Параллельность плоскостей является понятием, впервые появившимся в эвклидовой геометрии более двух тысяч лет назад.

Основные характеристики классической геометрии

Рождение этой научной дисциплины связано с известнейшим трудом древнегреческого мыслителя Эвклида, написавшего в третьем веке до нашей эры памфлет «Начала». Разделенные на тринадцать книг, «Начала» являлись высшим достижением всей античной математики и излагали фундаментальные постулаты, связанные со свойствами плоских фигур.

Классическое условие параллельности плоскостей было сформулировано следующим образом: две плоскости могут назваться параллельными, если они между собой не имеют общих точек. Об этом гласил пятый постулат эвклидового труда.

Свойства параллельных плоскостей

В эвклидовой геометрии их выделяют, как правило, пять:

  • Свойство первое (описывает параллельность плоскостей и их единственность). Через одну точку, которая лежит вне конкретной данной плоскости, мы можем провести одну и только одну параллельную ей плоскость
  • Свойство третье (иными словами оно называется свойством прямой, пересекающей параллельность плоскостей). Если отдельно взятая прямая линия пересекает одну из этих параллельных плоскостей, то она пересечет и другую.
  • Свойство четвертое (свойство прямых линий, высеченных на плоскостях, параллельных друг другу). Когда две параллельные плоскости пересекаются третьей (под любым углом), линии их пересечения также являются параллельными
  • Свойство пятое (свойство, описывающее отрезки разных параллельных прямых, которые заключены между плоскостями, параллельными друг другу). Отрезки тех параллельных прямых, которые заключены между двумя параллельными плоскостями, обязательно равны.

Параллельность плоскостей в неэвклидовых геометриях

Такими подходами являются в частности геометрия Лобачевского и Римана. Если геометрия Эвклида реализовывалась на плоских пространствах, то у Лобачевского в отрицательно искривленных пространствах (выгнутых попросту говоря), а у Римана она обретает свою реализацию в положительно искривленных пространствах (иными словами - сферах). Существует весьма распространенное стереотипное мнение, что у Лобачевского параллельные плоскости (и линии тоже) пересекаются.

Однако это неверно. Действительно рождение гиперболической геометрии было связано с доказательством пятого постулата Эвклида и изменением взглядов на него, однако само определение параллельных плоскостей и прямых подразумевает, что они не могут пересечься ни у Лобачевского, ни у Римана, в каких бы пространствах они ни реализовывались. А изменение взглядов и формулировок заключалось в следующем. На смену постулату о том, что лишь одну параллельную плоскость можно провести через точку, не лежащую на данной плоскости, пришла другая формулировка: через точку, которая не лежит на данной конкретной плоскости, могут проходить две, по крайней мере, прямые, которые лежат в одной плоскости с данной и не пересекают ее.

На этом уроке мы рассмотрим три свойства параллельных плоскостей: о пересечении двух параллельных плоскостей третьей плоскостью; о параллельных отрезках, заключенных между параллельными плоскостями; и о рассечении сторон угла параллельными плоскостями. Далее решим несколько задач с использованием этих свойств.

Тема: Параллельность прямых и плоскостей

Урок: Свойства параллельных плоскостей

Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.

Доказательство

Пусть даны параллельные плоскости и и плоскость , которая пересекает плоскости и по прямым а и b соответственно (Рис. 1.).

Прямые а и b лежат в одной плоскости, а именно в плоскости γ. Докажем, что прямые а и b не пересекаются.

Если бы прямые а и b пересекались, то есть имели бы общую точку, то эта общая точка принадлежала бы двум плоскостям и , и , что невозможно, так как они параллельны по условию.

Итак, прямые а и b параллельны, что и требовалось доказать.

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

Доказательство

Пусть даны параллельные плоскости и и параллельные прямые АВ и С D , которые пересекают эти плоскости (Рис. 2.). Докажем, что отрезки АВ и С D равны.

Две параллельные прямые АВ и С D образуют единственную плоскость γ, γ = АВ D С . Плоскость γ пересекает параллельные плоскости и по параллельным прямым (по первому свойству). Значит, прямые АС и В D параллельны.

Прямые АВ и С D также параллельны (по условию). Значит, четырехугольник АВ D С - параллелограмм, так как его противоположные стороны попарно параллельны.

Из свойств параллелограмма следует, что отрезки АВ и С D равны, что и требовалось доказать.

Параллельные плоскости рассекают стороны угла на пропорциональные части.

Доказательство

Пусть нам даны параллельные плоскости и, которые рассекают стороны угла А (Рис. 3.). Нужно доказать, что .

Параллельные плоскости и рассечены плоскостью угла А . Назовем линию пересечения плоскости угла А и плоскости - ВС, а линию пересечения плоскости угла А и плоскости - В 1 С 1 . По первому свойству, линии пересечения ВС и В 1 С 1 параллельны.

