Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо количественно измеренного признака, при распределении вариант отличном от нормального . Более того, он позволяет выявлять различия между малыми выборками (когда n 1 , n 2 ³3 или n 1 =2, n 2 ³5). Этот метод определяет насколько слабо перекрещиваются (совпадают) значения между двумя выборками. Чем меньше перекрещивающихся значений, тем более вероятно, что различия достоверны.

Чем меньше U эмп тем более вероятно, что различия достоверны.

Нулевая гипотеза: уровень признака в выборке 2 не ниже уровня признака в выборке 1.

Прежде чем проводить оценку критерием U необходимо провести ранжирование.

ОПРЕДЕЛЕНИЕ: Ранжирование – распределение вариант внутри вариационного ряда от меньших величин к большим.

Правила ранжирования:

1. Меньшему значению начисляется меньший ранг, как правило, это 1. Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений (если n=10, то наибольшее значение получит ранг 10).

2. Если несколько значений равны, им начисляется ранг, представляющийсобой среднее значение из тех рангов, которые они получили бы, если бы не были равны:

3. Общая сумма рангов должна совпадать с расчетной, которая определяется по формуле: , где N- общее количество ранжируемых значений. Несовпадение реальной и расчетной сумм рангов будет свидетельствовать об ошибке, допущенной при начислении рангов или их суммировании. Прежде чем продолжить работу, необходимо найти ошибку и устранить ее.

Пример .

Проранжируем следующий ряд.

По формуле проверим правильность ранжирования.

. Определим сумму рангов: 1+2,5+2,5+4+5+6+7=28.

Общая сумма рангов совпадает с расчетной. Следовательно мы правильно проранжировали.

Схема подсчета критерия Манна-Уитни:

Чем меньше значения U , тем достоверность различий выше и тем больше уверенности в отклонении нулевой гипотезы.


3 пример .

При заболеваниях сетчатки повышается проницаемость ее сосудов. Исследователи измерили проницаемость сосудов сетчатки у здоровых и у больных с ее поражением. Полученные результаты приведены в таблице.

Проверить, подтверждают ли эти данные гипотезу о различии в проницаемости сосудов сетчатки.

Нулевая гипотеза : проницаемость сосудов сетчатки при заболеваниях сетчатки у больных не больше, чем у здоровых, (нет статистического различия между двумя выборками).

Альтернативная гипотеза : проницаемость сосудов сетчатки при заболеваниях сетчатки у больных больше, чем у здоровых, (есть статистическое различие между двумя выборками).

Здоровые больные
Порядковый номер Ранг проницаемость сосудов сетчатки Порядковый номер Ранг
0,5 1,2 6,5
0,7 2,5 1,4
0,7 2,5 1,6
1,0 4,5 1,7
1,0 4,5 1,7
1,2 6,5 1,8
1,4 2,2 18,5
1,4 2,3
1,6 2,4
1,6 6,4
1,7
2,2 18,5 23,6

В этой статье Вы узнаете, почему кроме t-теста существуют другие методы сравнения двух выборок. Начнем мы с того, что вспомним о нормальности данных и связанной с ней делением статистических тестов на две категории: параметрические и непараметрические. О последних мы поговорим более подробно: разберем три наиболее популярных теста, а также научимся их запускать в среде R.

Параметрический или непараметрический критерий различия?

Статистические методы, использующие параметры нормального распределения данных (среднее, стандартное отклонение и прочее) называются параметрическими . Так например, рассмотренный в предыдущей статье является типичным параметрическим методом. Почему? Потому, что главным условием для его проведения является нормальное распределение количественных данных. Непараметрические методы, напротив, не зависят от распределения данных и позволяют работать как с количественными, так и с порядковыми данными (например: размер обуви, шкала силы землетрясений).

При нормальном распределении данных параметрические критерии имеют большую мощность по сравнению с непараметрическими. Однако, когда данные выборок не проходят тесты нормальности (такие, как qqplot и Шапиро тест), непараметрические методы дают более точные предсказания. Особенно они эффективны с выборками небольшого размера (<100 наблюдений), на распределение которых могут влиять неизвестные факторы. Сегодня мы познакомимся с непараметрическими аналогами t-теста, использующимися также, для сравнения двух выборок. При выборе критерия следует обратить внимание на две вещи: зависимость данных выборок друг от друга и объем выборок.

