Навигация по странице.

Метод парабол (Симпсона) - суть метода, формула, оценка погрешности, иллюстрация.

Пусть функция y = f(x) непрерывна на отрезке и нам требуется вычислить определенный интеграл .

Разобьем отрезок на n элементарных отрезков длины точками . Пусть точки являются серединами отрезков соответственно. В этом случае все "узлы" определяются из равенства .

Суть метода парабол.

На каждом интервале подынтегральная функция приближается квадратичной параболой , проходящей через точки . Отсюда и название метода - метод парабол.

Это делается для того, чтобы в качестве приближенного значения определенного интеграла взять , который мы можем вычислить по формуле Ньютона-Лейбница. В этом и заключается суть метода парабол .

Геометрически это выглядит так:


Графическая иллюстрация метода парабол (Симпсона).

Красной линией изображен график функции y=f(x) , синей линией показано приближение графика функции y=f(x) квадратичными параболами на каждом элементарном отрезке разбиения.

Вывод формулы метода Симпсона (парабол).

В силу пятого свойства определенного интеграла имеем .

Для получения формулы метода парабол (Симпсона) нам осталось вычислить .

Пусть (мы всегда можем к этому прийти, проведя соответствующее геометрическое преобразования сдвига для любого i = 1, 2, ..., n ).

Сделаем чертеж.

Покажем, что через точки проходит только одна квадратичная парабола . Другими словами, докажем, что коэффициенты определяются единственным образом.

Так как - точки параболы, то справедливо каждое из уравнений системы

Записанная система уравнений есть система линейных алгебраических уравнений относительно неизвестных переменных . Определителем основной матрицы этой системы уравнений является определитель Вандермонда , а он отличен от нуля для несовпадающих точек . Это указывает на то, что система уравнений имеет единственное решение (об этом говорится в статье ), то есть, коэффициенты определяются единственным образом, и через точки проходит единственная квадратичная парабола.

Перейдем к нахождению интеграла .

Очевидно:

Используем эти равенства, чтобы осуществить последний переход в следующей цепочке равенств:

Таким образом, можно получить формулу метода парабол:

Формула метода Симпсона (парабол) имеет вид
.

Оценка абсолютной погрешности метода Симпсона.

Абсолютная погрешность метода Симпсона оценивается как .

Примеры приближенного вычисления определенных интегралов методом Симпсона (парабол).

Разберем применение метода Симпсона (парабол) при приближенном вычислении определенных интегралов.

Обычно встречается два типа заданий:

Возникает логичный вопрос: "С какой степенью точности проводить промежуточные вычисления"?

Ответ прост - точность промежуточных вычислений должна быть достаточной. Промежуточные вычисления следует проводить с точностью на 3-4 порядка выше, чем порядок . Также точность промежуточных вычислений зависит от числа n - чем больше n , тем точнее следует проводить промежуточные вычисления.

Пример.

Вычислите определенный интеграл методом Симпсона, разбив отрезок интегрирования на 5 частей.

Решение.

Из условия мы знаем, что a = 0; b = 5; n = 5 ; .

Формула метода Симпсона (парабол) имеет вид . Для ее применения нам требуется вычислить шаг , определить узлы и вычислить соответствующие значения подынтегральной функции .

Промежуточные вычисления будем проводить с точностью до четырех знаков (округлять на пятом знаке).

Итак, вычисляем шаг .

Переходим к узлам и значениям функции в них:

Для наглядности и удобства результаты сведем в таблицу:

Подставляем полученные результаты в формулу метода парабол:

Мы специально взяли определенный интеграл, который можно вычислить по формуле Ньютона-Лейбница, чтобы сравнить результаты.

Результаты совпадают с точностью до сотых.

Пример.

Вычислите определенный интеграл методом Симпсона с точностью до 0.001 .

Решение.

В нашем примере a = 0 , .

Первым делом нам нужно определить n . Для этого обратимся к неравенству для оценки абсолютной погрешности метода Симпсона . Можно сказать, что если мы найдем n , для которого будет выполняться неравенство , то при использовании метода парабол для вычисления исходного определенного интеграла абсолютная погрешность не превысит 0.001 . Последнее неравенство можно переписать в виде .

Выясним, какое наибольшее значение принимает модуль четвертой производной подынтегральной функции на отрезке интегрирования.

есть интервал , а отрезок интегрирования содержит точки экстремума, поэтому .

Подставляем найденное значение в неравенство и решим его:

Так как n является натуральным числом (это же количество отрезков, на которые разбивается отрезок интегрирования), то можно брать n = 5, 6, 7, … Чтобы не делать лишних вычислений, возьмем n = 5 .

