Взаимодействие (в физике) Взаимодействие в физике, воздействие тел или частиц друг на друга, приводящее к изменению состояния их движения. В механике Ньютона взаимное действие тел друг на друга количественно характеризуется силой. Более общей характеристикой В. является потенциальная энергия. Первоначально в физике утвердилось представление о том, что В. между телами может осуществляться непосредственно через пустое пространство, которое не принимает никакого участия в передаче В.; при этом передача В. происходит мгновенно. Так, считалось, что перемещение Земли должно сразу же приводить к изменению силы тяготения, действующей на Луну. В этом состояла так называемая концепция дальнодействия. Однако эти представления были оставлены, как не соответствующие действительности после открытия и исследования электромагнитного поля. Было доказано, что В. электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на др. частицы, не в тот же момент, а лишь спустя конечное время. В пространстве между частицами происходит некоторый процесс, который распространяется с конечной скоростью. Соответственно имеется «посредник», осуществляющий В. между заряженными частицами. Этот посредник был назван электромагнитным полем. Каждая электрически заряженная частица создаёт электромагнитное поле, действующее на другие частицы. Скорость распространения электромагнитного поля равна скорости света в пустоте: ~ 300 000 км/сек . Возникла новая концепция ‒ концепция близкодействия, которая затем была распространена и на любые другие В. Согласно этой концепции, В. между телами осуществляются посредством тех или иных полей, непрерывно распределённых в пространстве. Так, всемирное тяготение осуществляется гравитационным полем.

После появления квантовой теории поля представление о В. существенно изменилось. Согласно этой теории, любое поле состоит из частиц ‒ квантов этого поля. Каждому полю соответствуют свои частицы. Например, квантами электромагнитного поля являются фотоны. Заряженные частицы непрерывно испускают и поглощают фотоны, которые и образуют окружающее их электромагнитное поле. Электромагнитное В. в квантовой теории поля является результатом обмена частиц фотонами, т. е. фотоны являются переносчиками этого В. Аналогично, другие виды В. возникают в результате обмена частиц квантами соответствующих полей (см. Квантовая теория поля ).

Несмотря на разнообразие воздействий тел друг на друга (зависящих от В. слагающих их элементарных частиц), в природе по современным данным имеется лишь четыре типа фундаментальных В. Это (в порядке возрастания интенсивности В.): гравитационные В. (см. Тяготение ), слабые взаимодействия (отвечающие за распады элементарных частиц), электромагнитные взаимодействия , сильные взаимодействия (обеспечивающие, в частности, связь частиц в атомных ядрах: ядерные силы возникают благодаря тому, что протоны и нейтроны обмениваются частицами ядерного поля ‒ пи-мезонами ). Интенсивности В. определяются так называемыми константами связи (в частности, для электромагнитных В. константой связи является электрический заряд).

Современная квантовая теория электромагнитных В. превосходно описывает все известные электромагнитные явления. Количественная теория сильных и слабых В. пока не построена. В обычных гравитационных В. тел квантовые эффекты считаются несущественными.

Кроме перечисленных силовых В., в системах, состоящих из одинаковых частиц (которые, согласно одному из принципов квантовой механики ‒ тождественности принципу , являются неразличимыми), появляются специфические несиловые В., не зависящие от констант связи. Так, частицы с полуцелым спином испытывают эффективное отталкивание (в соответствии с Паули принципом ), а частицы с целым спином, напротив, ‒ эффективное притяжение (см. Статистическая физика , раздел Квантовая статистика). Эти несиловые В. могут также приводить к изменению силовых В. между частицами (см. Обменное взаимодействие ).

Лит.: Григорьев В. И., Мякишев Г. Я., Силы в природе, 3 изд., М., 1969.

Г. Я. Мякишев


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Взаимодействие (в физике)" в других словарях:

    Взаимодействие, одна из основных философских категорий, отражающая процессы воздействия различных объектов друг на друга, их взаимную обусловленность и изменение состояния или взаимопереход, а также порождение одним объектом другого. В.… …

    В физике, воздействие тел или ч ц друг на друга, приводящее к изменению состояния их движения. В механике Ньютона взаимное действие тел друг на друга количественно характеризуется силой. Более общей хар кой В. явл. потенц. энергия. Первоначально… … Физическая энциклопедия

    I Взаимодействие одна из основных философских категорий, отражающая процессы воздействия различных объектов друг на друга, их взаимную обусловленность и изменение состояния или взаимопереход, а также порождение одним объектом другого. В.… … Большая советская энциклопедия

    взаимодействие - ВЗАИМОДЕЙСТВИЕ философская категория, отражающая процессы воздействия объектов друг на друга, их взаимную обусловленность и порождение одним объектом другого. В. универсальная форма движения и развития, оно определяет существование и… … Энциклопедия эпистемологии и философии науки

    В физике элементарных частиц взаимодействие Юкавы, названное в честь Хидэки Юкавы, это взаимодействие между скалярным полем и дираковским полем: (скаляр) или (псевдоскаляр). Взаимодействие Юкавы можно использовать для описания сильных ядерных… … Википедия

    Комплекс задач о взаимодействии многих тел достаточно обширный, и является одним из базовых, далеко не полностью разрешённых, разделов механики. В рамках ньютоновской концепции проблема ветвится на: комплекс задач столкновения двух и более… … Википедия

    В физике взаимодействие электронов с фононами (квантами колебаний кристаллической решётки). Причиной электрон фононного взаимодействия является изменение электрического поля из за деформации решётки, называемое деформационным потенциалом.… … Википедия

    Взаимодействие систем заряженных частиц на большом расстоянии друг от друга при условии, что полный электрический заряд каждой системы и её электрический Дипольный момент равны нулю. Если электрический заряд или дипольный момент системы… … Большая советская энциклопедия

    Слабое взаимодействие, или слабое ядерное взаимодействие одно из четырёх фундаментальных взаимодействий в природе. Оно ответственно, в частности, за бета распад ядра. Это взаимодействие называется слабым, поскольку два других взаимодействия … Википедия

    Гравитация (всемирное тяготение, тяготение) (от лат. gravitas «тяжесть») дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том… … Википедия

Книги

  • Взаимодействие излучения с атомами и наночастицами: Учебное пособие , Астапенко Валерий Александрович. Книга посвящена систематическому изложению физики и способов описания основных элементарных процессов, возникающих при взаимодействии электромагнитного поля сатомами, молекулами и…

Все тела во Вселенной притягиваются друг к другу. Это притяжение называют гравитационным взаимодействием.

Очень часто при взаимодействии тел не указывают, какое именно тело действует на тело, которое мы рассматриваем. В таком случае говорят, что на тело действует сила. В результате действия силы тело изменяет свою скорость.

Сила — это физическая величина, количественно характеризующая действие одного тела на другое. В Системе Интернациональной сила измеряется в ньютонах. Кроме числового значения, сила и направление. Такие величины, которые, кроме числового значения, имеют направление, называют векторными величинами. Сила — векторная величина.

Примером гравитационных сил сила притяжения тела к Земле. Закон, описывающий взаимодействие тел во Вселенной, сформулировал великий английский ученый Исаак Ньютон. Этот закон утверждает, что значение гравитационной силы зависит от массы тел, которые взаимодействуют, и расстояния между ними.

Для людей важнейшее значение имеет сила тяжести. Это сила, с которой Земля притягивает к себе все тела. Сила тяжести всегда направлена к центру Земли. На опыте установлено, что сила притяжения прямо пропорциональна массе тела.

Существует гипотеза, что ранее на Луне, как и на Земле, была атмосфера. Но благодаря тому, что сила тяжести на Земле больше, чем на Луне, весь воздух Луны Земля «перетянула» к себе.

Кроме гравитационного, существуют другие виды взаимодействия: электрическая и магнитная. В повседневной жизни мы часто можем наблюдать электрические явления. Еще древнегреческие ученые заметили, что янтарь, потертый о мех, приобретает свойства притягивать мелкие предметы. С греческого янтарь — электрон, так и явления называют электрическими. Примером электрической взаимодействия является привлечение небольших кусочков бумаги к наэлектризованной тела,

Явление, в результате которого тела приобретают свойства притягивать другие предметы, называют электризацией тел. Примером магнитного взаимодействия является взаимодействие магнита с металлическими предметами.

