Общая формулировка: Поток вектора напряжённости электрического поля через любую, произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.

В системе СГСЭ:

В системе СИ:

— поток вектора напряженности электрического поля через замкнутую поверхность .

— полный заряд, содержащийся в объеме, который ограничивает поверхность .

— электрическая постоянная.

Данное выражение представляет собой теорему Гаусса в интегральной форме.

В дифференциальной форме теорема Гаусса соответствует одному из уравнений Максвелла и выражается следующим образом

в системе СИ:

,

в системе СГСЭ:

Здесь — объёмная плотность заряда (в случае присутствия среды — суммарная плотность свободных и связанных зарядов), а — оператор набла.

Для теоремы Гаусса справедлив принцип суперпозиции, то есть поток вектора напряжённости через поверхность не зависит от распределения заряда внутри поверхности.

Физической основой теоремы Гаусса является закон Кулона или, иначе, теорема Гаусса является интегральной формулировкой закона Кулона.

Теорема Гаусса для электрической индукции (электрическое смещение).

Для поля в веществе электростатическая теорема Гаусса может быть записана иначе — через поток вектора электрического смещения (электрической индукции). При этом формулировка теоремы выглядит следующим образом: поток вектора электрического смещения через замкнутую поверхность пропорционален заключённому внутри этой поверхности свободному электрическому заряду:

Если же рассматривать теорему для напряжённости поля в веществе, то в качестве заряда Q необходимо брать сумму свободного заряда, находящегося внутри поверхности и поляризационного (индуцированного, связанного) заряда диэлектрика:

,

где ,
— вектор поляризации диэлектрика.

Теорема Гаусса для магнитной индукции

Поток вектора магнитной индукции через любую замкнутую поверхность равен нулю:

.

Это эквивалентно тому, что в природе не существует «магнитных зарядов» (монополей), которые создавали бы магнитное поле, как электрические заряды создают электрическое поле. Иными словами, теорема Гаусса для магнитной индукции показывает, что магнитное поле является вихревым.

Применение теоремы Гаусса

Для вычисления электромагнитных полей используются следующие величины:

Объёмная плотность заряда (см. выше).

Поверхностная плотность заряда

где dS — бесконечно малый участок поверхности.

Линейная плотность заряда

где dl — длина бесконечно малого отрезка.

Рассмотрим поле, создаваемое бесконечной однородной заряженной плоскостью. Пусть поверхностная плотность заряда плоскости одинакова и равна σ. Представим себе мысленно цилиндр с образующими, перпендикулярными к плоскости, и основанием ΔS, расположенным относительно плоскости симметрично. В силу симметрии . Поток вектора напряжённости равен . Применив теорему Гаусса, получим:


,

из которого

в системе СГСЭ

Важно отметить, что несмотря на свою универсальность и общность, теорема Гаусса в интегральной форме имеет сравнительно ограниченное применение в силу неудобства вычисления интеграла. Однако в случае симметричной задачи решение её становится гораздо более простым, чем с использованием принципа суперпозиции.

Рассмотрим поле точечного заряда $q$, найдем поток вектора напряжённости ($\overrightarrow{E}$) через замкнутую поверхность $S$. Будем считать, что заряд находится внутри поверхности. Поток вектора напряженности через любую поверхность равен количеству линий вектора напряженности, которые выходят наружу (начинаются на заряде, если $q>0$) или количеству линий $\overrightarrow{E}$входящих внутрь, если $q \[Ф_E=\frac{q}{{\varepsilon }_0}\ \left(1\right),\]

где знак потока совпадает со знаком заряда.

Теорема Остроградского - Гаусса в интегральной форме

Допустим, что внутри поверхности S находится N точечных зарядов, величины $q_1,q_2,\dots q_N.$ Из принципа суперпозиции мы знаем, что результирующая напряженность поля всех N зарядов может быть найдена как сумма напряженностей полей, которые создаются каждым из зарядов, то есть:

Следовательно, для потока системы точечных зарядов можно записать:

Используем формулу (1), получаем, что:

\[Ф_E=\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\sum\limits^N_{i=1}{q_i\ }\left(4\right).\]

Уравнение (4) значит, что поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме зарядов, которые находятся внутри данной поверхности, деленой на электрическую постоянную. Это теорема Остроградского - Гаусса в интегральной форме. Данная теорема является следствием закона Кулона. Значение данной теоремы заключается в том, что она позволяет довольно просто вычислять электрические поля при различных распределениях зарядов.

Как следствие теоремы Остроградского - Гаусса надо сказать, что поток вектора напряженности ($Ф_E$) через замкнутую поверхность в случае при котором заряды находятся вне данной поверхности, равен нулю.