Теперь действуем как в предыдущем примере. В промежуточных вычислениях округление будем проводить на шестом порядке.

Вычисляем шаг .

Находим узлы и значения подынтегральной функции в них:

Результаты вычислений объединяем в таблицу:

Подставляем значения в формулу метода парабол:

Таким образом, по методу Симпсона получено приближенное значение определенного интеграла с точностью до 0.001 .

Действительно, вычислив исходный интеграл по формуле Ньютона-Лейбница, получаем

Замечание.

Нахождение во многих случаях затруднительно. Можно обойтись без этого, применив альтернативный подход к использованию метода парабол. Его принцип описан в разделе метод трапеций , так что не будем повторяться.

Какой же метод применять при численном интегрировании?

Точность метода Симпсона (парабол) выше точности метода прямоугольников и трапеций для заданного n (это видно из оценки абсолютной погрешности), так что его использование предпочтительнее.

Следует помнить о влиянии вычислительной погрешности на результат при больших n , что может отдалить приближенное значение от точного.

Для нахождения определенного интеграла методом трапеций площадь криволинейной трапеции также разбивается на n прямоугольных трапеций с высотами h и основаниями у 1 , у 2 , у 3 ,..у n , где n - номер прямоугольной трапеции. Интеграл будет численно равен сумме площадей прямоугольных трапеций (рисунок 4).

Рис. 4

n - количество разбиений

Погрешность формулы трапеций оценивается числом

Погрешность формулы трапеций с ростом уменьшается быстрее, чем погрешность формулы прямоугольников. Следовательно, формула трапеций позволяет получить большую точность, чем метод прямоугольников.

Формула Симпсона

Если для каждой пары отрезков построить многочлен второй степени, затем проинтегрировать его на отрезке и воспользоваться свойством аддитивности интеграла, то получим формулу Симпсона.

В методе Симпсона для вычисления определенного интеграла весь интервал интегрирования разбивается на подинтервалы равной длины h=(b-a)/n. Число отрезков разбиения является четным числом. Затем на каждой паре соседних подинтервалов подинтегральная функция f(x) заменяется многочленом Лагранжа второй степени (рисунок 5).

Рис. 5 Функция y=f(x) на отрезке заменяется многочленом 2-го порядка

Рассмотрим подынтегральную функцию на отрезке. Заменим эту подынтегральную функцию интерполяционным многочленом Лагранжа второй степени, совпадающим с y= в точках:

Проинтегрируем на отрезке.:

Введем замену переменных:

Учитывая формулы замены,


Выполнив интегрирование, получим формулу Симпсона:

Полученное для интеграла значение совпадает с площадью криволинейной трапеции, ограниченной осью, прямыми, и параболой, проходящей через точки На отрезке формула Симпсона будет иметь вид:

В формуле параболы значение функции f(x) в нечетных точках разбиения х 1 , х 3 , ..., х 2n-1 имеет коэффициент 4, в четных точках х 2 , х 4 , ..., х 2n-2 - коэффициент 2 и в двух граничных точках х 0 =а, х n =b - коэффициент 1.

Геометрический смысл формулы Симпсона: площадь криволинейной трапеции под графиком функции f(x) на отрезке приближенно заменяется суммой площадей фигур, лежащих под параболами.

Если функция f(x) имеет на непрерывную производную четвертого порядка, то абсолютная величина погрешности формулы Симпсона не больше чем

где М - наибольшее значение на отрезке . Так как n 4 растет быстрее, чем n 2 , то погрешность формулы Симпсона с ростом n уменьшается значительно быстрее, чем погрешность формулы трапеций.

Вычислим интеграл

Этот интеграл легко вычисляется:

Возьмем n равным 10, h=0.1, рассчитаем значения подынтегральной функции в точках разбиения, а также полуцелых точках.

По формуле средних прямоугольников получим I прям =0.785606 (погрешность равна 0.027%), по формуле трапеций I трап =0.784981 (погрешность около 0,054. При использовании метода правых и левых прямоугольников погрешность составляет более 3%.

Для сравнения точности приближенных формул вычислим еще раз интеграл

но теперь по формуле Симпсона при n=4. Разобьем отрезок на четыре равные части точками х 0 =0, х 1 =1/4, х 2 =1/2, х 3 =3/4, х 4 =1 и вычислим приближенно значения функции f(x)=1/(1+x) в этих точках: у 0 =1,0000, у 1 =0,8000, у 2 =0,6667, у 3 =0,5714, у 4 =0,5000.