Тела, которые длительное время сохраняют намагниченность, называются постоянными магнитами или просто магнитами.

Первой крупной работой, посвященной исследованию магнитных явлений, была работа Уильяма Гилберта «О магните, магнитных тела и о большом магните — Земле». В этой работе Гилберт сформулировал основные свойства магнитов:

— Различные части магнита по-разному притягивают железные предметы; сильнее притягивают полюсы магнита (те места магнита, где выявляются наиболее сильные магнитные действия, называются полюсами магнитов);

— Магнит всегда имеет два полюса: северный и южный; нельзя получить магнит с одним полюсом;

— Разноименные полюса магнитов притягиваются, а одноименные — отталкиваются;

— Подвешенный на нитке магнит размещается так, что указывает на север и на юг;

— Земля является гигантским магнитом.

Энергия

Механическая работа выполняется тогда, когда на тело действует сила и тело под действием этой силы движется. Для неподвижного тела механическая работа не выполняется, но есть возможность ее выполнения. Физическую величину, которая характеризует способность тела выполнять работу, называют энергией тела. Чем большую работу может выполнить тело, тем большую энергию она имеет. Существует много видов энергии: механическая, электрическая, тепловая, химическая, звуковая, световая. В природе, технике и быту можно наблюдать превращение одного вида энергии в другой. Энергия может и передаваться от одного тела к другому.

Энергия из ничего не возникает и не исчезает бесследно, она только превращается из одного вида в другой или передается от одного тела другому. Это и есть закон сохранения энергии, который открыл немецкий ученый Майер и английский ученый Джоуль.

Майер сформулировал закон сохранения энергии с позиции врача-естествоиспытателя. Его внимание привлекли к себе явления, происходящие в организме человека. Ученый заметил разницу цвета венозной крови людей в странах умеренных и тропических поясов и пришел к выводу, что эта разница объясняется объемами потребления кислорода. Чем ближе к экватору, тем кровь человека становится более красной.

Рассмотрим движение автомобиля. Например, если автомобиль за каждую четверть часа (15 мин) проходит 15 км, за каждые полчаса (30 мин) - 30 км, а за каждый час - 60 км, считается, что он движется равномерно.

Неравномерное движение.

Если тело за любые равные промежутки времени проходит равные пути, его движение считается равномерным.

Равномерное движение встречается очень редко. Почти равномерно движется Земля вокруг Солнца, за год Земля делает один оборот вокруг Солнца.

Практически никогда водителю автомобиля не удается поддерживать равномерность движение - по разным причинам приходится то ускорять то замедлять езду. Движение стрелок часов (минутной и часовой) только кажется равномерным, в чем легко убедиться, наблюдая за движением секундной стрелки. Она то движется, то останавливается. Точно так же движутся и две остальные стрелки, только медленно, и поэтому их рывков не видно. Молекулы газов, ударяясь друг об друга, на какое-то время останавливаются, затем снова разгоняются. При следующих столкновениях, уже с другими молекулами, они снова замедляют свое движение в пространстве.

Все это примеры неравномерного движения. Так движется поезд, отходя от станции, проходя за одинаковые промежутки времени все бóльшие и бóльшие пути. Лыжник или конькобежец проходят на соревнованиях равные пути за различное время. Так движутся взлетающий самолет, открываемая дверь, падающая снежинка.

Если тело за равные промежутки времени проходит разные пути, то его движение называют неравномерным.

Неравномерное движение можно наблюдать на опыте. На рисунке изображена тележка с капельницей, из которой через одинаковые промежутки времени падают капли. При движении тележки под действием к ней груза мы видим, что расстояния между следами от капель неодинаковы. А это и означает, что за одинаковые промежутки времени тележка проходит разные пути.

Скорость. Единицы скорости.

Мы часто говорим, что одни тела движутся быстрее, другие медленнее. Например, по шоссе шагает турист, мчится автомобиль, в воздухе летит самолет. Допустим, что все они движутся равномерно, тем не менее движение этих тел будет отличаться.

Автомобиль движется быстрее пешехода, а самолет быстрее автомобиля. В физике величиной, характеризующей быстроту движения, называется скорость.

Предположим, что турист за 1 час проходит 5 км, автомобиль 90 км, а скорость самолета 850 км в час.

Скорость при равномерном движении тела показывает, какой путь прошло тело в единицу времени.

Таким образом, используя понятие скорости, мы можем теперь сказать, что турист, автомобиль и самолет движутся с различными скоростями.

При равномерном движении скорость тела остается постоянной.

Если велосипедист проезжает в течение 5 с путь, равный, 25 м, то его скорость будет равна 25м/5с = 5м/с.

Чтобы определить скорость при равномерном движении, надо путь, пройденный телом за какой-то промежуток времени, разделить на этот промежуток времени:

скорость = путь/время.

Скорость обозначают буквой v, путь - s, время - t. Формула для нахождения скорости будет иметь такой вид:

Скорость тела при равномерном движении - это величина, равная отношению пути ко времени, за которое этот путь пройден.

В Международной системе (СИ) Скорость измеряют в метрах в секунду (м/с).

Это значит, что за единицу скорости принимается скорость такого равномерного движения, при котором за одну секунду тело проходит путь, равный 1 метру.

Скорость тела можно измерять также в километрах в час (км/ч), километрах в секунду (км/с), сантиметрах в секунду (см/с).

Пример. Поезд, двигаясь равномерно, за 2 ч проходит путь, равный 108 км. Вычислите скорость движения поезда.

Итак, s = 108 км; t = 2 ч; v = ?

Решение. v = s/t, v = 108 км/2 ч = 54 км/ч. Легко и просто.

Теперь, выразим скорость поезда в единицах СИ, т.е километры переведем в метры, а часы в секунды:

54 км/ч = 54000 м/ 3600 с = 15м/с.

Ответ : v = 54 км/ч, или 15 м/с.

Таким образом, числовое значение скорости зависит от выбранной единицы.

Скорость, кроме числового значения, имеет направление.

Например, если требуется указать, где будет находиться через 2 ч самолет, вылетевший из Владивостока, то необходимо указать, не только значение его скорости, но и его пункт назначения, т.е. его направление. Величины, которые, кроме числового значения (модуля), имеют еще и направление, называются векторными.

Скорость - это векторная физическая величина.

Все векторные величины обозначают соответствующими буквами со стрелочкой. Например, скорость обозначается символом v со стрелочкой, а модуль скорости той же буквой, но без стрелочки v.

Некоторые физические величины не имеют направления. Они характеризуются только числовым значением. Это время, объем, длина и др. Они являются скалярными.

Если при движении тела его скорость изменяется от одного участка пути к другому, то такое движение является неравномерным. Для характеристики неравномерного движения тела, введено понятие средней скорости.

Например, поезд от Москвы до Санкт-Петербурга идет со скоростью 80 км/ч. Какую скорость имеют ввиду? Ведь скорость поезда на остановках равна нулю, после остановки - увеличивается, а перед остановкой - уменьшается.

В данном случае поезд движется неравномерно, а значит, скорость, равная 80 км/ч, - это средняя скорость движения поезда.

Она определяется почти так же, как и скорость при равномерном движении.

Чтобы определить среднюю скорость тела при неравномерном движении, надо весь пройденный путь разделить на все время движения:

Следует напомнить, что только при равномерном движении отношение s/t за любой промежуток времени будет постоянно.

При неравномерном движении тела средняя скорость характеризует движение тела за весь промежуток времени. Она не поясняет, как двигалось тело в различные моменты времени этого промежутка.

В таблице 1 приводится средние скорости движения некоторых тел.

Таблица 1

Средние скорости движения некоторых тел, скорость звука, радиоволн и света.

Расчет пути и времени движения.

Если известны скорость тела и время при равномерном движении, то можно найти пройденный им путь.

Поскольку v = s/t, то путь определяют по формуле

Чтобы определить путь, пройденный телом при равномерном движении, надо скорость тела умножить на время его движения.

Теперь, зная, что s = vt, можно найти время, в течение которого двигалось тело, т.е.