В том случае, когда можно не учитывать дискретность зарядов используют понятие объемной плотности заряда ($\rho $), если заряд распределен по объему. Она определена как:

\[\rho =\frac{dq}{dV}\left(5\right),\]

где $dq$ - заряд, который можно считать точечным, $dV$ -- малый объем. (Относительно $dV$ необходимо сделать следующее замечание. Данный объем мал настолько, чтобы плотность заряда в нем можно было считать постоянной, но достаточно велик, чтобы не начала проявляться дискретность заряда). Суммарный заряд, который находится в полости, можно найти как:

\[\sum\limits^N_{i=1}{q_i\ }=\int\limits_V{\rho dV}\left(6\right).\]

В таком случае формулу (4) перепишем в виде:

\[\oint\limits_S{\overrightarrow{E}d\overrightarrow{S}}=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(7\right).\]

Теорема Остроградского - Гаусса в дифференциальной форме

Используя формулу Остроградского - Гаусса для любого поля векторной природы, с помощью которой осуществляется переход от интегрирования по замкнутой поверхности к интегрированию по объему:

\[\oint\limits_S{\overrightarrow{a}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{a}dV\ \left(8\right),\]

где $\overrightarrow{a}-$вектор поля (в нашем случае это $\overrightarrow{E}$), $div\overrightarrow{a}=\overrightarrow{\nabla }\overrightarrow{a}=\frac{\partial a_x}{\partial x}+\frac{\partial a_y}{\partial y}+\frac{\partial a_z}{\partial z}$ -- дивергенция вектора $\overrightarrow{a}$ в точке с координатами (x,y,z), которая отображает векторное поле на скалярное. $\overrightarrow{\nabla }=\frac{\partial }{\partial x}\overrightarrow{i}+\frac{\partial }{\partial y}\overrightarrow{j}+\frac{\partial }{\partial z}\overrightarrow{k}$ - оператор набла. (В нашем случае будет $div\overrightarrow{E}=\overrightarrow{\nabla }\overrightarrow{E}=\frac{\partial E_x}{\partial x}+\frac{\partial E_y}{\partial y}+\frac{\partial E_z}{\partial z}$) -- дивергенция вектора напряженности. Следуя вышесказанному, формулу (6) перепишем как:

\[\oint\limits_S{\overrightarrow{E}\overrightarrow{dS}=\int\nolimits_V{div}}\overrightarrow{E}dV=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV}\left(9\right).\]

Равенства в уравнении (9) выполняются для любого объема, а это осуществимо только, если функции, которые находятся в подынтегральных выражениях, равны в каждой токе пространства, то есть мы можем записать, что:

Выражение (10) -- теорема Остроградского - Гаусса в дифференциальной форме. Трактовка ее такова: заряды являются источниками электрического поля. Если $div\overrightarrow{E}>0$, то в этих точках поля (заряды положительные) мы имеем источники поля, если $div\overrightarrow{E}

Задание: Заряд равномерно распределен по объему, в этом объеме выделена кубическая поверхность, со стороной b. Она вписана в сферу. Найдите отношение потоков вектора напряженности сквозь эти поверхности.

Согласно теореме Гаусса поток ($Ф_E$) вектора напряженности $\overrightarrow{E}$ через замкнутую поверхность при равномерном распределении заряда по объему равен:

\[Ф_E=\frac{1}{{\varepsilon }_0}Q=\frac{1}{{\varepsilon }_0}\int\limits_V{\rho dV=\frac{\rho }{{\varepsilon }_0}\int\limits_V{dV}=\frac{\rho V}{{\varepsilon }_0}}\left(1.1\right).\]

Следовательно, нам необходимо определить объемы куба и шара, если шар описать вокруг этого куба. Для начала, объем куба ($V_k$) если сторона его b равен:

Найдем объем шара ($V_{sh}$) по формуле:

где $D$ -- диаметр шара и (так как шар описан вокруг куба), главная диагональ куба. Следовательно, нам необходимо выразить диагональ куба через его сторону. Это легко сделать, если использовать теорему Пифагора. Для вычисления диагонали куба, например, (1,5) нам сначала необходимо найти диагональ квадрата (нижнего основания куба) (1,6). Длина диагонали (1,6) равна:

В таком случает длина диагонали (1,5) равна:

\[{D=D}_{15}=\sqrt{b^2+{(\sqrt{b^2+b^2\ \ \ })}^2}=b\sqrt{3}\ \left(1.5\right).\]

Подставим в (1.3) найденный диаметр шара, получим:

Теперь мы можем найти потоки вектора напряженности через поверхность куба, она равна:

\[Ф_{Ek}=\frac{\rho V_k}{{\varepsilon }_0}=\frac{\rho b^3}{{\varepsilon }_0}\left(1.7\right),\]

через поверхность шара:

\[Ф_{Esh}=\frac{\rho V_{sh}}{{\varepsilon }_0}=\frac{\rho }{{\varepsilon }_0}\frac{\sqrt{3}}{2}\pi b^3\ \left(1.8\right).\]

Найдем отношение $\frac{Ф_{Esh}}{Ф_{Ek}}$:

\[\frac{Ф_{Esh}}{Ф_{Ek}}=\frac{\frac{с}{\varepsilon_0}\frac{\sqrt{3}}{2} \pi b^3}{\frac{сb^3}{\varepsilon_0}}=\frac{\pi}{2}\sqrt{3}\ \approx 2,7\left(1.9\right).\]

Ответ: Поток через поверхность шара в 2,7 раза больше.

Задание: Докажите, что заряд проводника располагается на его поверхности.

Используем для доказательства теорему Гаусса. Выделим в проводнике замкнутую поверхность произвольной формы около поверхности проводника (рис.2).

