Физические свойства полупроводников Полупроводники - материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры. Электрические свойства веществ Проводники Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au, Ag, Cu, Al, Fe … Полупроводники Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge, Se, In, As Диэлектрики Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага …

Физические свойства полупроводников Проводимость полупроводников зависит от температуры. В отличие от проводников, сопротивление которых возрастает с ростом температуры, сопротивление полупроводников при нагревании уменьшается. Вблизи абсолютного нуля полупроводники имеют свойства диэлектриков. R (Ом) металл R 0 полупроводник t (0 C)

Собственная проводимость полупроводников При обычных условиях (невысоких температурах) в полупроводниках отсутствуют свободные заряженные частицы, поэтому полупроводник не проводит электрический ток. - Si Si - - Si

«Дырка» При нагревании кинетическая энергия электронов увеличивается и самые быстрые из них покидают свою орбиту. Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. В этом месте образуется условный положительный заряд, называемый «дыркой» . Si + Si - свободный электрон Si - + - Si дырка - + Si

Собственная проводимость полупроводников Валентный электрон соседнего атома, притягиваясь к дырке, может перескочить в нее (рекомбинировать). При этом на его прежнем месте образуется новая «дырка» , которая затем может аналогично перемещаться по кристаллу.

Собственная проводимость полупроводников Если напряженность электрического поля в образце равна нулю, то движение освободившихся электронов и «дырок» происходит беспорядочно и поэтому не создаёт электрического тока. Под воздействием электрического поля электроны и дырки начинают упорядоченное (встречное) движение, образуя электрический ток. Проводимость при этих условиях называют собственной проводимостью полупроводников. При этом движение электронов создаёт электронную проводимость, а движение дырок – дырочную проводимость.

Примесная проводимость полупроводников Дозированное введение в чистый проводник примесей позволяет целенаправленно изменять его проводимость. Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси (легируют) , которые бывают донорные и акцепторные примеси Акцепторные Донорные Полупроводники p-типа Полупроводники n-типа

Электронные полупроводники (nтипа) происходит от В четырехвалентный полупроводник Термин «n-тип» (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). При легировании 4 – валентного кремния (Si) 5 – валентным мышьяком (As), один из 5 электронов мышьяка становится свободным. В данном случае перенос заряда осуществляется в основном электронами, т. к. их концентрация больше чем дырок. Такая проводимость называется электронной. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными. Проводимость N-полупроводников приблизительно равна: - Si Si - As - Si -

Дырочные полупроводники (р-типа) Термин «p-тип» происходит от слова «positive» , обозначающего положительный заряд основных носителей. В четырехвалентный полупроводник (например, в кремний) добавляют атомы трехвалентного элемента (например, индия). Примеси, которые добавляют в этом случае, называются акцепторными. Если кремний легировать трехвалентным индием, то для образования связей с кремнием у индия не хватает одного электрона, т. е. образуется дополнительная дырка. В т аком полупроводнике основными носителями заряда являются дырки, а проводимость называется дырочной. Проводимость P-полупроводников приблизительно равна: - Si Si - In + - Si

Прямое включение р + + + n + + - - _ - Ток через p – n переход осуществляется основными носителями заряда (дырки Сопротивление перехода мало, ток велик. двигаются вправо, электроны – влево)

Обратное включение р _ + + n + + - - + - Запирающий слой Основные носители заряда не проходят через p – n переход. Сопротивление перехода велико, ток практически отсутствует.

Диод Полупроводниковый диод - полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода. Впервые диод изобрел Джон Флемминг в 1904 году.

Типы и применение диодов Диоды применяются в: преобразовании переменного тока в постоянный детектировании электрических сигналов защите разных устройств от неправильной полярности включения коммутации высокочастотных сигналов стабилизации тока и напряжения передачи и приеме сигналов

Транзистор электронный прибор из полупроводникового материала, обычно с тремя выводами, позволяющий входным сигналам управлять током в электрической цепи. Обычно используется для усиления, генерирования и преобразования электрических сигналов. В 1947 году Уильям Шокли, Джон Бардин и Уолтер Браттейн в лабораториях Bell Labs впервые создали действующий биполярный транзистор.

Биполярный транзистор трёхэлектродный полупроводниковый прибор, один из типов транзистора. По этому способу чередования различают npn и pnp транзисторы (n (negative) - электронный тип примесной проводимости, p (positive) - дырочный). В биполярном транзисторе, в отличие от других разновидностей, основными носителями являются и электроны, и дырки. Биполярный точечный транзистор был изобретен в 1947 году, в течение последующих лет он зарекомендовал себя как основной элемент для изготовления интегральных микросхем.