Чтобы определить время при неравномерном движении, надо путь, пройденном телом, разделить на скорость его движения.

Если тело движется неравномерно, то, зная его среднюю скорость движения и время, за которое происходит это движение, находят путь:

Пользуясь этой формулой, можно определить время при неравномерном движении тела:

Инерция.

Наблюдения и опыты показывают, что скорость тела сама по себе измениться не может.

Опыт с тележками. Инерция.

Футбольный мяч лежит на поле. Ударом ноги футболист приводит его в движение. Но сам мяч не изменит свою скорость и не начнет двигаться, пока на него не подействуют другие тела. Пуля, вложенная в ствол ружья, не вылетит до тех пор, пока ее не вытолкнут пороховые газы.

Таким образом, и мяч и пуля не имеют свою скорость, пока на них не подействуют другие тела.

Футбольный мяч, катящийся по земле, останавливается из-за трения о землю.

Тело уменьшает свою скорость и останавливается не само по себе, а под действием других тел. Под действием другого тела происходит также изменение направления скорости.

Теннисный мяч меняет направление движения после удара о ракетку. Шайба после удара о клюшку хоккеиста также изменяет направление движения. Направление движения молекулы газа меняется при ударении ее с другой молекулой или со стенками сосуда.

Значит, изменение скорости тела (величина и направления) происходит в результате действия на него другого тела.

Проделаем опыт. Установим наклонно на столе доску. Насыплем на стол, на небольшом расстоянии от конца доски, горку песка. Поместим на наклонную доску тележку. Тележка, скатившись с наклонной доски быстро останавливается, попав в песок. Скорость тележки уменьшается очень быстро. Ее движение неравномерно.

Выровняем песок и вновь отпустим тележку с прежней высоты. Теперь тележка пройдет большее расстояние по столу, прежде чем остановится. Ее скорость изменяется медленнее, а движение становится ближе к равномерному.

Если совсем убрать песок с пути тележки, то препятствием ее движению будет только трение о стол. Тележка до остановки еще медленнее, и проедет она больше,чем в первый, и во второй разы.

Итак, чем меньше действие другого тела на тележку, тем дольше сохраняется скорость ее движения и тем ближе оно к равномерному.

Как же будет двигаться тело, если не него совсем не будут действовать другие тела? Как это можно установить на опыте? Тщательные опыты по изучению движения тел были впервые проведены Г. Галилеем. Они позволили установить, что если на тело не действуют другие тела, то оно находится или в покое, или движется прямолинейно, и равномерно относительно Земли.

Явление сохранения скорости тела при отсутствии действия на него других тел, называется инерцией .

Инерция - от латинского инерциа - неподвижность, бездеятельность.

Таким образом, движения тела при отсутствии действия на него другого тела, называется движением по инерции.

Например, пуля вылетевшая из ружья, так и летела бы, сохраняя свою скорость, если бы на нее не действовало другое тело - воздух (а точнее, молекулы газов, которые в нем находятся.). Вследствие этого скорость пули уменьшается. Велосипедист, перестав крутит педали, продолжает двигаться. Он смог бы сохранить скорость своего движения, если бы на него не действовала бы сила трения.

Итак, если на тело не действуют другие тела, то оно движется с постоянной скоростью.

Взаимодействие тел.

Вам уже известно, что при неравномерном движении скорость тела меняется с течением времени. Изменение скорости тела происходит под действием другого тела.

Опыт с тележками. Тележки приходят в движение относительно стола.

Проделаем опыт. К тележке прикрепим упругую пластинку. Затем изогнем ее и свяжем нитью. Тележка относительно стола находится в покое. Станет ли двигаться тележка, если упругая пластинка выпрямится?

Для этого перережем нить. Пластинка выпрямится. Тележка же останется на прежнем месте.

Затем вплотную к согнутой пластинке поставим еще одну такую же тележку. Вновь пережжем нить. После этого обе тележки приходят в движение относительно стола. Они разъезжаются в разные стороны.

Чтобы изменить скорость тележки, понадобилось второе тело. Опыт показал, что скорость тела меняется только в результате действия на него другого тела (второй тележки). В нашем опыте мы наблюдали, что в движение пришла и вторая тележка. Обе стали двигаться относительно стола.

Опыт с лодками. Обе лодки приходят в движение.

Тележки действуют друг на друга , т.е они взаимодействуют. Значит, действие одного тела на другое не может быть односторонним, оба тела действуют друг на друга, т. е. взаимодействуют.

Мы рассмотрели самый простой случай взаимодействия двух тел. Оба тела (тележки) до взаимодействия находились в покое относительно друг друга, и относительно стола.

Опыт с лодками. Лодка отходит в сторону, противоположную прыжку.

Например, пуля также находилась в покое относительно ружья перед выстрелом. При взаимодействии (во время выстрела) пуля и ружье движутся в разные стороны. Получается явление - отдачи.

Если человек, сидящий в лодке, отталкивает от себя другую лодку, то происходит взаимодействие. Обе лодки приходят в движение.

Если же человек прыгает с лодки на берег, то лодка отходит в сторону, противоположную прыжку. Человек подействовал на лодку. В свою очередь, и лодка действует на человека. Он приобретает скорость, которая направлена к берегу.

Итак, в результате взаимодействия оба тела могут изменить свою скорость.

Масса тела. Единица массы.

При взаимодействии двух тел скорости первого и второго тела всегда меняются.

Опыт с тележками. Одна больше другой.

Одно тело после взаимодействия приобретает скорость, которая может значительно отличаться от скорости другого тела. Например, после выстрела из лука скорость стрелы гораздо больше скорости, которую приобретает тетива лука после взаимодействия.

Почему так происходит? Проведем опыт, описанный в параграфе 18. Только теперь, возьмем тележки разного размера. После того, как нить пережгли, тележки разъезжаются с разными скоростями. Тележка, которая после взаимодействия движется медленнее, называется более массивной . У нее больше масса . Тележка, которая после взаимодействия движется с большей скоростью, имеет меньшую массу. Значит, тележки имеют разную массу.

Скорости, которые приобрели тележки в результате взаимодействия, можно измерить. По этим скоростям сравнивают массы взаимодействующих тележек.

Пример. Скорости тележек до взаимодействия равны нулю. После взаимодействия скорость одной тележки стала равна 10 м/с, а скорость другой 20 м/с. Поскольку скорость, которую приобрела вторая тележка, в 2 раза больше скорости первой, то и ее масса в 2 раза меньше массы первой тележки.

В случае, если после взаимодействия скорости изначально покоившихся тележек одинаковы, то их массы одинаковы. Так, в опыте, изображенном на рисунке 42, после взаимодействия тележки разъезжаются с равными скоростями. Следовательно, их массы были одинаковы. Если после взаимодействия тела приобрели разные скорости, то их массы различны.

Международный эталон килограмма. На картинке: эталон килограмма в США.

Во сколько раз скорость первого тела больше (меньше) скорости второго тела, во столько раз масса первого тела меньше (больше) массы второго.

Чем меньше меняется скорость тела при взаимодействии, тем большую массу оно имеет. Такое тело называется более инертным .

И наоборот, чем больше меняется скорость тела при взаимодействии, тем меньшую массу оно имеет, тем меньше оно инертно .

Значит, что для всех тел характерно свойство по-разному менять свою скорость при взаимодействии. Это свойство называется инертностью .

Масса тела - это физическая величина, которая характеризует его инертность.

Следует знать, что любое тело: Земля, человек, книга и т.д. - обладает массой.

Масса обозначается буквой m. За единицу массы в СИ принят килограмм (1 кг ).

Килограмм - это масса эталона. Эталон изготовлен из сплава двух металлов: платины и иридия. Международный эталон килограмма хранится в г. Севре (близ Парижа). С международного эталона сделано более 40 точнейших копий, разосланных в разные страны. Одна из копий международного эталона находится в нашей стране, в институте метрологии им. Д. И. Менделеева в Санкт-Петербурге.

На практике используют и другие единицы массы: тонна (т ), грамм (г ), миллиграмм (мг ).