Допустим, что заряды внутри проводника есть, запишем с теорему Остроградского - Гаусса для дивергенции поля имеем для любой точки поверхности S:

где $\rho -плотность\ $внутреннего заряда. Однако поля внутри проводника нет, то есть $\overrightarrow{E}=0$, следовательно, $div\overrightarrow{E}=0\to \rho =0$. Теорема Остроградского - Гаусса в дифференциальной форме локальна, то есть, она записана для точки поля, мы специальным образом точку не выбирали, следовательно, плотность заряда равна нулю в любой точке поля внутри проводника.

Строгий вывод теоремы Остроградского – Гаусса довольно сложен, мы сделаем ее вывод для частного случая, который достаточно убедительно поддается обобщению. Теорема Остроградского – Гаусса позволяет определить поток вектора напряженности от любого количества зарядов. Для начала определим поток вектора напряженности через шаровую поверхность, в центре которой будет располагаться точечный заряд.

Отсюда следует, что из каждого точечного заряда выходит поток вектора напряженности, который равен значению q/εε 0 . Из обобщения данного положения выводится теорема Остроградского – Гаусса для общего случая – полный поток вектора напряженности через замкнутую произвольной формы поверхность равен алгебраической сумме электрических зарядов, заключенных внутри этой поверхности, поделенной на абсолютную диэлектрическую проницаемость ε а = εε 0 , то есть:

Где: n – количество зарядов, q i – заряд, заточенный внутри поверхности.

В системе Гаусса данное уравнения будет иметь вид:

Для потока вектора электрического смещения N D (вектора индукции) можно получить аналогичную формулу:

То есть, поток индукции через замкнутую произвольную поверхность равен алгебраической сумме электрических зарядов, которые охватываются этой поверхностью.

Если взять какую-то замкнутую поверхность, которая не охватывает заряд q, то каждая линия напряженности (или индукции) будет пересекать ее дважды – один раз она войдет в поверхность, а другой раз выйдет из нее. Из – за этого явления алгебраическая сумма линий индукции, проходящих через замкнутую поверхность, количество которых определяет полный поток индукции N D через эту поверхность будет равна нулю (N D = 0).

Прежде чем рассмотреть несколько частных случаев применения теоремы Остроградского – Гаусса для определения напряженностей различных электростатических полей, введем понятие о плотности зарядов.

– это физическая величина, которая характеризует распределение заряда вдоль линии (нити) или тонкого цилиндрического тела и численно равная отношению заряда к длине элемента нити:

А при равномерном распределении заряда по всей длине линейная плотность:

В СИ единицей измерения линейной плотности заряда τ будет 1 Кл/м.

Если заряд dq распределен по какому-то объему dV, то очевидно, что объемная плотность заряда будет численно равна соотношению заряда к элементу объема:

А при равномерном распределении заряда:

В системе СИ измеряется в 1 Кл/м 3 .

В случаях, когда заряд dq распределяется по поверхности dS и глубина его проникновения пренебрежительно мала, то поверхностная плотность заряда будет определена соотношением:

А в случае если заряд q по площади S распределен равномерно, то:

В системе СИ поверхностная плотность измеряется в Кл/м 2 .

Давайте вычислим , которое создано равномерно заряженной сферической поверхностью.

Предположим, что сферическая поверхность имеет радиус R и равномерно распределенный заряд q, то есть поверхностная плотность σ в любой точке сферы будет одинакова.

Выберем точку А, которая находится от центра сферы на расстоянии r (рисунок ниже):

Через точку А мысленно проведем новую сферическую поверхность S, симметричную заряженной сфере.

В данном случае через поверхность S поток вектора напряженности будет равен:

По теореме Гаусса N E = q/εε 0 . Отсюда следует, что при r>R:

Если сравнить данное соотношение с формулой напряженности поля точечного заряда, можно сделать вывод, что вне заряженной сферы напряженность поля такова, как если бы весь имеющийся заряд сферы был сосредоточен в ее центре.

Для точек, которые находятся на поверхности заряженной сферы с имеющимся радиусом R, по аналогии с уравнением (7) можно записать:

Если провести через точку В, которая находится внутри сферической заряженной поверхности, сферу S / с радиусом r /

Теперь давайте попытаемся определить напряженность поля, созданного равномерно заряженной нитью (цилиндром) бесконечной длины .

Предположим, что полая цилиндрическая поверхность с определенным радиусом R заряжена с постоянной поверхностной плотностью σ. Проведем коаксильную поверхность цилиндрического типа с радиусом r>R.

Через эту поверхность поток вектора напряженности будет равен:

По теореме Гаусса:

Приравняв правые части этих уравнений получим:

Из формулы (4а) находим, что линейная плотность заряда цилиндра равна:

Использовав это равенство, найдем:

Теперь давайте определим напряженность поля, которое создается равномерно заряженной бесконечной плоскостью.

Если предположить, что данная плоскость имеет бесконечную протяженность и заряд на единицу плоскости равен σ. Из законов симметрии следует вывод, что поле направлено всюду перпендикулярно плоскости, и если не существует никаких других внешних зарядов, то одинаковыми по своей величине должны быть поля по обе стороны плоскости.

Если ограничить часть заряженной плоскости 1 воображаемым прямоугольным ящиком 2 (Гауссова поверхность) таким образом, чтобы ящик был рассечен пополам (рисунок ниже).