Полевой транзистор - полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля, создаваемого входным сигналом. Протекание в Полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака. Полевой транзистор условно делят на 2 группы: с управляющим р-n-переходом или переходом металл - полупроводник с управлением посредством изолированного электрода (затвора)

Природа электрического тока в полупроводниках. Собственная и примесная проводимость.

Полупроводники - это вещества, удельное сопротивление которых убывает с повышением температуры, наличием примесей, изменением освещенности. По этим свойствам они разительно отличаются от металлов. Обычно к полупроводникам относятся кристаллы, в которых для освобождения электрона требуется энергия не более 1,5-2 эВ. Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. Природа этой связи позволяет объяснить указанные выше характерные свойства. При нагревании полупроводников их атомы ионизируются. Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов в кристаллической решетке приводит к образованию положительного иона. Этот ион может нейтрализоваться, захватив электрон. Далее, в результате переходов электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном - «дырки». Внешне этот процесс хаотического перемещения воспринимается как перемещение положительного заряда. При помещении кристалла в электрическое поле возникает упорядоченное движение «дырок» - дырочный ток проводимости. В идеальном кристалле ток создается равным количеством электронов и «дырок». Такой тип проводимости называют собственной проводимостью полупроводников. При повышении температуры (или освещенности) собственная проводимость проводников увеличивается.
На проводимость полупроводников большое влияние оказывают примеси. Примеси бывают донорные и акцепторные. Допорная примесь - это примесь с большей валентностью. При добавлении донорной примеси в полупроводнике образуются липшие электроны. Проводимость станет электронной, а полупроводник называют полупроводником n-типа. Например, для кремния с валентностью n - 4 донорной примесью является мышьяк с валентностью n = 5. Каждый атом примеси мышьяка приведет к образованию одного электрона проводимости.
Акцепторная примесь - это примесь с меньшей валентностью. При добавлении такой примеси в полупроводнике образуется лишнее количество «дырок». Проводимость будет «дырочной», а полупроводник называют полупроводником р-типа. Например, для кремния акцепторной примесью является индий с валентностью п = 3. Каждый атом индия приведет к образованию лишней «дырки».
Принцип действия большинства полупроводниковых приборов основан на свойствах р-n-перехода.

Полупроводниками называют вещества, занимающие в отношении электропроводности промежуточное положение между хорошими проводниками и хорошими изоляторами (диэлектриками).

Полупроводниками являются и химические элементы (германий Ge, кремний Si, селен Se, теллур Te), и соединения химических элементов (PbS, CdS, и др.).

Природа носителей тока в различных полупроводниках различна. В некоторых из них носителями зарядов являются ионы; в других носителями зарядов являются электроны .

Собственная проводимость полупроводников

Существует два вида собственной проводимости полупроводников: электронная проводимость и дырочная проводимость полупроводников.

1. Электронная проводимость полупроводников.

Электронная проводимость осуществляется направленным перемещением в межатомном пространстве свободных электронов, покинувших валентную оболочку атома в результате внешних воздействий.

2. Дырочная проводимость полупроводников.

Дырочная проводимость осуществляется при направленном перемещении валентных электронов на вакантные места в парно-электронных связях - дырки. Валентный электрон нейтрального атома, находящегося в непосредственной близости к положительному иону (дырке) притягиваясь к дырке, перескакивает в неё. При этом на месте нейтрального атома образуется положительный ион (дырка), а на месте положительного иона (дырки) образуется нейтральный атом.

В идеально чистом полупроводнике без каких - либо чужеродных примесей каждому свободному электрону соответствует образование одной дырки, т.е. число участвующих в создании тока электронов и дырок одинаково.

Проводимость, при которой возникает одинаковое число носителей заряда (электронов и дырок), называется собственной проводимостью полупроводников.

Собственная проводимость полупроводников обычно невелика, так как мало число свободных электронов. Малейшие следы примесей коренным образом меняют свойства полупроводников.

Электрическая проводимость полупроводников при наличии примесей

Примесями в полупроводнике считают атомы посторонних химических элементов, не содержащиеся в основном полупроводнике.

Примесная проводимость - это проводимость полупроводников, обусловленная внесением в их кристаллические решётки примесей.