1 т = 1000 кг (10 3 кг) 1 г = 0,001 кг (10 -3 кг)
1 кг = 1000 г (10 3 г) 1 мг = 0,001 г (10 -3 г)
1 кг = 1 000 000 мг (10 6 мг) 1 мг = 0,000001 кг (10 -6 кг)

В дальнейшем при изучении физики понятие массы будет раскрыто глубже.

Измерение массы тела на весах.

Для того, чтобы измерить массу тела, можно использовать метод, описанный в параграфе 19.

Учебные весы.

Сравнивая скорости, приобретенные телами при взаимодействии, определяют, во сколько раз масса одного тела больше (или меньше) массы другого. Измерить массу тела этим способом можно, если масса одного из взаимодействующих тел известна. Таким способом определяют в науке массы небесных тел, а также молекул и атомов.

На практике массу тела можно узнать с помощью весов. Весы бывают различного типа: учебные, медицинские, аналитические, аптекарские, электронные и др.

Специальный набор гирь.

Рассмотрим учебные весы. Главной частью таких весов, является коромысло. К середине коромысла прикреплена стрелка - указатель, которая движется вправо или влево. К концам коромысла подвешены чашки. При каком условии весы будут находиться в равновесии?

Поместим на чашки весов тележки, которые применялись в опыте (см. § 18). поскольку при взаимодействии тележки приобрели одинаковые скорости, то мы выяснили, что их массы одинаковы. Следовательно, весы будут находится в равновесии. Это значит, что массы тел, лежащих на чашках весов, равны друг другу.

Теперь на одну чашку весов, поместим тело, массу которого надо узнать. На другую будем ставить гирьки, массы которых известны, до тех пор, пока весы не окажутся в равновесии. Следовательно, масса взвешиваемого тела будет равна общей массе гирь.

При взвешивании используется специальный набор гирь.

Различные весы предназначены для взвешивания разных тел, как очень тяжелых, так и очень легких. Так, например, с помощью вагонных весов можно определить массу вагона от 50 т до 150 т. Массу комара, равную 1мг, можно узнать с помощью аналитических весов.

Плотность вещества.

Взвешиваем два цилиндра равного объема. Один алюминиевый, а другой - свинцовый.

Тела, окружающие нас, состоят из различных веществ: дерева, железа, резины и т.д.

Масса любого тела зависит не только от его размеров, но и оттого, из какого вещества оно состоит. Поэтому тела, имеющие одинаковые объемы, но состоящие из разных веществ, имеют разные массы.

Проведем такой опыт. Взвесим два цилиндра одинакового объема, но состоящие из разных веществ. Например, один из - алюминия, другой из - свинца. Опыт показывает, что масса алюминиевого меньше свинцового, то есть, алюминий легче свинца.

В то же время тела с одинаковыми массами, состоящие из разных веществ, имеют разные объемы.

Железный брус массой 1 т занимает 0,13 кубических метров. А лед массой 1 т - объем 1,1 метров кубических.

Так, железный брус массой 1 т занимает объем 0,13 м 3 , а лед с такой же массой в 1 т - объем 1,1 м 3 . Объем льда почти в 9 раз больше объема железного бруса. Это объясняется тем, что разные вещества могут иметь разную плотность.

Отсюда следует, что тела объемом, например, 1 м 3 каждое, состоящие из разных веществ, имеют разные массы. Приведем пример. Алюминий объемом 1 м 3 имеет массу 2700 кг, свинец такого же объема имеет массу 11 300 кг. То есть, при одинаковом объеме (1 м 3), свинец, имеет массу, превышающую массу алюминия, примерно в 4 раза.

Плотность показывает, чему равна масса вещества, взятого в определённом объёме.

Как же можно найти плотность какого-либо вещества?

Пример. Мраморная плита имеет объем 2м 3 , а ее масса равна 5400 кг. Надо определить плотность мрамора.

Итак, нам известно, что мрамор объемом 2м 3 имеет массу 5400 кг. Значит, 1 м 3 мрамора будет иметь массу в 2 раза меньшую. В нашем случае - 2700 кг (5400: 2 = 2700). Таким образом, плотность мрамора будет равна 2700 кг на 1 м 3 .

Значит, если известна масса тела и его объем, можно определить плотность.

Чтобы найти плотность вещества, надо массу тела разделить на его объем.

Плотность это физическая величина, которая равна отношению массы тела к его объему:

плотность = масса/объем.

Обозначим величины, входящие в это выражение, буквами: плотность вещества - ρ (греч. буква "ро"), масса тела - m, его объем - V. Тогда получим формулу для вычисления плотности:

Единицей плотности вещества в СИ является килограмм на кубический метр (1кг/м 3).

Плотность вещества выражают очень часто и в граммах на кубический сантиметр (1г/см 3).

Если плотность вещества выражена в кг/м 3 , то ее можно перевести в г/см 3 следующим образом.

Пример. Плотность серебра 10 500 кг/м 3 . Выразите ее в г/см 3 .

10 500 кг = 10 500 000 г (или 10,5 * 10 6 г),

1м3 = 1 000 000 см 3 (или 10 6 см 3).

Тогда ρ = 10 500 кг/м 3 = 10,5 * 10 6 / 10 6 г/см 3 = 10,5 г/см 3 .

Следует помнить, что плотность одного и того же вещества в твердом, жидком и газообразном состояниях различна. Так, плотность льда равна 900 кг/м 3 , воды 1000 кг/м 3 , а водяного пара - 0,590 кг/м 3 . Хотя все это состояния того же вещества - воды.

Ниже приведены таблицы плотностей некоторых твердых тел, жидкостей и газов.

Таблица 2

Плотности некоторых твердых тел (при норм. атм. давл., t = 20 °C)

Твердое тело ρ, кг/м 3 ρ, г/см 3 Твердое тело ρ, кг/м 3 ρ, г/см 3
Осмий 22 600 22,6 Мрамор 2700 2,7
Иридий 22 400 22,4 Стекло оконное 2500 2,5
Платина 21 500 21,5 Фарфор 2300 2,3
Золото 19 300 19,3 Бетон 2300 2,3
Свинец 11 300 11,3 Кирпич 1800 1,8
Серебро 10 500 10,5 Сахар-рафинад 1600 1,6
Медь 8900 8,9 Оргстекло 1200 1,2
Латунь 8500 8,5 Капрон 1100 1,1
Сталь, железо 7800 7,8 Полиэтилен 920 0,92
Олово 7300 7,3 Парафин 900 0,90
Цинк 7100 7,2 Лед 900 0,90
Чугун 7000 7 Дуб (сухой) 700 0,70
Корунд 4000 4 Сосна (сухая) 400 0,40
Алюминий 2700 2,7 Пробка 240 0,24

Таблица 3

Плотности некоторых жидкостей (при норм. атм. давл. t=20 °C)

Таблица 4

Плотности некоторых газов (при норм. атм. давл. t=20 °C)

Расчет массы и объема по его плотности.

Знать плотность веществ очень важно для различных практических целей. Инженер, проектируя машину, заранее по плотности и объему материала может рассчитать массу будущей машины. Строитель может определить, какова будет масса строящегося здания.

Следовательно, зная плотность вещества и объем тела, всегда можно определить его массу.

Поскольку плотность вещества можно найти по формуле ρ = m/V , то отсюда можно найти массу т.е.

m = ρV.

Чтобы вычислить массу тела, если известны его объем и плотность, надо плотность умножить на объем.

Пример. Определите массу стальной детали объем 120 см 3 .

По таблице 2 находим, что плотность стали равна 7,8 г/см 3 . Запишем условие задачи и решим ее.

Дано :

V = 120 см 3 ;

ρ = 7,8 г/см 3 ;

Решение :

m = 120 см 3 · 7,8 г/см 3 = 936 г.

Ответ : m = 936 г.

Если известна масса тела и его плотность, то объем тела можно выразить из формулы m = ρV , т.е. объем тела будет равен:

V = m/ρ.

Чтобы вычислить объем тела, если известна его масса и плотность, надо массу разделить на плотность.

Пример. Масса подсолнечного масла, заполняющего бутылку, равна 930 г. Определите объем бутылки.

По таблице 3 находим, что плотность подсолнечного масла равна 0,93 г/см 3 .