Обе грани ящика, которые имеют определенную площадь S, должны быть расположены параллельно заряженной плоскости. Вектору Е равен суммарный поток вектора напряженности, умноженному на площадь первой грани S, плюс поток вектора Е через противоположную грань. Через остальные грани поток напряженности будет равен нулю, так как их не пересекают линии напряженности.

Повторив предыдущие рассуждения и применив теорему Остроградского – Гаусса, получим следующее выражение:

Но Е = Е 1 = Е 2 . В таком случае напряженность поля бесконечной равномерной плоскости будет равна:

Координаты точки, в которой определяется напряженность поля, не входят в формулу (12). Отсюда следует вывод, что в бесконечной равномерно заряженной плоскости электростатическое поле будет однородным, а его напряженность в любой точке поля одинакова.

И, наконец, давайте определим напряженность поля, которое создается двумя бесконечными параллельными плоскостями, с одинаковыми плотностями и разноизменно заряженными.

Из рисунка выше видно, что между двумя бесконечными параллельными плоскостями, имеющими поверхностные плотности зарядов –σ и +σ, напряженность поля равна сумме напряженностей полей, которые создаются обеими пластинами, то есть:

Векторы Е вне пластин направлены противоположно друг другу и взаимно уничтожаются. Поэтому напряженность электрического поля в пространстве, которое окружает пластины, будет равно нулю (Е = 0).

ЛЕКЦИЯ № 7.ТЕОРЕМА ОСТРОГРАДСКОГО-ГАУСА ДЛЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

ВВЕДЕНИЕ

На данной лекции мы продолжаем знакомиться с важнейшими характеристиками электростатического поля.

Введение понятия электрической индукции связано, прежде всего, с удобством описания электростатического поля и упрощением решения многих задач электростатики, главным образом, связанных с электростатическим полем в диэлектриках.

Дело в том, что еще одна величина, характеризующая электростатическое поле, – поток вектора индукции электростатического поля через любую поверхность определяется только свободными зарядами, а не всеми зарядами внутри, объема, ограниченного данной поверхностью.

При дальнейшем изучении электрических и магнитных полей мы еще не раз встретимся с аналогичными понятиями - индукция магнитного поля, поток магнитной индукции. Физический смысл этих понятий конечно разный, но математическая природа у них, совершенно эквивалентна.

1. ПОТОК ВЕКТОРА ИНДУКЦИИ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ

Как известно, напряженность электростатического поля зависит от свойств ср еды: в однородной изотропной среде напряженность поля обратно пропорциональна диэлектрической проницаемости .

Поэтому при переходе из одной среды в другую напряженность электростатического поля претерпевает скачкообразные изменения, создавая тем самым неудобства при расчете электростатических полей. Именно поэтому оказалось необходимым помимо вектора напряженности характеризовать поле еще одной векторной величиной – вектором электрического смещения или вектором индукции электростатического поля.

Определение. Электрическим смещением (электрической индукцией) называется векторная физическая величина равная произведению абсолютной диэлектрической проницаемости среды на напряженность электрического поля.

, (1)

где величина называется абсолютной диэлектрической проницаемостью среды.

Из формулы (1) следует, что вектор электрической индукции и вектор напряженности электростатического поля для изотропных сред, т.е. сред, свойства которых одинаковы по всем направлениям, всегда коллинеарны , так какабсолютная диэлектрическая проницаемость – величина строго положительная .

Найдем индукцию электрического поля точечного заряда.

Рис.1

(2)

Из формулы (2) видно, что, действительно, величина не зависит от свойств ср еды. Величина одинакова во всех средах (вода, керосин и т.д.).

Размерность электрической индукции в системе СИ:

Для графического изображения электростатического поля можно использовать линии электрического смещения .

Определение. Линии индукции электрического поля - это воображаемые линии, касательные к которым в каждой точке совпадают с вектором индукции электрического поля в данной точке.

Рассмотрим электрическое поле, характеризуемое вектором электрического смещения . Пусть в этом поле находится некоторая элементарная плоская поверхность площадью - (рис.2).

Рис.2

Построим к поверхности единичную нормаль , направим ее "наружу". Затем введем вектор ориентированной площадки , равный произведению площади этой элементарной поверхности на вектор единичной нормали:

Очевидно, что и , так как .

Определение Элементарным потоком вектора электрической индукции через площадку dS называется скалярная физическая величина, равная скалярному произведению вектора на векторориентированной площадки .

где - угол между вектором индукции и нормалью к поверхности , - проекция вектора электрической индукции на направление нормали .

Полный поток вектора через любую поверхность равен сумме элементарных потоков через элементарные поверхности, на которые можно разбить данную поверхность произвольной формы, то есть:

(4)

Размерность потока электрической индукциив системе СИ – кулон:

.

Замечание.

1) Для замкнутых поверхностей S поток вектора через эту поверхность равен:

()

За положительное направление нормали принимается направление внешней нормали, т.е. нормали, направленной наружу области, охватываемой поверхностью.

В данной части лекции мы изучили новые физические величины, характеризующие электрическое поле – индукцию электрического поля и поток вектора индукции электрического поля. Вектор электрическойиндукции является вспомогательной величиной, но, тем не менее, играет важную роль в процессе изучения электрического поля. Аналогичные величины будут введены при изучении магнитного поля.