На приведенном выше рисунке Вы видите упрощенную классификацию методов сравнения средних (или медиан) двух выборок. Мы кратко поговорим о каждом из непараметрических критериев, и научимся применять их в среде R. Чтож, приступим!

Критерий Уилкоксона

Начнем знакомство с непараметрических тестов для зависимых выборок. Прежде всего стоит отметить, что выборки называются зависимыми, когда испытуемые одной и той же группы были протестированы в разные моменты времени с меняющимися (1) или неменяющимися (2) условиями эксперимента. В первом случае проверяется эффект какого либо действия в сравнении с контрольным измерением ("до и после"), во втором - повторяемость результатов эксперимента ("контроль-повтор").

Тест Уилкоксона (от английского "Wilcoxon signed-rank test") является широко используемым и эффективным методом выявления различий между медианами двух зависимых выборок с распределением данных отличным от нормального. Он идеально подходит для сравнения маленьких выборок, где количество испытуемых/исследований больше 5, но меньше 50. Как и для всех критериев, рассмотренных в этой статье, данные могут быть как количественными, так и порядковыми. Метод был разработан в 1945 году американским статистиком и химиком Фрэнком Уилкоксоном (фото справа).

Чтобы запустить тест Уилкоксона в среде R следует загрузить данные выборок и ввести следующую команду:

wilcox.test("выборка_1", "выборка_2" , paired = T)

Как и в t-тесте, в непараметрических статистических тестах внутри скобок можно добавить дополнительные параметры, такие как alternative , conf.int , conf.level . Чтобы посмотреть все аргументы функции, поставьте перед ней знак вопроса, в нашем случае: ?wilcox.test

G-критерий знаков

Если же количество исследований в выборке больше 50, то следует использовать G-критерий знаков. Критерий знаков по статистической мощности уступает Уилкоксону, но превосходит большинство других непараметрических аналогов. Данные выборок должны быть зависимыми, количество исследований в выборке от 5, но не более 300 (про механизм расчетов и ограничения метода можно почитать ).

Провести тест в R не сложно, но потребуется сделать несколько манипуляций с данными. Сначала мы загрузим данные двух зависимых выборок, например систолическое (верхнее) давление до и после применения лекарства у 60 пациентов-гипертоников. Загрузим данные "before" и "after" в среду R. Затем визуализируем их.

before <- c(171.2, 169.8, 154.6, 130.9, 158.5, 145.5, 143.5, 144.7, 147.7, 160.7, 154.7, 181.8, 167.2, 137.4, 180.2, 138.7, 159.9, 141.8, 172.2, 167.0, 137.2, 170.9, 168.4, 163.7, 160.1, 163.5, 146.7, 173.9, 180.1, 136.0, 159.0, 145.6, 186.5, 177.7, 167.7, 167.4, 165.9, 147.2, 165.2, 133.3, 175.0, 174.7, 163.0, 154.1, 189.4, 166.5, 153.0, 134.3, 177.1, 150.4, 152.4, 176.2, 160.3, 135.3, 131.2, 172.1, 137.0, 156.6, 178.5, 168.1) after <- c(179.5, 141.9, 124.7, 103.2, 143.1, 146.0, 132.2, 104.9, 145.3, 123.5, 135.2, 176.2, 142.7, 114.1, 171.9, 115.0, 126.4, 108.0, 171.7, 148.8, 103.5, 178.5, 138.9, 150.0, 131.8, 169.2, 131.4, 138.8, 146.2, 116.1, 148.8, 109.2, 186.3, 164.1, 147.3, 165.3, 140.0, 122.6, 174.4, 104.6, 156.6, 175.3, 126.8, 122.6, 184.0, 139.6, 149.4, 105.3, 181.9, 134.6, 129.4, 148.0, 170.2, 144.2, 133.3, 171.8, 118.4, 131.2, 150.0, 131.0) boxplot(before, after, col = c(6,5), main = "The effect of treatment", outer = TRUE) axis(1, at=1:2, labels=c("before","after"))