Запишем условие задачи и решим ее.

Дано:

ρ = 0,93 г/см 3

Решение:

V = 930/0.93 г/см 3 = 1000 см 3 = 1л.

Ответ : V = 1 л.

Для определения объема пользуются формулой, как правило, в тех случаях, когда объем сложно найти с помощью простых измерений.

Сила.

Каждый из нас постоянно встречается с различными случаями действия тел друг на друга. В результате взаимодействия скорость движения какого-либо тела меняется. Вам уже известно, что скорость тела меняется тем больше, чем меньше его масса. Рассмотрим некоторые примеры, подтверждающие это.

Толкая руками вагонетку, мы можем привести ее в движение. Скорость вагонетки меняется под действием руки человека.

Кусочек железа, лежащий на пробке, опущенной в воду, притягивается магнитом. Кусочек железа и пробка изменяют свою скорость под действием магнита.

Действуя на пружину рукой, можно ее сжать. Сначала в движение приходит конец пружины. Затем движение передается остальным ее частям. Сжатая пружина, распрямляясь, может, например, привести в движение шарик.

При сжатии пружины действующим телом была рука человека. Когда пружина распрямляется, действующим телом является сама пружина. Она приводит в движение шарик.

Ракеткой или рукой можно остановить или изменить направление движения летящего мячика.

Во всех приведенных примерах одно тело под действием другого тела приходит в движение, останавливается, или изменяет направление своего движения.

Таким образом, скорость тела меняется при взаимодействии его с другими телами.

Часто не указывается какое тело и как действовало на данное тело. Просто говорится, что на тело действует сила или к нему приложена сила . Значит, силу можно рассматривать как причину изменения скорости движения.

Толкая руками вагонетку, мы можем привести ее в действие.

Опыт с кусочком железа и магнитом.

Опыт с пружиной. Приводим в движение шарик.

Опыт с ракеткой и летящим шариком.

Сила, действующая на тело, может не только изменить скорость своего тела, но и отдельных его частей.

Доска, лежащая на опорах, прогибается, если на нее садится человек.

Например, если надавить пальцами на ластик или кусочек пластилина, он сожмется и изменит свою форму. Это называется деформацией .

Деформацией называется любое изменение формы и размера тела.

Приведем другой пример. Доска, лежащая на опорах, прогибается, если на нее садится человек, или любой другой груз. Середина доски перемещается на большее расстояние, чем края.

Под действием силы скорость различных тел за одно и то же время может измениться одинаково. Для этого необходимо к этим телам приложить разные силы.

Так, чтобы привести в движение грузовую машину, необходима большая сила, чем для легкового автомобиля. Значит, числовое значение силы может быть различным: большим или меньшим. Что же такое сила?

Сила является мерой взаимодействия тел.

Сила - физическая величина, значит, ее можно измерить.

На чертеже сила отображается в виде отрезка прямой со стрелкой на конце.

Сила, как и скорость, является векторной величиной . Она характеризуется не только числовым значением, но и направлением. Сила обозначается буквой F со стрелочкой (как мы помним стрелочкой обозначается направление), а ее модуль тоже буквой F, но без стрелочки.

Когда говорят о силе, важно указывать, к какой точке тела приложена действующая сила.

На чертеже силу изображают в виде отрезка прямой со стрелкой на конце. Начало отрезка - точка А есть точка приложения силы. Длина отрезка условно обозначает в определенном масштабе модуль силы.

Итак, результат действия силы на тело зависит от ее модуля, направления и точки приложения.

Явление тяготения. Сила тяжести.

Выпустим камень из рук - он упадет на землю.

Если выпустить камень из рук - он упадет на землю. То же самое произойдет и с любым другим телом. Если мяч бросить в горизонтальном направлении, он не летит прямолинейно и равномерно. Его траекторией будет кривая линия.

Камень летит по кривой линии.

Искусственный спутник Земли также не летит по прямой, он летит вокруг Земли.

Искусственный спутник движется вокруг Земли.

В чем же причина наблюдаемых явлений? А вот в чем. На эти тела действует сила - сила притяжения к Земле. Из-за притяжения к Земле падают тела, поднятые над Землей, а потом опущенные. А также, из-за этого притяжения, мы ходим по Земле, а не улетаем в бесконечный Космос, где нет воздуха, чтоб дышать.

Листья деревьев опускаются на Землю, потому что Земля притягивает их. Благодаря притяжению к Земле течет вода в реках.

Земля притягивает к себе любые тела: дома, людей, Луну, Солнце, воду в морях и океанах и др. В свою очередь, и Земля притягивается ко всем этим телам.

Притяжение существует не только между Землей и перечисленными телами. Все тела притягиваются друг к другу. Притягиваются между собой Луна и Земля. Притяжение Земли к Луне вызывает приливы и отливы воды. Огромные массы воды поднимаются в океанах и морях дважды в сутки на много метров. Вам хорошо известно, что Земля и другие планеты движутся вокруг Солнца, притягиваясь к нему и друг к другу.

Притяжение всех тел Вселенной друг к другу называется всемирным тяготением.

Английский ученый Исаак Ньютон первым доказал и установил закон всемирного тяготения.

Согласно этому закону, силы притяжения между телами тем больше, чем больше массы этих тел. Силы притяжения между телами уменьшаются, если увеличивается расстояние между ними.

Для всех живущих на Земле одна из особенно важных значений имеет сила притяжения к Земле.

Сила, с которой Земля притягивает к себе тело, называется силой тяжести.

Сила тяжести обозначается буквой F с индексом: Fтяж. Она всегда направлена вертикально вниз.

Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся у полюсов расположены немного ближе к центру Земли. Поэтому, сила тяжести на полюсе немного больше, чем на экваторе, или на других широтах. Сила тяжести на вершине горы несколько меньше, чем у ее подножия.

Сила тяжести прямо пропорциональна массе данного тела.

Если сравнивать два тела с разной массой, то тело с большей массой - тяжелее. Тело же с меньшей массой - легче.

Во сколько раз масса одного тела больше массы другого тела, во столько же раз и сила тяжести, действующая на первое тело, больше силы тяжести, действующей на второе. Когда массы тел одинаковы, то одинаковы и действующие на них силы тяжести.

Сила упругости. Закон Гука.

Вам уже известно, что на все тела, находящиеся на Земле, действует сила тяжести.

На книгу, лежащую на столе, также действует сила тяжести, но она не проваливается сквозь стол, а находится в покое. Повесим-ка тело на нити. Оно падать не будет.

Закон Гука. Опыт.

Почему же покоятся тела, лежащие на опоре или подвешенные на нити? По-видимому, сила тяжести уравновешивается какой-то другой силой. Что же это за сила и откуда она берется?

Проведем опыт. На середину горизонтально расположенной доски, расположенную на опоры, поставим гирю. Под действием силы тяжести гиря начнет двигаться вниз и прогнет доску, т.е. доска деформируется. При этом возникает сила, с которой доска действует на тело, расположенное на ней. Из этого опыта можно сделать вывод, что на гирю, кроме силы тяжести направленной вертикально вниз, действует другая сила. Эта сила направлена вертикально вверх. Она и уравновесила силу тяжести. Эту силу называют силой упругости.

Итак, сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение, называется силой упругости.

Силу упругости обозначают буквой F с индексом Fупр.

Чем сильнее прогибается опора(доска), тем больше сила упругости. Если сила упругости становится равной силе тяжести, действующей на тело, то опора и тело останавливаются.

Теперь подвесим тело на нити. Нить (подвес) растягивается. В нити (подвесе), также как и в опоре, возникает сила упругости. При растяжении подвеса сила упругости будет равна силе тяжести, то растяжение прекращается. Сила упругости возникает только при деформации тел. Если исчезает деформация тела, то исчезает и сила упругости.

Опыт с телом, подвешенным на нити.

Деформации бывают разных видов: растяжения, сжатия, сдвига, изгиба и кручения.

С двумя видами деформации мы уже познакомились - сжатия и изгиба. Более подробно эти и другие виды деформации вы изучите в старших классах.

Теперь попытаемся выяснить, от чего зависит сила упругости.

Английский ученый Роберт Гук , современник Ньютона, установил, как зависит сила упругости от деформации.