Значит, треугольники АВС и АВ 1 С 1 подобны. Получаем:

3. Математический сайт Цегельного Виталия Станиславовича ()

4. Фестиваль педагогических идей "Открытый урок" ()

1. Точка О - общая середина каждого из отрезков АА 1 , ВВ 1 , СС 1 , которые не лежат в одной плоскости. Докажите, что плоскости АВС и А 1 В 1 С 1 параллельны.

2. Докажите, что через две скрещивающиеся прямые можно провести параллельные плоскости.

3. Докажите, что прямая, пересекающая одну из двух параллельных плоскостей, пересекает и вторую.

4. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил.

Задания 6, 8, 9 стр. 29

Параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
Доказательство. Пусть a и b - данные плоскости, а 1 и а 2 – прямые в плоскости a , пересекающиеся в точке А , b 1 и b 2 соответственно параллельные им прямые в плоскости b . Допустим, что плоскости a и b не параллельны, то есть они пересекаются по некоторой прямой с . Прямая а 1 параллельна прямой b 1 , значит она параллельна и самой плоскости b (признак параллельности прямой и плоскости). Прямая а 2 параллельна прямой b 2 , значит она параллельна и самой плоскости b (признак параллельности прямой и плоскости). Прямая с принадлежит плоскости a , значит хотя бы одна из прямых а 1 или а 2 пересекает прямую с, то есть имеет с ней общую точку. Но прямая с также принадлежит и плоскости b , значит, пересекая прямую с, прямая а 1 или а 2 пересекает плоскость b , чего быть не может, так как прямые а 1 и а 2 параллельны плоскости b . Из этого следует, что плоскости a и b не пересекаются, то есть они параллельны.

Теорема 1 . Если две параллельные плоскости пересекаются третей, то прямые пересечения параллельны.
Доказательство. Пусть a и b - параллельные плоскости, а g - плоскость, пересекающая их. Плоскость a пересеклась с плоскостью g по прямой а. Плоскость b пересеклась с плоскостью g по прямой b . Линии пересечения а и b лежатв одной плоскости g и потому могут быть либо пересекающимися, либо параллельными прямыми. Но, принадлежа двум параллельным плоскостям, они не могут иметь общих точек. Следовательно, они параллельны.

Теорема 2. Отрезки параллельных прямых, заключенных между двумя параллельными плоскостями, равны.
Доказательство. Пусть a и b - параллельные плоскости, а а и b – параллельные прямые, пересекающие их. Через прямые а и b проведем плоскость g (эти прямые параллельны, значит определяют плоскость, причем только одну). Плоскость a пересеклась с плоскостью g по прямой АВ. Плоскость b пересеклась с плоскостью g по прямой СД.По предыдущей теореме прямая с параллельна прямой d . Прямые а, b , АВ и СД принадлежат плоскости g .Четырехугольник, ограниченный этими прямыми,есть параллелограмм (у него противоположные стороны параллельны). А раз это параллелограмм, то противоположные стороны у него равны, то есть АД = ВС

Всем, кто когда-либо учился или сейчас учится в школе, приходилось сталкиваться с различными трудностями при изучении дисциплин, которые включены в программу, разработанную Министерством образования.

С какими трудностями приходится сталкиваться

Изучение языков сопровождается зазубриванием имеющихся грамматических правил и основных исключений из них. Физкультура требует от учеников большой выкладки, хорошей физической формы и огромного терпения.

Однако ни с чем нельзя сравнить те сложности, которые возникают при изучении точных дисциплин. Алгебра, содержащая в себе запутанные способы решения элементарных задач. Физика с богатым набором формул физических законов. Геометрия и ее разделы, в основе которых лежат сложные теоремы и аксиомы.

Примером могут служить аксиомы, объясняющие теорию параллельности плоскостей, которые необходимо обязательно запомнить, так как они лежат в основе всего курса школьной программы по стереометрии. Давайте попробуем разобраться, как проще и быстрее это можно сделать.

Параллельные плоскости на примерах

Аксиома, указывающая на параллельность плоскостей, звучит следующим образом: «Любые две плоскости считаются параллельными только в том случае, если они не содержат общих точек », то есть не пересекаются друг с другом. Чтобы более детально представить себе данную картину, в качестве элементарного примера можно привести отношение потолка и пола или противоположных стен в здании. Становится сразу понятно, что имеется в виду, а также подтверждается тот факт, что эти плоскости в обычном случае никогда не пересекутся.

Другим примером может служить оконный стеклопакет, где в качестве плоскостей выступают полотна стекол. Они также ни при каких условиях не будут образовывать точек пересечения между собой. Дополнительно к этому можно добавить книжные полки, кубик Рубика, где плоскостями являются его противоположные грани, и прочие элементы быта.

Обозначаются рассматриваемые плоскости специальным знаком в виде двух прямых «||», которые наглядно иллюстрируют параллельность плоскостей. Таким образом, применяя реальные примеры, можно сформировать более четкое восприятие темы, а, следовательно, можно переходить далее к рассмотрению более сложных понятий.