Затем найдем разность между векторами "before" и "after" и назовем новый вектор "difference", после чего при помощи команды length узнаем его длину. Так как нас интересует, снижает ли лекарство давление у пациентов, мы узнаем какое количество элементов в векторе "difference" больше нуля. Это количество принято называть числом "успехов".

difference <- before - after difference length(difference) length(difference)

Теперь все готово для того, чтобы запустить G-критерий знаков в R. Для этого воспользуемся командой binom.test , где в параметрах функции укажем сначала число "успехов", затем число исследований в выборке.

binom.test(50, 60)

Нулевая гипотеза говорит о том, что медианы выборок статистически не отличаются, альтернативная - что статистические различия есть. В нашем случае p-value значительно меньше 0.05, поэтому мы можем с уверенностью отвергнуть нулевую гипотезу и принять альтернативую: две выборки статистически отличаются друг от друга. Также мы видим, что у 83% пациентов давление снизилось. Для демонстрации статистической значимости результатов эксперимента, просто добавьте к графику надпись p-value < 0.001.

Критерий Манна-Уитни

Этот тест также был изначально разработан и опубликован Уилкоксоном в 1945 году. Однако спустя два года его существенно усовершенствовали два математика, в честь которых и был назван критерий. В отличие от двух предыдущих критериев, тест Манна-Уитни используется при сравнении двух независимых выборок , также имеющих отклонения от нормального распределения. Подробнее об алгоритме расчета данного критерия можете почитать в этой статье .

Запустить тест Манна-Уитни в R крайне просто, используем уже известную нам функцию "wilcox.test" и убираем из скобок "paired = T":

wilcox.test("выборка_1", "выборка_2" )

Однако при проведении этого метода необходимо соблюдать два условия. Во-первых, одинаковые значения в выборке должны быть сведены к минимуму (все числа должны быть разными). Во-вторых, в каждой выборке должно быть не менее трех исследований (минимум 3 и 3, также допускается 5 и 2).

Заключение

Непараметрических методов существует великое множество, сегодня мы познакомились лишь с тремя наиболее используемыми критериями для сравнения двух выборок. В среде R эти тесты запустить довольно просто, поэтому главный акцент в выборе метода следует делать на его пригодность к решению конкретно Вашей задачи.

​ U-критерий Манна-Уитни – непараметрический статистический критерий, используемый для сравнения двух независимых выборок по уровню какого-либо признака, измеренного количественно. Метод основан на определении того, достаточно ли мала зона перекрещивающихся значений между двумя вариационными рядами (ранжированным рядом значений параметра в первой выборке и таким же во второй выборке). Чем меньше значение критерия, тем вероятнее, что различия между значениями параметра в выборках достоверны.

1. История разработки U-критерия

Данный метод выявления различий между выборками был предложен в 1945 году американским химиком и статистиком Фрэнком Уилкоксоном .
В 1947 году он был существенно переработан и расширен математиками Х.Б. Манном (H.B. Mann) и Д.Р. Уитни (D.R. Whitney), по именам которых сегодня обычно и называется.

2. Для чего используется U-критерий Манна-Уитни?

U-критерий Манна-Уитни используется для оценки различий между двумя независимыми выборками по уровню какого-либо количественного признака.

3. В каких случаях можно использовать U-критерий Манна-Уитни?

U-критерий Манна-Уитни является непараметрическим критерием, поэтому, в отличие от t-критерия Стьюдента , не требует наличия нормального распределения сравниваемых совокупностей.

U-критерий подходит для сравнения малых выборок: в каждой из выборок должно быть не менее 3 значений признака. Допускается, чтобы в одной выборке было 2 значения, но во второй тогда должно быть не менее пяти.

Условием для применения U-критерия Манна-Уитни является отсутствие в сравниваемых группах совпадающих значений признака (все числа – разные) или очень малое число таких совпадений.

Аналогом U-критерия Манна-Уитни для сравнения более двух групп является Критерий Краскела-Уоллиса .

4. Как рассчитать U-критерий Манна-Уитни?