Рассмотрим опыт. Возьмем резиновый шнур. Один его конец закрепим в штативе. Первоначальная длина шнура была l 0 . Если к свободному концу шнура подвесить чашку с гирькой, то шнур удлинится. Его длина станет равной l. Удлинение шнура можно найти так:

Если менять гирьки на чашке, то будет меняться и длина шнура, а значит, ее удлинение Δl .

Опыт показал, что модуль силы упругости при растяжении (или сжатии) тела прямо пропорционален изменению длины тела.

В этом и заключается закон Гука. Записывается закон Гука следующим образом:

Fупр = -kΔl,

Вес тела - это сила, с которой тело вследствие притяжения к Земле действует на опору или подвес.

где Δl - удлинение тела (изменение его длины), k - коэффициент пропорциональности, который называется жесткостью.

Жесткость тела зависит от формы и размеров, а также от материала, из которого оно изготовлено.

Закон Гука справедлив только для упругой деформации. Если после прекращения действий сил, деформирующих тело, оно возвращается в исходное положение, то деформация является упругой.

Более подробно закон Гука и виды деформаций вы изучите в старших классах.

Вес тела.

В повседневной жизни очень часто используется понятие "вес" . Попытаемся выяснить что же это за величина. В опытах, когда тело ставили на опору, сжималась не только опора, но и тело, притягиваемое Землей.

Деформированное, сжатое тело давит на опору с силой, которую называют весом тела . Если тело подвешено на нити, то растянута не только нить, но и само тело.

Вес тела - это сила, с которой тело вследствие притяжения к Земле действует на опору или подвес.

Вес тела - это векторная физическая величина и обозначается она буквой P со стрелочкой над этой буквой, направленная вправо.

Однако следует помнить, что сила тяжести приложена к телу, а вес приложен к опоре или подвесу .

Если тело и опора неподвижны или движутся равномерно и прямолинейно, то вес тела по своему числовому значению равен силе тяжести, т.е.

P = Fтяж.

Следует помнить, что сила тяжести является результатом взаимодействия тела и Земли.

Итак, Вес тела - это результат взаимодействия тела и опоры (подвеса). Опора (подвес) и тело при этом деформируются, что приводит к появлению силы упругости.

Единицы силы. Связь между силой тяжести и массой тела.

Вам уже известно, что сила - это физическая величина. Она кроме числового значения (модуля) имеет направление, т. е. это векторная величина.

Силу, как и любую физическую величину, можно измерить, сравнить с силой, принятой за единицу.

Единицы физических величин всегда выбирают условно. Так, за единицу силы можно принять любую силу. Например, можно принять за единицы силы силу упругости какой-то пружины, растянутой до определенной длины. За единицу силы, можно принять и силу тяжести, действующей на тело.

Вы знаете, что сила является причиной изменения скорости тела. Именно поэтому за единицу силы, принята сила, которая за время 1с изменяет скорость тела массой 1 кг на 1 м/с.

В честь английского физика Ньютона эта единица названа ньютоном (1 Н ). Часто применяют и другие единицы - килоньютоны (кН ), миллиньютоны (мН ):

1кН=1000 Н, 1Н = 0,001 кН.

Попытаемся определить величину силы в 1 Н. Установлено, что 1 Н приблизительно равен силе тяжести, которая действует на тело массой 1/10 кг, или более точно 1/9,8 кг (т. е. около 102 г).

Необходимо помнить, что сила тяжести, действующая на тело, зависит от географической широты, на которой находится тело. Сила тяжести меняется при изменении высоты над поверхностью Земли.

Если известно, что единицей силы является 1 Н, то как рассчитать силу тяжести, которая действует на тело любой массы?

Известно, что, во сколько раз масса одного тела, больше массы другого тела, во столько же раз сила тяжести, действующей на первое тело, больше силы тяжести, действующей на второе тело. Таким образом, если на тело массой 1/9,8 кг действует сила тяжести равная 1 Н, то на тело 2/9,8 кг будет действовать сила тяжести, равная 2 Н.

На тело массой 5/9,8 кг - сила тяжести равная - 5 Н, 5,5/9,8 кг - 5,5 Н, и т. д. На тело массой 9,8/9,8 кг - 9,8 Н.

Поскольку 9,8/9,8 кг = 1 кг, то на тело массой в 1 кг будет действовать сила тяжести, равная 9,8 Н . Значение силы тяжести, действующей на тело массой 1 кг, можно записать так: 9,8 Н/кг.

Значит, если на тело массой 1 кг действует сила, равная 9,8 Н, то на тело массой 2 кг будет действовать сила, в 2 раза большая. Она будет равна 19,6 Н, и так далее.

Таким образом, чтобы определить силу тяжести, действующую на тело любой массы, необходимо 9,8 Н/кг умножить на массу этого тела.

Масса тела выражается в килограммах. Тогда получим, что:

Fтяж = 9,8 Н/кг · m.

Величину 9,8 Н/кг обозначают буквой g, и формула для силы тяжести будет иметь вид:

где m - масса, g - называется ускорением свободного падения . (Понятие ускорения свободного падения будет дано в 9 классе.)

При решении задач где не требуется большой точности, g = 9,8 Н/кг округляют до 10 Н/кг.

Вам уже известно, что P = Fтяж, если тело и опора неподвижны или движутся равномерно и прямолинейно. Следовательно, вес тела можно определить по формуле:

Пример . На столе стоит чайник с водой массой 1,5 кг. Определите силу тяжести и вес чайника. Покажите эти силы на рисунке 68.

Дано :

g ≈ 10 Н/кг

Решение:

Fтяж = P ≈ 10 Н/кг · 1,5 кг = 15 Н.

Ответ : Fтяж = P = 15 Н.

Теперь изобразим силы графически. Выберем масштаб. Пусть 3 Н будет равен отрезку длиной 0,3 см. Тогда силу в 15 Н. необходимо начертить отрезком длиной 1,5 см.

Следует учитывать, что сила тяжести действует на тело, а значит, приложена к самому телу. Вес действует на опору или подвес, т. е. приложен к опоре, в нашем случае к столу.

Динамометр.

Простейший динамометр.

На практике часто приходится измерять силу, с которой одно тело действует на другое. Для измерения силы используется прибор, который называется динамометр (от греч. динамис - сила, метрео - измеряю).

Динамометры бывают различного устройства. Основная их часть - стальная пружина, которой придают разную форму в зависимости от назначения прибора. Устройство простейшего динамометра основывается на сравнении любой силы с силой упругости пружины.

Простейший динамометр можно изготовить из пружины с двумя крючками, укрепленной на дощечке. К нижнему концу пружины прикрепляется указатель, а на доску наклеивается полоска бумаги.

Отметим на бумаге черточкой положение указателя при не натянутой пружине. Эта отметка будет нулевым делением.

Ручной динамометр - силомер.

Затем к крючку будем подвешивать груз массой 1/9,8 кг, т. е. 102 г.На этот груз будет действовать сила тяжести 1 Н. Под действием этой силы (1 Н) пружина растянется, указатель опустится вниз. Его новое положение отмечаем на бумаге и ставим цифру 1. После чего, подвешиваем груз массой 204 г и ставим отметку 2. Это означает, что в таком положении сила упругости пружины равна 2 Н. Подвесив груз массой 306 г, наносим отметку 3, и т. д.

Для того, чтобы нанести десятые доли ньютона, надо нанести деления - 0,1; 0,2; 0,3; 0,4 и т. д. Для этого расстояния между каждыми целыми отметками делятся на десять равных частей. Так можно сделать, учитывая, что сила упругости пружины Fупр увеличивается во столько раз, во сколько увеличивается ее удлинение Δl . Это следует из закона Гука: Fупр = kΔl, т. е. сила упругости тела при растяжении прямо пропорциональна изменению длины тела.

Тяговый динамометр.

Проградуированная пружина и будет простейшим динамометром.

С помощью динамометра измеряется не только сила тяжести, но и другие силы, такие как - сила упругости, сила трения и т. д.

Так, например, для измерения силы различных мышечных групп человека используется медицинские динамометры.