По формуле Симпсона получаем

Оценим погрешность полученного результата. Для подынтегральной функции f(x)=1/(1+x) имеем: f (4) (x)=24/(1+x) 5 , откуда следует, что на отрезке . Следовательно, можно взять М=24, и погрешность результата не превосходит величины 24/(2880 4 4)=0.0004. Сравнивая приближенное значение с точным, заключаем, что абсолютная ошибка результата, полученного по формуле Симпсона, меньше 0,00011. Это находится в соответствии с данной выше оценкой погрешности и, кроме того, свидетельствует, что формула Симпсона значительно точнее формулы трапеций. Поэтому формулу Симпсона для приближенного вычисления определенных интегралов используют чаще, чем формулу трапеций.

В этом методе предлагается подынтегральную функцию на частичном отрезке аппроксимировать параболой, проходящей через точки
(x j , f (x j )), где j = i -1; i -0.5; i , то есть подынтегральную функцию аппроксимируем интерполяционным многочленом Лагранжа второй степени:

(10.14)

Проведя интегрирование, получим:

(10.15)

Это и есть формула Симпсона или формула парабол. На отрезке
[a, b ] формула Симпсона примет вид

(10.16)

Графическое представление метода Симпсона показано на рис. 2.4.

Рис. 10.4. Метод Симпсона

Избавимся в выражении (2.16) от дробных индексов, переобозначив переменные:

(10.17)

Тогда формула Симпсона примет вид

(10.18)

Погрешность формулы (2.18) оценивается следующим выражением:

, (10.19)

где h·n = b - a , . Таким образом, погрешность формулы Симпсона пропорциональна O (h 4 ).

Замечание. Следует отметить, что в формуле Симпсона отрезок интегрирования обязательно разбивается на четное число интервалов.

10.5. Вычисление определенных интегралов методами
Монте–Карло

Рассматриваемые ранее методы называются детерминированными , то есть лишенными элемента случайности.

Методы Монте–Карло (ММК) – это численные методы решения математических задач с помощью моделирования случайных величин. ММК позволяют успешно решать математические задачи, обусловленные вероятностными процессами. Более того, при решении задач, не связанных с какими-либо вероятностями, можно искусственно придумать вероятностную модель (и даже не одну), позволяющую решать эти задачи. Рассмотрим вычисление определенного интеграла

(10.20)

При вычислении этого интеграла по формуле прямоугольников интервал [a, b ] разбиваем на N одинаковых интервалов, в серединах которых вычислялись значения подынтегральной функции. Вычисляя значения функции в случайных узлах, можно получить более точный результат:

(10.21)

(10.22)

Здесь γ i - случайное число, равномерно распределенное на интервале
. Погрешность вычисления интеграла ММК ~ , что значительно больше, чем у ранее изученных детерминированных методов.

На рис. 2.5 представлена графическая реализация метода Монте-Карло вычисления однократного интеграла со случайными узлами (2.21) и (2.22).


(2.23)

Рис. 10.6. Интегрирование методом Монте-Карло (2-й случай)

Как видно на рис. 2.6, интегральная кривая лежит в единичном квадрате, и если мы сумеем получать пары случайных чисел, равномерно распределенных на интервале , то полученные значения (γ 1, γ 2) можно интерпретировать как координаты точки в единичном квадрате. Тогда, если этих пар чисел получено достаточно много, можно приблизительно считать, что
. Здесь S – число пар точек, попавших под кривую, а N – общее число пар чисел.

Пример 2.1. Вычислить следующий интеграл:

Поставленная задача была решена различными методами. Полученные результаты сведены в табл. 2.1.

Таблица 2.1

Замечание. Выбор табличного интеграла позволил нам сравнить погрешность каждого метода и выяснить влияние числа разбиений на точность вычислений.

11 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ
И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ

Вычисление интегралов по формулам прямоугольников, трапеций и формуле Симпсона. Оценка погрешностей.

Методические указания по теме 4.1:

Вычисление интегралов по формулам прямоугольников. Оценка погрешности:

Решение многих технических задач сводится к вычислению определенных интегралов, точное выражение которых сложно, требует длительных вычислений и не всегда оправдано практически. Здесь бывает вполне достаточно их приближенного значения. Например, необходимо вычислить площадь, ограниченную линией, уравнение которой неизвестно, осью х и двумя ординатами. В этом случае можно заменить данную линию более простой, для которой известно уравнение. Площадь полученной таким образом криволинейной трапеции принимается за приближенное значение искомого интеграла. Геометрически идея способа вычислений определенного интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции А 1 АВВ 1 заменяется площадью равновеликого прямоугольника А 1 А 2 В 1 В 2 , которая по теореме о среднем равна

Где f(c) --- высота прямоугольника А 1 А 2 В 1 В 2 , представляющая собой значение подынтегральной функции в некоторой промежуточной точке c(a< c

Практически трудно найти такое значение с , при котором (b-a) f (c) в точности равнялось бы . Для получения более точного значения площадь криволинейной трапеции разбивают на n прямоугольников, высоты которых равны y 0 , y 1 , y 2 , …,y n -1 и основания .