В одних случаях влияние примесей проявляется в том, что «дырочный» механизм проводимости становится практически невозможным, и ток в полупроводнике осуществляется в основном движением свободных электронов. Такие полупроводники называются электронными полупроводниками или полупроводниками n - типа (от латинского слова negativus - отрицательный). Основными носителями заряда являются электроны, а не основными - дырки. Полупроводники n - типа - это полупроводники с донорными примесями.


1. Донорные примеси.

Донорными называют примеси, легко отдающие электроны, и, следовательно, увеличивающие число свободных электронов. Донорные примеси поставляют электроны проводимости без возникновения такого же числа дырок.

Типичным примером донорной примеси в четырёхвалентном германии Ge являются пятивалентные атомы мышьяка As.

В других случаях практически невозможным становится движение свободных электронов, и ток осуществляется только движением дырок. Эти полупроводники называются дырочными полупроводниками или полупроводниками p - типа (от латинского слова positivus - положительный). Основными носителями заряда являются дырки, а не основными - электроны. . Полупроводники р - типа - это полу-проводники с акцепторными примесями.

Акцепторными называют примеси в которых для образования нормальных парноэлектронных связей недостаёт электронов.

Примером акцепторной примеси в германии Ge являются трёхвалентные атомы галлия Ga

Электрический ток через контакт полупроводников р- типа и n- типа p-n переход - это контактный слой двух примесных полупроводников p-типа и n-типа; p-n переход является границей, разделяющей области с дырочной (p) проводимостью и электронной (n) проводимостью в одном и том же монокристалле.

Прямой p-n переход

Если n-полупроводник подключён к отрицательному полюсу источника питания, а положительный полюс источника питания соединён с р-полупроводником, то под действием электрического поля электроны в n-полупроводнике и дырки в р-полупроводнике будут двигаться навстречу друг другу к границе раздела полупроводников. Электроны, переходя границу, «заполняют» дырки, ток через р-n-переход осуществляется основными носителями заряда. Вследствие этого проводимость всего образца возрастает. При таком прямом (пропускном) направлении внешнего электрического поля толщина запирающего слоя и его сопротивление уменьшаются.

В этом направлении ток проходит через границу двух полупроводников.


Обратный р-n-переход

Если n-полупроводник соединён с положительным полюсом источника питания, а р-полупроводник соединён с отрицательным полюсом источника питания, то электроны в n-полупроводнике и дырки в р-полупроводнике под действием электрического поля будут перемещаться от границы раздела в противоположные стороны, ток через р-n-переход осуществляется неосновными носителями заряда. Это приводит к утолщению запирающего слоя и увеличению его сопротивления. Вследствие этого проводимость образца оказывается незначительной, а сопротивление - большим.

Образуется так называемый запирающий слой. При таком направлении внешнего поля электрический ток через контакт р- и n-полупроводников практически не проходит.

Таким образом электронно-дырочный переход обладает одно-сторонней проводимостью.

Зависимость силы тока от напряжения - вольт - амперная характеристика р-n перехода изображена на рисунке (вольт - амперная характеристика прямого р-n перехода изображена сплошной линией, вольт - амперная характеристика обратного р-n перехода изображена пунктирной линией).

Полупроводниковые приборы:

Полупроводниковый диод - для выпрямления переменного тока, в нем используют один р - n - переход с разными сопротивлениями: в прямом направлении сопротивление р - n - перехода значительно меньше, чем в обратном.

Фоторезисторы - для регистрации и измерения слабых световых потоков. С их помощью определяют качество поверхностей, контролируют размеры изделий.

Термисторы - для дистанционного измерения температуры, противопожарной сигнализации.

Полупроводник - это вещество, у которого удельное сопротивление может изменяться в широких пределах и очень быстро убывает с повышением температуры., а это значит, что электрическая проводимость (1/R) увеличивается.
- наблюдается у кремния, германия, селена и у некоторых соединений.

Механизм проводимости у полупроводников

Кристаллы полупроводников имеют атомную кристаллическую решетку, где внешние электроны связаны с соседними атомами ковалентными связями.

При низких температурах у чистых полупроводников свободных электронов нет и он ведет себя как диэлектрик.

Полупроводники чистые (без примесей)

Если полупроводник чистый(без примесей), то он обладает собственной проводимостью, которая невелика.

Собственная проводимость бывает двух видов:

1 электронная (проводимость "n " - типа)

При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны - сопротивление уменьшается.
Свободные электроны перемещаются противоположно вектору напряженности эл.поля.
Электронная проводимость полупроводников обусловлена наличием свободных электронов.