Для измерения мускульной силы руки при сжатии кисти в кулак применяется ручной динамометр - силомер .

Применяются также ртутные, гидравлические, электрические и другие динамометры.

В последнее время широко применяются электрические динамометры. У них имеется датчик, преобразующий деформацию в электрический сигнал.

Для измерения больших сил, таких, например, как тяговые усилия тракторов, тягачей, локомотивов, морских и речных буксиров, используют специальные тяговые динамометры . Ими можно измерить силы до нескольких десятков тысяч ньютонов.

В каждом подобном случае можно заменить несколько сил, в действительности приложенных к телу, одной силой, равноценной по своему действию этим силам.

Сила, которая производит на тело такое же действие, как несколько одновременно действующих сил, называется равнодействующей этих сил.

Найдем равнодействующую этих двух сил, действующих на тело по одной прямой в одну сторону.

Обратимся к опыту. К пружине один под другим подвесим два груза массой 102 г и 204 г, т. е. весом 1 Н и 2 Н. Отметим длину, на которую растянулась пружина. Снимем эти грузы заменим одним грузом, который растягивает пружина на такую же длину. Вес этого груза оказывается равным 3 Н.

Из опыта следует, что: равнодействующая сил, направленных по одной прямой в одну и ту же сторону, а ее модуль равен сумме модулей составляющих сил.

На рисунке равнодействующая сил, действующих на тело, обозначена буквой R, а слагаемые силы - буквами F 1 и F 2 . В этом случае

Выясним теперь, как найти равнодействующую двух сил, действующих на тело по одной прямой в разные стороны. Тело - столик динамометра. Поставим на столик гирю весом 5 Н, т.е. подействуем на него силой 5 Н, направленной вниз. Привяжем к столику нить и подействуем на него с силой, равной 2 Н, направленной вверх. Тогда динамометр покажет силу 3 Н. Эта сила есть равнодействующая двух сил: 5 Н и 2Н.

Итак, равнодействующая двух сил, направленных по одной прямой в противоположные стороны, направлена в сторону большей по модулю силы, а ее модуль равен разности модулей составляющих сил (рис.):

Если к телу приложены две равные и направленные противоположно силы, то равнодействующая этих сил равна нулю. Например, если в нашем опыте за конец потянуть силой в 5 Н, то стрелка динамометра установится на нулевом делении. Равнодействующая двух сил в этом случае равна нулю:

Сани скатившиеся с горы, в скором времени останавливаются.

Сани, скатившись с горы, движутся по горизонтальному пути неравномерно, скорость их постепенно уменьшается, и через некоторое время они останавливаются. Человек, разбежавшись, скользит на конька по льду, но, как бы ни был гладок лед, человек все-таки останавливается. Останавливается и велосипед, когда велосипедист прекращает крутить педали. Мы знаем, что причиной таких явлений, является сила. В данном случае это сила трения.

При соприкосновении одного тела с другим получается взаимодействие, препятствующее их относительному движению, которое называется трением . А сила, характеризующая это взаимодействие называется силой трения.

Сила трения - это еще один вид силы, отличающийся от рассмотренных ранее силы тяжести и силы упругости.

Другая причина трения - взаимное притяжение молекул соприкасающихся тел.

Возникновение силы трения обусловлено главным образом первой причиной, когда поверхности тел шероховаты. Но если поверхности хорошо отполированы, то при соприкосновении часть их молекул располагается очень близко друг от друга. В этом случае начинает заметно проявляться притяжение между молекулами соприкасающихся тел.

Опыт с бруском и динамометром. Измеряем силу трения.

Силу трения можно уменьшить во много раз, если ввести между трущимися поверхностями смазку. Слой смазки разъединяет поверхности трущихся тел. В этом случае соприкасаются не поверхности тел, а слои смазки. Смазка же в большинстве случаев жидкая, а трение слоев жидкости меньше, чем твердых поверхностей. Например, на коньках малое трение при скольжении по льду объясняется также действием смазки. Между коньками и льдом образуется тонкий слой воды. В технике в качестве смазки широко применяют различные масла.

При скольжении одного тела по поверхности другого возникнет трение, которое называют трением скольжения. Например, такое трение возникнет при движении саней и лыж по снегу.

Если же одно тело не скользит, а катится по поверхности другого, то трение, возникающее при этом, называют трением качения . Так, при движении колес вагона, автомобиля, при перекатывании бревен или бочек по земле проявляется трение качения.

Силу трения можно измерить. Например, чтобы измерить силу трения скольжения деревянного бруска по доске или по столу, надо прикрепить к нему динамометр. Затем равномерно двигать брусок по доске, держа динамометр горизонтально. Что при этом покажет динамометр? На брусок в горизонтальном направлении действуют две силы. Одна сила - сила упругости пружины динамометра, направленная в сторону движения. Вторая сила - это сила трения, направленная против движения. Так как брусок движется равномерно, то это значит, что равнодействующая этих двух сил равна нулю. Следовательно, эти силы равны по модулю, но противоположны по направлению. Динамометр показывает силу упругости (силу тяги), равную по модулю силе трения.

Таким образом, измеряя силу, с которой динамометр действует на тело при его равномерном движении, мы измеряем силу трения.

Если на брусок положить груз, например гирю, и измерить по описанному выше способу силу трения, то она окажется больше силы трения, измеренной без груза.

Чем больше сила, прижимающая тело к поверхности, тем больше возникающая при этом сила трения.

Положив деревянный брусок на круглые палочки, можно измерить силу трения качения. Она оказывается меньше силы трения скольжения.

Таким образом, при равных нагрузках сила трения качения всегда меньше силы трения скольжения . Именно поэтому, люди еще в древности применяли катки для перетаскивания больших грузов, а позднее стали использовать колесо.

Трение покоя.

Трение покоя.

Мы познакомились с силой трения, возникающей при движении одного тело по поверхности другого. Но можно ли говорить о силе трения между соприкасающимися твердыми телами, если они находятся в покое?

Когда тело находится в покое на наклонной плоскости, оно удерживается на ней силой трения. Действительно, если бы не было трения, то тело под действием тяжести соскользнуло бы вниз по наклонной плоскости. Рассмотрим случай, когда тело находится в покое на горизонтальной плоскости. Например, на полу стоит шкаф. Попробуем его передвинуть. Если бы шкаф нажать слабо, то с места он не сдвинется. Почему? Действующая сила в этом случае уравновешивается силой трения между полом и ножками шкафа. Так как эта сила существует между покоящимися друг относительно друга телами, то эта сила называется силой трения покоя.

В природе и технике трение имеет большое значение. Трение может быть полезным и вредным. Когда оно полезно, его стараются увеличить, когда вредно - уменьшить.

Без трения покоя ни люди, ни животные не смогли бы ходить по земле, так как при ходьбе мы отталкиваемся от земли. Когда трение между подошвой обуви и земли (или льдом) малó, например, в гололедицу, то отталкиваться от земли очень трудно, ноги скользят. Чтобы ноги не скользили, тротуары посыпаются песком. Это увеличивает силу трения между подошвой обуви и льдом.

Не будь трения, предметы выскальзывали бы из рук.

Сила трения останавливает автомобиль при торможении, но без трения он не смог бы стоять на месте, буксовал. Что-бы увеличить трение, поверхность шин у автомобиля делаются с ребристыми выступами. Зимой, когда дорога бывает особенно скользкая, ее посыпают песком, очищают ото льда.

У многих растений и животных имеются различные органы, служащие для хватания (усики растений, хобот слона, цепкие хвосты лазающих животных). Все они имеют шероховатую поверхность для увеличения трения.

Вкладышем . Вкладыши делают из твердых металлов - бронзы, чугун или стали. Внутреннюю поверхность их покрывают особыми материалами, чаще всего баббитом (это сплав свинца или олова с другими металлами), и смазывают. Подшипники, в которых вал при вращении скользит по поверхности вкладыша, называют подшипниками скольжения .

Мы знаем, что сила трения качения при одинаковой нагрузке значительно меньше силы трения скольжения. На этом явлении основано применение шариковых и роликовых подшипников. В таких подшипниках вращающийся вал не скользит по неподвижному вкладышу подшипника, а катится по нему на стальных шариках или роликах.