2. ТЕОРЕМА ОСТРОГРАДСКОГО-ГАУССА

Вычислить напряженность поля, создаваемого системой зарядов, можно, как известно, с помощью принципа суперпозиции электростатических полей. Но это в большинстве случаев связано с громоздкими вычислениями.

Эти расчеты можно значительно упростить, если использовать основную теорему электростатики, теорему Остроградского-Гаусса, определяющую поток вектора электрической индукции через любую замкнутую поверхность.

Теорема Остроградского-Гаусса формулируется следующим образом:

«Поток индукции электростатического поля через любую замкнутую поверхность равен алгебраической сумме зарядов, заключенных внутри этой поверхности».

Математически теорема Остроградского-Гаусса для электростатических полей записывается следующим образом:

= (5)

Замечания.

1) Поверхность обязательно должна быть замкнутой, форма поверхности не играет роли и может быть любой.

2) Если поверхность S не охватывает заряды , то поток электрической индукции через нее равен нулю (рис.3):

Рис.3

3) Если алгебраическая сумма зарядов равна 0, то и поток равен нулю.

Значение теоремы Остроградского-Гаусса огромно – она позволяет найти индукцию и напряженность электрического поля сложной конфигурации.

Алгоритм (схема) использования теоремы О c троградского-Гаусса при расчете напряженности электростатического поля, создаваемого произвольной конфигурацией зарядов, состоит из следующих пунктов:

1) Выбираем точку, в которой будем определять и

2) Через эту точку проводим замкнутую поверхность , охватывающую все заряды;

3) Вычисляем поток электрической индукции через эту поверхность по определению, то есть по формуле:

4) Считаем этот же поток, но по теореме Остроградского – Гаусса:

(5)

5) Приравниваем полученные в третьем и четвертом пункте выражения и находим величину электрической индукции в данной точке:

6) Зная электрическую индукцию , легко определить величину напряженности электростатического поля в данной точке :

Как уже говорилось выше, теорема Остроградского-Гаусса является одной из основных теорем электростатики, с помощью которой легко вычислить напряженность и электрическую индукцию электростатических полей различной конфигурации. Алгоритм применения теоремы Остроградского-Гаусса должен знать наизусть каждый студент.

3. ПРИМЕНЕНИЕ ТЕОРЕМЫ ОСТРОГРАДСКОГО-ГАУССА ДЛЯ РАСЧЕТА НАПРЯЖЕННОСТИ ЭЛЕКТРОСТАТИЧСЕКИХ ПОЛЕЙ

Часто при решении задач удобно считать, что заряды распределены в заряженном теле непрерывно – вдоль некоторой линии (например, в случае заряженного тонкого стержня), поверхности (например, в случае заряженной пластины), или объёма. Соответственно пользуются понятиями линейной, поверхностной и объёмной плотностей зарядов.

Объёмная плотность электрических зарядов это скалярная физическая величина равная отношению заряда тела к объему тела, по которому распределен заряд:

Если зарядраспределен равномерно по объему тела, то объемная плотность заряда есть постоянная величина и ее легко рассчитать по формуле:

Размерность объемной плотности зарядов определяется из указанных формул и в интернациональной системе единиц равна: .

Поверхностная плотность электрических зарядов определяется аналогичным образом – это скалярная физическая величина равная отношению заряда всей поверхности к площади этой поверхности:

Поверхностная плотность зарядов измеряется в системе СИ в кулонах, деленных на квадратный метр:

Линейной плотностью электрических зарядов называется скалярная физическая величина равная отношению заряда протяженного тела к длине этого тела:

Размерность линейной плотности зарядов в интернациональной системе единиц – кулон, деленный на метр:

3.1. Напряженность электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Так как сфера заряжена равномерно, то поверхностная плотность заряда есть постоянная величина:

Пусть радиус сферы нам известен и равен . Тогда из формулы, приведенной выше, можно легко выразить общий заряд всей сферы:

Будем считать,что сфера заряжена положительно. Благодаря равномерному распределению заряда по поверхности сферы поле, создаваемое этими зарядами, обладает сферической симметрией. Поэтому линии электрической индукции (и силовые линии напряженности электростатического поля) направлены радиально от сферы (рис.4).

Рис.4

В соответствии с приведенным выше алгоритмом применения теоремы Остроградского-Гаусса выполним следующие действия:

1. Выберем произвольную точку А , расположенную на расстоянии от центра сферы и определим напряженность электростатического поля в этой точке;

2. Проведем через точку замкнутую поверхность . Учитывая сферическую симметрию задачи, удобно построить сферу радиусом с центром, точке, где находится центр заряженной сферы;

3. Считаем поток электрической индукции через поверхность по определению:

так как задача обладает сферической симметрией, то величина вектора электрической индукции в любой точке, находящейся на одинаковом расстоянии от центра заряженной сферы будет постоянна, поэтому мы имеем право вынести эту величину из-под знака интеграла. Кроме того, угол – угол между вектором электрической индукции и вектором нормали к сферической поверхности в любой точке сферическойповерхности, по которой проводится интегрирование, равен нулю.