Сначала из обеих сравниваемых выборок составляется единый ранжированный ряд , путем расставления единиц наблюдения по степени возрастания признака и присвоения меньшему значению меньшего ранга. В случае равных значений признака у нескольких единиц каждой из них присваивается среднее арифметическое последовательных значений рангов.

Например, две единицы, занимающие в едином ранжированном ряду 2 и 3 место (ранг), имеют одинаковые значения. Следовательно, каждой из них присваивается ранг равный (3 + 2) / 2 = 2,5.

В составленном едином ранжированном ряду общее количество рангов получится равным:

N = n 1 + n 2

где n 1 - количество элементов в первой выборке, а n 2 - количество элементов во второй выборке.

Далее вновь разделяем единый ранжированный ряд на два, состоящие соответственно из единиц первой и второй выборок, запоминая при этом значения рангов для каждой единицы. Подсчитываем отдельно сумму рангов, пришедшихся на долю элементов первой выборки, и отдельно - на долю элементов второй выборки. Определяем большую из двух ранговых сумм (T x ) соответствующую выборке с n x элементами.

Наконец, находим значение U-критерия Манна-Уитни по формуле:

5. Как интерпретировать значение U-критерия Манна-Уитни?

Полученное значение U-критерия сравниваем по таблице для избранного уровня статистической значимости (p=0.05 или p=0.01 ) с критическим значением U при заданной численности сопоставляемых выборок:

  • Если полученное значение U меньше табличного или равно ему, то признается статистическая значимость различий между уровнями признака в рассматриваемых выборках (принимается альтернативная гипотеза). Достоверность различий тем выше, чем меньше значение U.
  • Если же полученное значение U больше табличного, принимается нулевая гипотеза.

Контрольная работа

Методика «Домик»

Методика «Домик» (Н. И. Гуткина) представляет собой задание на срисовывание картинки с изображением дома, отдельные детали которого состоят из элементов прописных букв. Методика рассчитана на детей в возрасте 5-10 лет и может использоваться для определения готовности ребёнка к школе.

Цель исследования : определить способность ребёнка к копированию сложного образца.

Задание позволяет выявить умение ребёнка ориентироваться по образцу, точно его копировать, определить особенности развития непроизвольного внимания, пространственного восприятия, сенсомоторной координации и мелкой моторики рук.

Материалы : образец рисунка, лист бумаги, карандаш.

Ход исследования

Перед выполнением задания ребёнку даётся инструкция: «Перед тобой лежит лист бумаги и карандаш. Нарисуй на этом листе точно такую же картинку, как здесь (перед малышом кладётся лист с изображением дома). Не спеши, будь внимателен, постарайся, чтобы твой рисунок был точно таким же, как на образце. Если ты что-то нарисуешь не так, не стирай резинкой (проследить, чтобы у ребёнка не было резинки). Нужно поверх неправильного рисунка или возле него нарисовать правильно. Тебе понятно задание? Тогда приступай к работе».

По ходу выполнения задания необходимо зафиксировать:

1. Какой рукой рисует ребёнок (правой или левой).

2. Как он работает с образцом: как часто смотрит на него, проводит ли над рисунком-образцом линии, повторяющие контуры картинки, сравнивает ли нарисованное с образцом или рисует по памяти.

3. Быстро или медленно проводит линии.

4. Отвлекается ли во время работы.

5. Высказывания и вопросы во время рисования.

6. Сверяет ли после окончания работы свой рисунок с образцом.

Когда ребёнок сообщает об окончании работы, ему предлагается проверить, всё ли у него правильно. Если он увидит неточности в своём рисунке, то может их исправить, но это должно быть зафиксировано экспериментатором.

Обработка и анализ результатов

Обработка экспериментального материала проводится методом подсчёта баллов, которые начисляются за ошибки. Ошибки бывают такими.

1. Отсутствие любой детали картины (4 балла). На рисунке может отсутствовать забор (одна или две половины), дым, труба, крыша, штриховка на крыше, окно, линия, изображающая основу дома.

2. Увеличение отдельных деталей рисунка более чем в два раза при относительно правильном сохранении размера всего рисунка (3 балла за каждую увеличенную деталь).