Если суммировать площади прямоугольников, которые покрывают площадь криволинейной трапеции с недостатком, функция --- неубывающая, то вместо формулы используют формулу

Если с избытком, то

Значения находят из равенств . Эти формулы называются формулами прямоугольников и дают приближенный результат. С увеличением n результат становится более точным.

Пример 1. Вычислить по формуле прямоугольников

Разделим промежуток интегрирования на 5 частей. Тогда . При помощи калькулятора или таблицы найдем значения подынтегральной функции (с точностью до 4-х знаков после запятой):

По формуле прямоугольников (с недостатком)

С другой стороны по формуле Ньютона-Лейбница

Найдем относительную погрешность вычисления по формуле прямоугольников:

Вычисление интегралов по формулам трапеций. Оценка погрешности:

Геометрический смысл следующего способа приближенного вычисления интегралов состоит в том, что нахождение площади приблизительно равновеликой «прямолинейной» трапеции.

Пусть необходимо вычислить площадь А 1 АmBB 1 криволинейной трапеции, выражаемую формулой .

Заменим дугу AmB хордой AB и вместо площади криволинейной трапеции А 1 АmBB 1 вычислим площадь трапеции А 1 АBB 1 : , где AA 1 и ВВ 1 -- основания трапеции, а A 1 В 1 –ее высота.


Обозначим f(a)=A 1 A,f(b)=B 1 B. высота трапеции A 1 B 1 =b-a, площадь . Следовательно, или

Это так называемая малая формула трапеций .

(1710-1761).

Рассмотрим отрезок . Пусть известны значения вещественной функции f(x) в точках a, (a+b)/2, b. Существует единственный полином 2-й степени p 2 (x ) , график которого проходит через точки (a, f(a)), ((a+b)/2,f((a+b)/2), (b, f(b)). Формулой Симпсона называется интеграл от этого полинома на отрезке :

Метод Симпсона имеет порядок погрешности 4 и алгебраический порядок точности 3.

Погрешность при интегрировании по отрезку [a ,b ] с шагом h определяется по формуле:

,

где - максимум четвёртой производной функции.

Так же, при невозможности оценить погрешность с помощью максимума четвертой производной (например, на заданном отрезке она не существует, либо стремится к бесконечности), можно использовать более грубую оценку:

,

где - максимум третьей производной функции.

Ссылки

  • Костомаров Д. П., Фаворский А. П. «Вводные лекции по численным методам»

Wikimedia Foundation . 2010 .

  • Метод Рунге - Куттa
  • Метод Фибоначчи поиска экстремума

Смотреть что такое "Метод Симпсона" в других словарях:

    Формула Симпсона - Суть метода аппроксимация функции f (x) (синий график) квадратичным полиномом P (x) (красный) Формула Симпсона (также … Википедия

    РОМБЕРГА МЕТОД - п р а в и л о Р о м б е р г а, метод вычисления определенного интеграла, основанный на Ричардсона экстраполяции. Пусть вычисляется значение I нек рого функционала, при этом вычисляемое приближенное значение Т(h)зависит от параметра h, так что в… … Математическая энциклопедия

    Численное интегрирование - (историческое название: (численная) квадратура) вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов отыскания значения определённого интеграла. Численное… … Википедия

    Квадратурные формулы

    Квадратурная формула - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    Прямоугольников формула - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    Формула прямоугольников - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    Формула трапеций - Определённый интеграл как площадь фигуры Численное интегрирование (историческое название: квадратура) вычисление значения определённого интеграла (как правило, приближённое), основанное на том, что величина интеграла численно равна площади… … Википедия

    РОДЫ - РОДЫ. Содержание: I. Определение понятия. Изменения в организме во время Р. Причины наступления Р..................... 109 II. Клиническое течение физиологических Р. . 132 Ш. Механика Р. ................. 152 IV. Ведение Р.................. 169 V … Большая медицинская энциклопедия

    Интегральное исчисление - раздел математики, в котором изучаются свойства и способы вычисления интегралов и их приложения. И. и. тесно связано с дифференциальным исчислением (См. Дифференциальное исчисление) и составляет вместе с ним одну из основных частей… … Большая советская энциклопедия