Интеграл вида равен площади поверхности, по которой проводится интегрирование, поэтому окончательно можно записать:

;

4. Считаем этот же поток, но по теореме Остроградского – Гаусса:

5. Приравниваем полученные в пунктах 3 и 4 результаты:

Или ,

и находим величину электрической индукции в точке А :

Или

6. Определяем напряженность электростатического поля в точке :

или

Замечания:

1) Если точка А находится внутри заряженной сферы, то есть , тоэлектрическая индукция и напряженность электростатического поля в такой точке тождественно равны нулю и так как внутри заряженной сферы зарядов нет и поток электрической индукции через любую замкнутую поверхность, расположенную внутри заряженной сферы будет равен нулю . Другими словами – внутри заряженной сферы электрическое пол отсутствует.

2) Если точка А находится на поверхности заряженной сферы, то есть , то электрическая индукция и напряженность электрического поля на поверхности заряженной сферы соответственно равны:

Или

Или

График зависимости напряженности электростатического поля от расстояния до центра сферы (Рис.5):

Рис. 5

3.2. Напряженность поля равномерно заряженной бесконечной плоскости

Пусть имеется равномерно заряженная бесконечная плоскость с постоянной поверхностной плотностью заряда (рис.6).

Рис. 6

Будем считать плоскость бесконечной, если расстояние от плоскости до точки, где определяется , много меньше линейных размеров плоскости. Линии электрического смещения , так же как и силовые линии вектора в этом случае направлены перпендикулярно плоскости и идут симметрично в обе стороны

Будем использовать теорему Остроградского-Гаусса по известному алгоритму:

1. Выберем точку на расстоянии от плоскости.

2. Проведём через эту точку замкнутую поверхность в виде цилиндра, ось которого перпендикулярна заряженной поверхности. Точка лежит на основании цилиндра.

3. Вычислим поток индукции через построенную цилиндрическую поверхность по определению.

,

где – поток индукции через боковую поверхность цилиндра, – поток индукции через основание цилиндра.

Поток индукции через боковую поверхность равен нулю, так как угол между нормалью к боковой поверхности и вектором индукции равен . Поток через основание цилиндра:

4. Вычислим поток индукции по теореме Остроградского–Гаусса.

,

где – электрический заряд, находящийся внутри построенной нами замкнутой поверхности – цилиндра.

5. Приравняем результаты, полученные в пунктах 3 и 4, и найдём :

, отсюда

6. Вычислим напряженность электрического поля, создаваемого равномерно заряженной бесконечной плоскостью:

.

Рис. 7

Таким образом, индукция и напряженность поля равномерно заряженной плоскости не зависят от расстояния до плоскости и постоянны в любой точке поля: поле заряженной поверхности однородно.

Для отрицательно заряженной поверхности результат будет таким же, только направление векторов и изменится на обратное. График зависимости для такого поля показан на рис. 7.

Из этих формул видно, что электрическое поле бесконечной равномерно заряженной плоскости является однородным и не зависит от расстояния.

Используя принцип суперпозиций для электростатического поля, легко можно получить выражения для напряженности и электрической индукции электрического поля плоского конденсатора:

Заключение

Теорема Остроградского-Гаусса была выведена математически для векторного поля любой природы русским математиком М.В. Остроградским, а затем независимо от него Гаусс получил эту теорему применительно к электростатическому полю.

При доказательстве этой теоремы Гаусс опирался на закон Кулона и поэтому теорема Остроградского-Гаусса для электростатического поля есть следствие закона Кулона.

По своей сути теорема Гаусса математически выражает тот факт, что именно электрические заряды и есть источники электростатического поля, поэтому теорема Гаусса является основной теоремой электростатики.

4. МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

ЗАДАЧА № 1. Двум изолированным металлическим концентрически расположенным сферам радиусами 5 сантиметров и 10 сантиметров сообщены соответственно заряды 10 нанокулон и 20 нанокулон . Пространство между сферами заполнено диэлектриком с диэлектрической проницаемостью . Определить напряженность электростатического поля и величину электрической индукции на расстоянии 2 сантиметра, 7 сантиметров и 12 сантиметров от центра обеих сфер.

ДАНО:


НАЙТИ:

РЕШЕНИЕ: данная задача решается с использованием теоремы Остроградского-Гаусса. Найдем электрическую индукцию и напряженность электростатического поля в точке, находящейся на расстоянии 2 сантиметра от общего центра данных сфер, для этого построим сферическую поверхность радиусом 2 сантиметра, центр которой совпадает с центром металлических сфер. После этого найдем поток электрической индукции через эту сферическую поверхность двумя способами – по теореме Остроградского-Гаусса и по определению потока электрической индукции . Первый способ дает тривиальное значение – поток электрической индукции должен быть равен нулю – , так как внутри сферической поверхности радиуса 2 сантиметра нет никакого электрического заряда. Второй способ дает следующий результат:

,

так как угол в любой точке сферической поверхности, через которую мы ищем поток электрической индукции. Кроме того, здесь мы учли, что интеграл по замкнутой поверхности равен площади сферической поверхности радиусом 2 сантиметра.

Приравняем два полученных результата: . Отсюда следует, что электрическая индукция равна нулю на расстоянии 2 сантиметра от центра металлических сфер и вообще в любой точке, находящейся внутри обеих сфер .Найдем теперь напряженность электростатического поля. Для этого используем определение электрической индукции . Из этого равенства следует, что . Таким образом, напряженность электростатического поля так же будет равна нулю на расстоянии 2 сантиметра от центра сфер и в любой точке внутри металлических заряженных сфер .