3. Неправильно изображён элемент рисунка (3 балла). Неправильно могут быть изображены кольца дыма, забор, штриховка на крыше, окно, труба. Причём если неправильно нарисованы палочки, из которых состоит правая (левая) часть забора, то 2 балла начисляется не за каждую неправильную палочку, а за всю правую (левую) часть забора в целом. То же касается и колец дыма, выходящих из трубы, и штриховки на крыше дома: 2 балла начисляется не за каждое неправильное кольцо, а за весь неправильно скопированный дым; не за каждую неправильную линию в штриховке, а за всю штриховку крыши в целом.

Правая и левая части забора оцениваются отдельно: так, если неправильно срисована правая часть, а левая скопирована без ошибок (или наоборот), то ребёнок получает за нарисованный забор 2 балла; если же допущены ошибки и в правой, и в левой части, то 4 балла (за каждую часть по 2 балла). Если часть правого (левого) бока забора скопированы правильно, а часть неправильно, то за этот бок забора начисляется 1 балл; то же касается и колец дыма, и штриховки на крыше: если только одна часть колец дыма срисована правильно, то дым оценивается в 1 балл; если только одна часть штриховки на крыше воспроизведена правильно, то вся штриховка оценивается в 1 балл. Неправильно воспроизведенное количество элементов в детали рисунка не считается ошибкой, то есть не важно, сколько будет палочек на заборе, колец дыма или линий в штриховке крыши.

4. Неправильное расположение деталей в пространстве рисунка (1 балл). К ошибкам этого вида относятся: расположение забора не на общей с основой дома линии, а выше её, дом как будто висит в воздухе или ниже линии основы дома; смещение трубы к левому краю крыши; существенное смещение окна в любую сторону от центра; расположение дыма более чем на 30° отклонения от горизонтальной линии; основа крыши по размеру соответствует основе дома, а не превышает её (на образце крыша нависает над домом).

5. Отклонение прямых линий более чем на 30° от заданного направления (1 балл): вертикальных и горизонтальных линий, из которых состоит дом и крыша; палочек забора; изменение угла наклона боковых линий крыши (расположение их под прямым или тупым углом к основе крыши вместо острого); отклонение линии основы забора более чем на 30° от горизонтальной линии.

6. Разрывы между линиями в тех местах, где они должны быть соединены (1 балл за каждый разрыв). В том случае если линии штриховки на крыше не доходят до линии крыши, 1 балл ставится за всю штриховку в целом, а не за каждую неправильную линию штриховки.

7. Линии налезают друг на друга (1 балл за каждое налезание). В случае если линии штриховки на крыше залезают за линии крыши, 1 балл ставится за всю штриховку в целом, а не за каждую неправильную линию штриховки.

Хорошее выполнение рисунка оценивается в «0» баллов. Таким образом, чем хуже выполнено задание, тем выше суммарная оценка. Однако при интерпретации результатов эксперимента необходимо учитывать возраст ребёнка. Пятилетние дети почти не получают оценки «0» из-за недостаточной зрелости мозговых структур, отвечающих за сенсомоторную координацию.

При анализе детского рисунка необходимо обратить внимание на характер линий: очень жирные или «косматые» линии могут свидетельствовать о состоянии тревожности ребёнка. Но вывод о тревожности ни в коем случае нельзя делать лишь на основании этого рисунка. Подозрения необходимо проверить специальными методиками по определению тревожности.

Дети с зпр

Результаты в баллах

Дети в норме

результаты

Представим полученные данные в виде Гистограммы 1.

Гистограмма 1. Результаты, полученные по методике «Домик»

Постройте мне пожалуйста гистограму вот такую. Дети с задержкой психического развития имеют выше среднего (около 10%) и) средний уровень развития (около 30% и ниже среднего (60%)

В среднем дети с нормальным развитием имеют высокий уровень развития (около 60%), средний уровень развития (около 20%) и выше среднего 20%. Вы и тут тоже неправильно подписали мне преподаватель перечеркнул и сказал нечитаемо. вы должны были подписать 10 % выше среднего а не низкое как в 1-м красном столбце. Во 2 красном столбце подписать средний уровень развития (около 30%) а не низкий и в третьем красном ниже среднего 60. И вот по такой гистограмме вы должны построить измененную гистограмму. Я провела коррекционную работу и количество детей изменилось якобы: с низким уровнем ниже среднего большинство из них стало приближаться к среднему 60% детей, 40 % приближаться к высокому это дети со средним значением были. Т. Е. нужно построить экспериментальную группу и зпр: со средним 60 % и 40 высокое.