Где и как применяется теория параллельных плоскостей

При изучении школьного курса геометрии ученикам приходится сталкиваться с разносторонними задачами, где зачастую необходимо определить параллельность прямых, прямой и плоскости между собой или зависимость плоскостей друг от друга. Анализируя имеющееся условие, каждую задачу можно соотнести к четырем основным классам стереометрии.

К первому классу относят задачи, в условии которых необходимо определить параллельность прямой и плоскостимежду собой. Ее решение сводится к доказательству одноименной теоремы. Для этого нужно определить, имеется ли для прямой, не принадлежащей рассматриваемой плоскости, параллельная прямая, лежащая в этой плоскости.

Ко второму классу задач относятся те, в которых задействуют признак параллельности плоскостей. Его применяют для того, чтобы упростить процесс доказательства, тем самым значительно сокращая время на поиск решения.

Следующий класс охватывает спектр задач о соответствии прямых основным свойствам параллельности плоскостей. Решение задач четвертого класса заключается в определении, выполняется ли условие параллельности плоскостей. Зная, как именно происходит доказательство той или иной задачи, ученикам становится проще ориентироваться при применении имеющегося арсенала геометрических аксиом.

Таким образом, задачи, условие которых требует определить и доказать параллельность прямых, прямой и плоскости или двух плоскостей между собой, сводятся к правильному подбору теоремы и решению согласно имеющемуся набору правил.

О параллельности прямой и плоскости

Параллельность прямой и плоскости - особая тема в стереометрии, так как именно она является базовым понятием, на которое опираются все последующие свойства параллельности геометрических фигур.

Согласно имеющимся аксиомам, в случае когда две точки прямой принадлежат некоторой плоскости, можно сделать вывод, что данная прямая также лежит в ней. В сложившейся ситуации становится ясно, что возможны три варианта расположения прямой относительно плоскости в пространстве:

  1. Прямая принадлежит плоскости.
  2. Для прямой и плоскости имеется одна общая точка пересечения.
  3. Для прямой и плоскости точки пересечения отсутствуют.

Нас, в частности, интересует последний вариант, когда отсутствуют какие-либо точки пересечения. Только тогда можно говорить о том, что прямая и плоскость относительно друг друга являются параллельными. Таким образом, подтверждается условие основной теоремы о признаке параллельности прямой и плоскости, которая гласит, что: «Если прямая, не принадлежащая рассматриваемой плоскости, параллельна любой прямой на этой плоскости, то рассматриваемая прямая также является параллельной данной плоскости».

Необходимость использования признака параллельности

Признак параллельности плоскостей, как правило, используется для поиска упрощенного решения задач о плоскостях. Суть данного признака состоит в следующем: «Если имеются две пересекающиеся прямые, лежащие в одной плоскости, параллельные двум прямым, принадлежащим другой плоскости, то такие плоскости можно назвать параллельными ».

Дополнительные теоремы

Помимо использования признака, доказывающего параллельность плоскостей, на практике можно встретиться с применением двух других дополнительных теорем. Первая представлена в следующей форме: «Если одна из двух параллельных плоскостей параллельна третьей, то и вторая плоскость либо тоже параллельна третьей, либо полностью совпадает с ней ».

Базируясь на использовании приводимых теорем, всегда можно доказать параллельность плоскостей относительно рассматриваемого пространства. Вторая теорема отображает зависимость плоскостей от перпендикулярной прямой и имеет вид: «Если две несовпадающие плоскости перпендикулярны по отношению к некоторой прямой, то они считаются параллельными друг другу ».

Понятие необходимого и достаточного условия

При неоднократном решении задач доказательства параллельности плоскостей было выведено необходимое и достаточное условие параллельности плоскостей. Известно, что любая плоскость задается параметрическим уравнением вида: А 1 х+ В 1 у+ C 1 z+D 1 =0. Наше условие базируется на использовании системы уравнений, задающих расположение плоскостей в пространстве, и представлено следующей формулировкой: «Для доказательства параллельности двух плоскостей необходимо и достаточно, чтобы система уравнений, описывающих эти плоскости, была несовместной, то есть не имела решения ».

Основные свойства

Однако при решении геометрических задач использования признака параллельности не всегда бывает достаточно. Иногда возникает ситуация, когда необходимо доказать параллельность двух и более прямых в различных плоскостях или равенство отрезков, заключенных на этих прямых. Для этого применяют свойства параллельности плоскостей. В геометрии их насчитывается всего два.

Первое свойство позволяет судить о параллельности прямых в определенных плоскостях и представлено в следующем виде: «Если две параллельные плоскости пересечь третьей, то прямые, образованные линиями пересечения, будут также параллельны друг другу ».

Смысл второго свойства состоит в том, чтобы доказать равенство отрезков, расположенных на параллельных прямых. Его трактовка представлена ниже. «Если рассматривать две параллельные плоскости и заключить между ними область, то можно утверждать, что длина образованных этой областью отрезков будет одинакова ».

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.