Перейдем к точке, находящейся между заряженными металлическими сферами на расстоянии 7 сантиметров от их общего центра. Будем действовать по тому же алгоритму. Сначала проведем сферическую поверхность радиуса 7 сантиметров, центр которой совпадает с центром металлических сфер. Затем посчитаем поток электрической индукции через эту поверхность двумя способами. Из теоремы Остроградского-Гаусса следует, что . Использование определения потока электрической индукции дает другой результат:

.

Здесь мы учли те же соображения, что были использованы в первом случае:

и

Приравняв эти выражения, получим:

.

Таким образом, электрическая индукция в точке, находящейся между заряженными сферами на расстоянии 7 сантиметров от их общего центра, зависит только от заряда внутренней сферы , внешняя сфера никак не влияет на электрическое поле, которое существует внутри нее.

Напряженность электростатического поля в интересующей нас точке будет равна

,

где – диэлектрическая проницаемость вещества, заполняющего пространство между заряженными сферами.

Проверим размерность полученных рабочих формул:

и

Размерность соответствует действительности, поэтому можно приступать к вычислению конечного результата:

,

Переходим к третьему этапу задачи. Для того чтобы найти значение электрической индукции и напряженности электростатического поля вне обеих заряженных сфер в точке, находящейся на расстоянии 12 сантиметров от их общего центра, проведем сферическую поверхность радиусом 12 сантиметров, центр которой совпадает с центром заряженных сфер.

Определим поток электрической индукции через эту поверхность двумя способами. Теорема Остроградского-Гаусса дает следующий результат:

Определение потока электрической индукции приводит к другому результату:

Левые части этих двух равенств одинаковы, значит, правые части этих равенств должны быть равны между собой, то есть: .

Выразим искомые величины:

и

Таким образом, в создании электрического поля вне заряженных сфер участвуют обе сферы. Так как пространство, окружающее внешнюю заряженную сферу, ничем не заполнено (является вакуумом), то .

Размерность этих формул можно не проверять, так как эта операция уже была проведена выше.

,

Знак минус дает нам информацию о направлении вектора электрической индукции и вектора напряженности электростатического поля в точке, находящейся на расстоянии 12 сантиметров от центра заряженных сфер. Действительно, в любой точке, лежащей вне заряженных сфер, вектор индукции и вектор напряженности электростатического поля будет направлен радиально к внешней заряженной сфере.

ЗАДАЧА № 2. Две бесконечно протяженные равномерно заряженные пластины находятся на некотором расстоянии друг от друга. Напряженность электростатического поля между пластинами 3000 вольт на метр, а вне пластин – 1000 вольт на метр. Найти поверхностную плотность заряда на каждой пластине.

ДАНО:

НАЙТИ:

РЕШЕНИЕ: при решении данной задачи мы воспользуемся результатами применения теоремы Остроградского-Гаусса для расчета напряженности и электрической индукции электростатического поля, создаваемой бесконечной равномерно заряженной плоскостью. Оказывается электростатическое поле, существующее около такой плоскости, является по своему характеру однородным, силовые линии такого электростатического поля направлены перпендикулярно плоскости. Если заряд на плоскости положительный, то силовые линии направлены от плоскости в обе стороны, если же заряд на плоскости отрицательный, то силовые линии направлены по обе стороны к плоскости. Величина напряженности в любой точке пространства около бесконечной равномерно заряженной плоскости равна .

Тот факт, что напряженность электростатического поля между пластинами больше, чем напряженность поля вне пластин говорит о том, что пластины заряжены разноименными зарядами – одна положительно, другая– отрицательно. Так как вне пластин вектора направлены в противоположные стороны , а между пластинами – в одну сторону, то есть .

Рис. 2

Если пластины зарядить одноименными зарядами, допустим положительно, будет, наоборот – между пластинами напряженность электростатического поля будет меньше, чем напряженность вне пластин, так как

ЗАДАЧА № 3. С какой силой действует электрическое поле плоского конденсатора на находящийся в нем электрический заряд 1 нанокулон ? Найти силу взаимодействия пластин конденсатора. Поверхностная плотность заряда на обкладках конденсатора равна 0,1 нанокулон на квадратный метр, а площадь пластин конденсатора равна 100 квадратных сантиметра.

ДАНО:

НАЙТИ:

РЕШЕНИЕ: электростатическое поле внутри плоского конденсатора складывается из электрического поля, создаваемого положительно заряженной пластиной и отрицательно заряженной пластиной. Напряженность результирующего поля будет равна векторной сумме напряженностей электрического поля, создаваемого одной и второй пластиной:

Величина напряженности бесконечной равномерно заряженной пластины может быть найдена с помощью теоремы Остроградского-Гаусса. Как известно, ее величина равна:

Суммируя все вышесказанное, можно найти напряженность электростатического поля внутри плоского конденсатора :

Этот результат говорит нам о том, что электрическое поле внутри плоского конденсатора является однородным.

Если поместить внутрь плоского конденсатора заряженную частицу, то она будет находиться в электростатическом поле, которое будет действовать на нее с определенной силой:

Проверим размерность полученной рабочей формулы:


Размерность правильная, так как сила действительно измеряется в ньютонах.