И мне нужно составить таблицу по критерию мани уитни нужно изменить данные опять таки чтобы ниже среднего уровень приближался к среднему и средний к высокому. Распишите пожалуйста таблицу количество испытуемых было 10 человек норма и 10 зпр. Просто мне не очень понятно как вы ранжировали как я понимаю вы подогнали результаты (об этом я вас просила) и проставили ранги а далее действовали по формуле… если не так то объясните. Грядёт защита курсовой. Расчёты будет проверять сам доцент кафедры психологии. Пожалуйста помогите..

Назначение U-критерия Манна-Уитни

Настоящий статистический метод был предложен Фрэнком Вилкоксоном (см. фото) в 1945 году. Однако в 1947 году метод был улучшен и расширен Х. Б. Манном и Д. Р. Уитни, посему U-критерий чаще называют их именами.

Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n 1 ,n 2 ≥3 или n 1 =2, n 2 ≥5, и является более мощным, чем критерий Розенбаума.

Описание U-критерия Манна-Уитни

Существует несколько способов использования критерия и несколько вариантов таблиц критических значений, соответствующих этим способам (Гублер Е. В., 1978; Рунион Р., 1982; Захаров В. П., 1985; McCall R., 1970; Krauth J., 1988).

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Мы помним, что 1-м рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом - тот, где они предположительно ниже.

Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок (Welkowitz J. et al., 1982).

Эмпирическое значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше U эмп, тем более вероятно, что различия достоверны.

Гипотезы U - критерия Манна-Уитни

U -критерий Манна-Уитни используется для оценки различий между двумя малыми выборками (n 1 , n 2 ≥3 или n 1 =2, n 2 ≥5) по уровню количественно измеряемого признака.

Нулевая гипотеза H 0 ={уровень признака во второй выборке не ниже уровня признака в первой выборке}; альтернативная гипотеза - H 1 ={уровень признака во второй выборке ниже уровня признака в первой выборке}.

Рассмотрим алгоритм применения U-критерия Манна-Уитни:

1. Перенести все данные испытуемых на индивидуальные карточки, пометив карточки 1-й выборки одним цветом, а 2-й - другим.

2. Разложить все карточки в единый ряд по степени возрастания признака и проранжировать в таком порядке.

3. Вновь разложить карточки по цвету на две группы.

5. Определить большую из двух ранговых сумм .

6. Вычислить эмпирическое значение U :

, где - количество испытуемых в - выборке (i = 1, 2), - количество испытуемых в группе с большей суммой рангов.

7. Задать уровень значимости α и, используя специальную таблицу, определить критическое значение U кр (α) . Если , то H 0 на выбранном уровне значимости принимается.

Рассмотрим использование U критерия Манна-Уитни для нашего примера.

При ранжировании объединяем две выборки в одну. Ранги присваиваются в порядке возрастания значения измеряемой величины, т.е. наименьшему рангу соответствует наименьший балл. Заметим, что в случае совпадения баллов для нескольких испытуемых ранг такого балла следует считать, как среднее арифметическое тех позиций, которые занимают данные баллы при их расположении в порядке возрастания.

Используя предложенный принцип ранжирования, получим таблицу рангов. Заметим, что выбор среднего арифметического в качестве ранга применяется при любом ранжировании.

Чтобы использовать критерий Манна-Уитни, рассчитаем суммы рангов рассматриваемых выборок (см. таблицу).