2. дырочная (проводимость " p"- типа)

При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном - "дырка".
Она может перемещаться по всему кристаллу, т.к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.
Перемещение дырки происходит в направлении вектора напряженности электрического поля.

Кроме нагревания, разрыв ковалентных связей и возникновение собственной проводимости полупроводников могут быть вызваны освещением (фотопроводимость) и действием сильных электрических полей

Общая проводимость чистого полупроводника складывается из проводимостей "p" и "n" -типов
и называется электронно-дырочной проводимостью.


Полупроводники при наличии примесей

У них существует собственная + примесная проводимость
Наличие примесей сильно увеличивает проводимость.
При изменении концентрации примесей изменяется число носителей эл.тока - электронов и дырок.
Возможность управления током лежит в основе широкого применения полупроводников.

Существуют:

1) донорные примеси (отдающие)

Являются дополнительными поставщиками электронов в кристаллы полупроводника, легко отдают электроны и увеличивают число свободных электронов в полупроводнике.
Это проводники " n " - типа , т.е. полупроводники с донорными примесями, где основной носитель заряда - электроны, а неосновной - дырки.
Такой полупроводник обладает электронной примесной проводимостью.

Например - мышьяк.

2. акцепторные примеси (принимающие)

Создают "дырки", забирая в себя электроны.
Это полупроводники " p "- типа, т.е. полупроводники с акцепторными примесями, где основной носитель заряда - дырки, а неосновной - электроны.
Такой полупроводник обладает дырочной примесной проводимостью.

Например - индий.


Электрические свойства "p-n" перехода

"p-n" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот).

В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой.Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника.

Внешнее электрическое поле влияет на сопротивление запирающего слоя.
При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников.
Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются.

Пропускной режим р-n перехода:

При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет.
Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается.

Запирающий режим р-n перехода.

На этом уроке мы рассмотрим такую среду прохождения электрического тока, как полупроводники. Мы рассмотрим принцип их проводимости, зависимость этой проводимости от температуры и наличия примесей, рассмотрим такое понятие, как p-n переход и основные полупроводниковые приборы.

Если же совершить прямое подключение, то внешнее поле нейтрализует запирающее, и ток будет совершаться основными носителями заряда (рис. 9).

Рис. 9. p-n переход при прямом подключении ()

При этом ток неосновных носителей ничтожно мал, его практически нет. Поэтому p-n переход обеспечивает одностороннюю проводимость электрического тока.

Рис. 10. Атомная структура кремния при увеличении температуры

Проводимость полупроводников является электронно-дырочной, и такая проводимость называется собственной проводимостью. И в отличие от проводниковых металлов при увеличении температуры как раз увеличивается количество свободных зарядов (в первом случае оно не меняется), поэтому проводимость полупроводников растет с ростом температуры, а сопротивление уменьшается (рис. 10).

Очень важным вопросом в изучении полупроводников является наличие примесей в них. И в случае наличия примесей следует говорить уже о примесной проводимости.

Полупроводниковые приборы

Малые размеры и очень большое качество пропускаемых сигналов сделали полупроводниковые приборы очень распространенными в современной электронной технике. В состав таких приборов может входить не только вышеупомянутый кремний с примесями, но и, например, германий.

Одним из таких приборов является диод - прибор, способный пропускать ток в одном направлении и препятствовать его прохождению в другом. Он получается вживлением в полупроводниковый кристалл p- или n-типа полупроводника другого типа (рис. 11).

Рис. 11. Обозначение диода на схеме и схема его устройства соответственно

Другим прибором, теперь уже с двумя p-n переходами, называется транзистор. Он служит не только для выбора направления пропускания тока, но и для его преобразования (рис. 12).

Рис. 12. Схема строения транзистора и его обозначение на электрической схеме соответственно ()

Следует отметить, что в современных микросхемах используется множество комбинаций диодов, транзисторов и других электрических приборов.

На следующем уроке мы рассмотрим распространение электрического тока в вакууме.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. - М.: 2010.
  1. Принципы действия устройств ().
  2. Энциклопедия Физики и Техники ().

Домашнее задание

  1. Вследствие чего в полупроводнике появляются электроны проводимости?
  2. Что такое собственная проводимость полупроводника?
  3. Как зависит проводимость полупроводника от температуры?
  4. Чем отличается донорная примесь от акцепторной?
  5. *Какую проводимость имеет кремний с примесью а) галлия, б) индия, в) фосфора, г) сурьмы?