Математические вычисления дают следующий результат:

Силу взаимодействия, а именно силу притяжения пластин плоского конденсатора, можно найти следующим образом: рассмотрим одну заряженную пластину конденсатора, находящуюся в электростатическом поле, создаваемом другой заряженной пластиной. Величина заряда всей пластины конденсатора равна , где – площадь одной пластины плоского конденсатора. Напряженность электростатического поля, в котором находится эта пластина конденсатора, равна . Следовательно, сила, которая будет действовать на одну пластину конденсатора со стороны электростатического поля, создаваемого другой пластиной, будет описываться следующей формулой:

Итак, мы ответили на второй вопрос задачи – нашли силу взаимодействия (силу, с которой притягиваются) пластины плоского конденсатора.

Проверим размерность этой формулы:


Размерность соответствует действительности, приступим к математическим вычислениям:

Электростатическое поле наглядно можно изобразить с помощью силовых линий (линий напряженности). Силовыми линиями называют кривые, касательные к которым в каждой точке совпадают с вектором напряженности Е .

Силовые линии являются условным понятием и реально не существуют. Силовые линии одиночного отрицательного и одиночного положительного зарядов изображены на рис. 5 - это радиальные прямые, выходящие от положительного заряда или идущие к отрицательному заряду.

Если густота и направление силовых линий по всему объему поля сохраняются неизменными, такое электростатическое поле считается однородным (выделение">число линий должно быть численно равно напряженности поля Е .

Число силовых линий пометка">dS, перпендикулярную к ним, определяет поток вектора напряженности электростатического поля:

формула" src="http://hi-edu.ru/e-books/xbook785/files/17-1.gif" border="0" align="absmiddle" alt=" - проекция вектора Е на направление нормали n к площадке dS (рис. 6 ).

Соответственно поток вектора Е сквозь произвольную замкнутую поверхность S

пометка">S не только величина, но и знак потока могут меняться:

1) при формула" src="http://hi-edu.ru/e-books/xbook785/files/17-4.gif" border="0" align="absmiddle" alt="

3) при выделение">Найдем поток вектора Е сквозь сферическую поверхность S, в центре которой находится точечный заряд q.

В этом случае пометка">Е и n во всех точках сферической поверхности совпадают.

С учетом напряженности поля точечного заряда формула" src="http://hi-edu.ru/e-books/xbook785/files/18-2.gif" border="0" align="absmiddle" alt=" получим

формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=" - алгебраическая величина, зависящая от знака заряда. Например, при q <0 линии Е направлены к заряду и противоположны направлению внешней нормали n ..gif" border="0" align="absmiddle" alt=" вокруг заряда q имеет произвольную форму. Очевидно, что поверхность пометка">Е, что и поверхность S. Следовательно, поток вектора Е сквозь произвольную поверхность формула" src="http://hi-edu.ru/e-books/xbook785/files/Fe.gif" border="0" align="absmiddle" alt=".

Если заряд будет находиться вне замкнутой поверхности, то, очевидно, сколько линий войдет в замкнутую область, столько же из нее и выйдет. В результате поток вектора Е будет равен нулю.

Если электрическое поле создается системой точечных зарядов формула" src="http://hi-edu.ru/e-books/xbook785/files/18-4.gif" border="0" align="absmiddle" alt="

Эта формула является математическим выражением теоремы Гаусса: поток вектора напряженности Е электрического поля в вакууме через произвольную замкнутую поверхность равен алгебраической сумме зарядов, которые она охватывает, деленной на формула" src="http://hi-edu.ru/e-books/xbook785/files/18-6.gif" border="0" align="absmiddle" alt="

Для полноты описания представим теорему Гаусса еще и в локальной форме, опираясь не на интегральные соотношения, а на параметры поля в данной точке пространства. Для этого удобно использовать дифференциальный оператор - дивергенцию вектора, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/nabla.gif" border="0" align="absmiddle" alt=" («набла») -

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-1.gif" border="0" align="absmiddle" alt="

В математическом анализе известна теорема Гаусса-Остроградского: поток вектора через замкнутую поверхность равен интегралу от его дивергенции по объему, ограниченному этой поверхностью, -

формула" src="http://hi-edu.ru/e-books/xbook785/files/ro.gif" border="0" align="absmiddle" alt=":

формула" src="http://hi-edu.ru/e-books/xbook785/files/19-4.gif" border="0" align="absmiddle" alt="

Это выражение и есть теорема Гаусса в локальной (дифференциальной) форме.

Теорема Гаусса (2.2) позволяет определять напряженности различных электростатических полей. Рассмотрим несколько примеров применения теоремы Гаусса.

1. Вычислим Е электростатического поля, создаваемого равномерно заряженной сферической поверхностью.

Предположим, что сферическая поверхность радиуса R несет на себе равномерно распределенный заряд q, т.е. поверхностная плотность заряда всюду одинакова пометка">r >R от центра сферы мысленно построим новую сферическую поверхность S, симметричную заряженной сфере. В соответствии с теоремой Гаусса

формула" src="http://hi-edu.ru/e-books/xbook785/files/20-1.gif" border="0" align="absmiddle" alt="

Для точек, находящихся на поверхности заряженной сферы радиуса R, по аналогии можно записать:

выделение">внутри заряженной сферы, не содержит внутри себя электрических зарядов, поэтому поток пометка">Е = 0.