Проведение исследования по методике дало следующие результаты:

Результаты расчета U-критерия Манна-Уитни по результатам исследования представлены в таблице 1 (ранжирование), на рисунке 1 (ось значимос ти):

Дети в норме

Ранг 1

Дети с ЗПР

Ранг 2

Суммы:

72.5

137.5

17,5 19

Сумма для первой выборки равна 72,5, для второй - 137,5. Обозначим наибольшую из этих сумм через T x (T x =137.5). Среди объёмов n 1 =10 и n 2 =10 выборок наибольший обозначим n x 17,5

Полученное эмпирическое значение U эмп (17,5) находится в зоне значимости, а, следовательно, наша гипотеза подтвердилась.

Критическое значение критерия находим по специальной таблице. Пусть уровень значимости равен 0.05.

Гипотеза H0 о незначительности различий между баллами двух выборок принимается, если < . В противном случае H0 отвергается и различие определяется как существенное.

Следовательно, различия в уровне можно считать существенными.

Схема использования критерия Манна-Уитни выглядит следующим образом


U-критерий является ранговым , поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.

Другие названия: критерий Манна-Уитни-Уилкоксона (Mann-Whitney-Wilcoxon, MWW), критерий суммы рангов Уилкоксона (Wilcoxon rank-sum test) или критерий Уилкоксона-Манна-Уитни (Wilcoxon-Mann-Whitney test, WMW).

Примеры задач

Пример 1. Первая выборка - это пациенты, которых лечили препаратом А. Вторая выборка - пациенты, которых лечили препаратом Б. Значения в выборках - это некоторая характеристика эффективности лечения (уровень метаболита в крови, температура через три дня после начала лечения, срок выздоровления, число койко-дней, и т.д.) Требуется выяснить, имеется ли значимое различие эффективности препаратов А и Б, или различия являются чисто случайными и объясняются «естественной» дисперсией выбранной характеристики.

Пример 2. Первая выборка - это поля, обработанные агротехническим методом А. Вторая выборка - поля, обработанные агротехническим методом Б. Значения в выборках - это урожайность. Требуется выяснить, является ли один из методов эффективнее другого, или различия урожайности обусловлены случайными факторами.

Пример 3. Первая выборка - это дни, когда в супермаркете проходила промо-акция типа А (красные ценники со скидкой). Вторая выборка - дни промо-акции типа Б (каждая пятая пачка бесплатно). Значения в выборках - это показатель эффективности промо-акции (объём продаж, либо выручка в рублях). Требуется выяснить, какой из типов промо-акции более эффективен.

Описание критерия

Заданы две выборки .

Дополнительные предположения:

Иногда ошибочно считают, что U-критерий проверяет нулевую гипотезу равенства медиан в двух выборках. Существуют распределения, для которых гипотеза верна, но их медианы различны.

U-критерий можно применять для проверки гипотезы сдвига в качестве альтернативной , где - некоторая константа, отличная от нуля. При этой альтернативе U-критерий является состоятельным . Его целесообразно применять, если одним и тем же прибором проводятся две серии измерений двух значений некоторой физической величины. При этом функция распределения описывает погрешности измерения одного значения, а - другого. Однако во многих приложениях (в частности, эконометрических) нет особых оснований предполагать, что распределение второй выборки лишь сдвигается, но не меняется каким-либо иным образом.

U-критерий является непараметрическим аналогом критерия Стьюдента . Если выборки нормальные , то для проверки гипотезы сдвига предпочтительно применить более мощный критерий Стьюдента.

История

Данный метод выявления различий между выборками был предложен в 1945 году Френком Уилкоксоном. В 1947 году он был существенно переработан и расширен Манном и Уитни, по именам которых сегодня обычно и называется.

Литература

  1. Mann H. B., Whitney D. R. On a test of whether one of two random variables is stochastically larger than the other. // Annals of Mathematical Statistics. - 1947, №18. - Pp. 50-60.
  2. Wilcoxon F. Individual Comparisons by Ranking Methods. // Biometrics Bulletin 1. 1945. - Pp. 80–83.
  3. Орлов А. И. Эконометрика. - М.: Экзамен, 2003. - 576 с. (§4.5 Какие гипотезы можно проверять с помощью двухвыборочного критерия Вилкоксона?)
  4. Кобзарь А. И. Прикладная математическая статистика. - М.: Физматлит, 2006. - 816 с.