2 BeO 2

BeO 2 2-

K 2 BeO 2

Метабериллат (бериллат)

ZnO

Zn(OH) 2

H 2 ZnO 2

ZnO 2 2-

K 2 ZnO 2

Метацинкат (цинкат)

Al 2 O 3

Al(OH) 3

HAlO 2

AlO 2

KAlO 2

Метаалюминат (алюминат)

Fe 2 O 3

Fe(OH) 3

HFeO 2

FeO 2 —

KFeO 2

Метаферрат (НО НЕ ФЕРРАТ)

Sn(OH) 2

H 2 SnO 2

SnO 2 2-

K 2 SnO 2

Pb(OH) 2

H 2 PbO 2

PbO 2 2-

K 2 PbO 2

SnO 2

Sn (OH ) 4

H 2 SnO 3

SnO 3 2-

K 2 SnO 3

МетастаннАТ (станнат)

PbO 2

Pb (OH ) 4

H 2 PbO 3

PbO 3 2-

K 2 PbO 3

МетаблюмбАТ (плюмбат)

Cr 2 O 3

Cr(OH) 3

HCrO 2

CrO 2 —

KCrO 2

Метахромат (НО НЕ ХРОМАТ)

    Взаимодействие амфотерных соединений с растворами ЩЕЛОЧЕЙ (здесь только щелочи).

В ЕГЭ это называют «растворением гидроксида алюминия (цинка, бериллия и т.д.) щелочи». Это обусловлено способностью металлов в составе амфотерных гидроксидов в присутствии избытка гидроксид-ионов (в щелочной среде) присоединять к себе эти ионы. Образуется частица с металлом (алюминием, бериллием и т.д.) в центре, который окружен гидроксид-ионами. Эта частица становится отрицательно-заряженной (анионом) за счет гидроксид-ионов, и называться этот ион будет гидроксоалюминат, гидроксоцинкат, гидроксобериллат и т.д.. Причем процесс может протекать по-разному металл может быть окружен разным числом гидроксид-ионов.

Мы будем рассматривать два случая: когда металл окружен четырьмя гидроксид-ионами , и когда он окружен шестью гидроксид-ионами .

Запишем сокращенное ионное уравнение этих процессов:

Al(OH) 3 + OH — → Al(OH) 4 —

Образовавшийся ион называется Тетрагидроксоалюминат-ион. Приставка «тетра-» прибавляется, потому что гидроксид-иона четыре. Тетрагидроксоалюминат-ион имеет заряд -, так как алюминий несет заряд 3+, а четыре гидроксид-иона 4-, в сумме получается -.

Al(OH) 3 + 3OH — → Al(OH) 6 3-

Образовавшийся в этой реакции ион называется гексагидроксоалюминат ион. Приставка «гексо-» прибавляется, потому что гидроксид-иона шесть.

Прибавлять приставку, указывающую на количество гидроксид-ионов обязательно . Потому что если вы напишете просто «гидроксоалюминат», не понятно, какой ион вы имеете в виду: Al (OH ) 4 — или Al (OH ) 6 3- .

При взаимодействии щелочи с амфотерным гидроксидом в растворе образуется соль. Катион которой – это катион щелочи, а анион – это сложный ион, образование которого мы рассмотрели ранее. Анион заключается в квадратные скобки .

Al (OH ) 3 + KOH → K (тетрагидроксоалюминат калия)

Al (OH ) 3 + 3KOH → K 3 (гексагидроксоалюминат калия)

Какую именно (гекса- или тетра-) соль вы напишете как продукт – не имеет никакого значения. Даже в ответниках ЕГЭ написано: «…K 3 (допустимо образование K ». Главное не забывайте следить, чтобы все индексы были верно проставлены. Следите за зарядами, и имейте ввиду, что сумма их должна быть равна нулю.

Кроме амфотерных гидроксидов, со щелочами реагируют амфотерные оксиды. Продукт будет тот же. Только вот если вы запишете реакцию вот так:

Al 2 O 3 + NaOH → Na

Al 2 O 3 + NaOH → Na 3

Но эти реакции у вас не уравняются. Надо добавить воду в левую часть, взаимодейтсиве ведь происходит в растворе, воды там дотаточно, и все уравняется:

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Помимо амфотерных оксидов и гидроксидов, с растворами щелочей взаимодействуют некоторые особо активные металлы, которые образуют амфотерные соединения. А именно это: алюминий, цинк и бериллий. Чтобы уравнялось, слева тоже нужна вода. И, кроме того, главное отличие этих процессов – это выделение водорода:

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

2Al + 6NaOH + 6H 2 O → 2Na 3 + 3H 2

В таблице ниже приведены наиболее распространенные в ЕГЭ примеры свойства амфотерных соединений:

Амфотерное вещество

Название соли

Al 2 O 3

Al(OH) 3

Тетрагидроксоалюминат натрия

Al(OH) 3 + NaOH → Na

Al 2 O 3 + 2NaOH + 3H 2 O → 2Na

2Al + 2NaOH + 6H 2 O → 2Na + 3H 2

Na 3

Гексагидроксоалюминат натрия

Al(OH) 3 + 3NaOH → Na 3

Al 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

2Al + 6NaOH + 6H 2 O → 2Na 3 + 3H 2

Zn(OH) 2

K 2

Тетрагидроксоцинкат натрия

Zn(OH) 2 + 2NaOH → Na 2

ZnO + 2NaOH + H 2 O → Na 2

Zn + 2NaOH + 2H 2 O → Na 2 + H 2

K 4

Гексагидроксоцинкат натрия

Zn(OH) 2 + 4NaOH → Na 4

ZnO + 4NaOH + H 2 O → Na 4

Zn + 4NaOH + 2H 2 O → Na 4 + H 2

Be(OH) 2

Li 2

Тетрагидроксобериллат лития

Be(OH) 2 + 2LiOH → Li 2

BeO + 2LiOH + H 2 O → Li 2

Be + 2LiOH + 2H 2 O → Li 2 + H 2

Li 4

Гексагидроксобериллат лития

Be(OH) 2 + 4LiOH → Li 4

BeO + 4LiOH + H 2 O → Li 4

Be + 4LiOH + 2H 2 O → Li 4 + H 2

Cr 2 O 3

Cr(OH) 3

Тетрагидроксохромат натрия

Cr(OH) 3 + NaOH → Na

Cr 2 O 3 + 2NaOH + 3H 2 O → 2Na

Na 3

Гексагидроксохромат натрия

Cr(OH) 3 + 3NaOH → Na 3

Cr 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Fe 2 O 3

Fe(OH) 3

Тетрагидроксоферрат натрия

Fe(OH) 3 + NaOH → Na

Fe 2 O 3 + 2NaOH + 3H 2 O → 2Na

Na 3

Гексагидроксоферрат натрия

Fe(OH) 3 + 3NaOH → Na 3

Fe 2 O 3 + 6NaOH + 3H 2 O → 2Na 3

Полученные в этих взаимодействиях соли реагируют с кислотами, образуя две другие соли (соли данной кислоты и двух металлов):

2Na 3 + 6H 2 SO 4 → 3Na 2 SO 4 + Al 2 (SO 4 ) 3 + 12H 2 O

Вот и все! Ничего сложного. Главное не путайте, помните что образуется при сплавлении, что в растворе. Очень часто задания по этому вопросу попадаются в B части.