Устройство простейших шарикового и роликового подшипников изображено на рисунке. Внутреннее кольцо подшипника, изготовленное из твердой стали, насажено на вал. Наружное же кольцо закреплено в корпусе машины. При вращении вала внутреннее кольцо катится на шариках или роликах, находящихся между кольцами. Замена в машине подшипников скольжения шариковыми или роликовыми подшипниками позволяет уменьшить силу трения в 20-30 раз.

Шариковые и роликовые подшипники используются в разнообразных машинах: автомобилях, токарных станках, электрических двигателях, велосипедах, и т. д. Без подшипников (они используют силу трения), невозможно представить современную промышленность и транспорт.

Взаимодействие - это действие, которое взаимно. Все тела способны между собой взаимодействовать при помощи инерции, силы, плотности вещества и, собственно, взаимодействия тел. В физике действие двух тел или системы тел друг на друга называется взаимодействием. Известно, что при сближении тел меняется характер их поведения. Эти изменения носят взаимный характер. При разведении тел на значительные расстояния взаимодействия исчезают.

При взаимодействии тел его результат всегда ощущают на себе все тела (ведь при воздействии на что-то всегда следует отдача). Так, например, в бильярде при ударе кием по шару последний отлетает намного сильнее, чем кий, что объясняется инертностью тел. Виды и мера взаимодействия тел определяются именно этой характеристикой. Одни тела менее инертны, другие более. Чем больше масса тела, тем больше его инертность. Тело, при взаимодействии изменяющее свою скорость медленнее, имеет большую массу и более инертно. Тело, быстрее изменяющее свою скорость, имеет меньшую массу и является менее инертным.

Сила - это мера, измеряющая взаимодействие тел. Физика выделяет четыре вида взаимодействий, не сводящихся друг к другу: электромагнитное, гравитационное, сильное и слабое. Чаще всего взаимодействие тел совершается при их соприкосновении, которое ведет к изменению скоростей данных тел в что измеряется действующей между ними силой. Так, чтобы привести в движение заглохший автомобиль, подталкиваемый руками, необходимо приложить силу. Если его необходимо толкать в гору, то делать это гораздо тяжелее, поскольку для этого понадобится большая сила. Лучшим вариантом при этом будет прикладывание силы, направленной вдоль дороги. В данном случае указываются величина и направление силы (отметим, сила является векторной величиной).

Взаимодействие тел происходит также под действием механической силы, следствием которой является механическое перемещение тел или их частей. Сила не является предметом созерцания, она причина движения. Всякое действие одного тела по отношению к другому проявляет себя в движении. Примером действия механической силы, порождающей движение, служит так называемый эффект "домино". Искусно расставленные костяшки домино падают одна за другой, передавая движение дальше по ряду, если толкнуть первую костяшку. Происходит передача движения от одной инертной фигурки к другой.

Взаимодействие тел при соприкосновении может приводить не только к замедлению или ускорению их скоростей, но и к их деформации - изменению объема или формы. Ярким примером может служить лист бумаги, сжатый в руке. Действуя на него силой, мы приводим к ускоренному движению частей данного листа и его деформации.

Любое тело сопротивляется деформации, когда его пытаются растянуть, сжать, согнуть. Со стороны тела начинают действовать силы, препятствующие этому (упругость). Сила упругости проявляется со стороны пружины в момент ее растяжения или сжимания. Груз, который тянут по земле за веревку, ускоряется, потому что действует сила упругости растянутого шнура.

Взаимодействие тел во время скольжения вдоль разделяющей их поверхности не вызывает их деформации. В случае, например, скольжения карандаша по гладкой поверхности стола, лыж или санок по утрамбованному снегу, действует сила, препятствующая скольжению. Это сила трения, зависящая от свойств поверхностей взаимодействующих тел и от прижимающей их друг к другу силы.

Взаимодействие тел может происходить и на расстоянии. Действие называемых также гравитационными, происходит между всеми телами вокруг, что может быть заметно лишь тогда, когда тела имеют размеры звезд или планет. формируется из гравитационного притяжения любого астрономического тела и которые вызваны их вращением. Так, Земля притягивает к себе Луну, Солнце притягивает Землю, поэтому Луна совершает обороты вокруг Земли, а Земля, в свою очередь, вращается вокруг Солнца.

На расстоянии действуют также электромагнитные силы. Несмотря на отсутствие касания какого-либо тела, стрелка компаса всегда будет поворачиваться вдоль линии магнитного поля. Примером действия электромагнитных сил является и нередко возникающее на волосах при расчесывании. Разделение зарядов на них происходит из-за силы трения. Волосы, заряжаясь положительно, начинают отталкиваться друг от друга. Подобная статика часто возникает при надевании свитера, ношении головных уборов.

Теперь вы знаете о том, что такое взаимодействие тел (определение оказалось довольно развернутым!).

>> Взаимодействие тел

  • Почему Луна движется вокруг Земли, а не улетает в космическое пространство? Какое тело называется заряженным? Как взаимо­действуют друг с другом заряженные тела? Часто ли мы сталкиваемся с электромагнитным взаимодействием? Это только часть вопросов, с которыми нам предстоит разобраться в этом параграфе. Приступим!

1. Убеждаемся, что тела взаимодействуют

В повседневной жизни мы постоянно встречаемся с различными ви­дами воздействий одних тел на другие. Чтобы открыть дверь, нужно «по­действовать» на нее рукой, от воздействия ноги мяч летит в ворота, даже присаживаясь на стул, вы действуете на него (рис. 1.35, с. 38).

В то же время, открывая дверь, мы ощущаем ее воздействие на нашу руку, действие мяча на ногу особенно ощутимо, если вы играете в футбол босиком, а действие стула не позволяет нам упасть на пол. То есть действие всегда является взаимодействием: если одно тело действует на другое, то и другое тело действует на первое.

Рис. 1.35. Примеры взаимодействия тел

Можно наглядно убедиться в том, что дейс­твие не бывает односторонним. Проведите не­сложный эксперимент : стоя на коньках, слегка толкните своего товарища. В результате начнет двигаться не только ваш товарищ, но и вы сами.

Эти примеры подтверждают вывод ученых о том, что в природе мы всегда имеем дело с вза­имодействием, а не с односторонним действием.

Рассмотрим более подробно некоторые виды взаимодействий.

2. Вспоминаем о гравитационном взаимодействии

Почему любой предмет, будь то карандаш, выпущенный из руки, лист дерева или капля дождя, падает, двигается вниз (рис. 1.36)? Поче­му стрела, выпущенная из лука, не летит прямо, а в конце концов падает на землю? Почему Луна движется вокруг Земли? Причина всех этих яв­лений заключается в том, что Земля притягивает к себе другие тела, а эти тела также притягива­ют к себе Землю. Например, притяжение Луны вызывает на Земле приливы (рис. 1.37). Наша планета и все другие планеты Солнечной систе­мы притягиваются к Солнцу и друг к другу.


Рис. 1.36. Капли дождя падают вниз под действием притяжения Земли

В 1687 году выдающийся английский фи­зик Исаак Ньютон (рис. 1.38) сформулиро­вал закон , согласно которому между всеми телами во Вселенной существует взаимное притяжение.


Рис. 1.37. Приливы являются следствием притяжения Луны

Такое взаимное притяжение ма­териальных объектов называют гравитаци­онным взаимодействием. Опираясь на опыты и математические расчеты, Ньютон установил, что интенсивность гравитационного взаимо­действия увеличивается с увеличением масс взаимодействующих тел. Именно поэтому легко убедиться в том, что нас с вами притя­гивает Земля, но мы совершенно не чувствуем притяжения нашего соседа по парте.

3. Знакомимся с макромагнитным взаимодействием

Существуют и другие виды взаимодей­ствий. Например, если потереть воздушный шарик кусочком шелка, он начнет притягивать к себе различные легкие предметы: ворсинки, зернышки риса, листочки бумаги (рис. 1.39). Про такой шарик говорят, что он наэлектризован, или заряжен.

Заряженные тела взаимодействуют меж­ду собой, но характер их взаимодействия мо­жет быть разным: они либо притягиваются, либо отталкиваются друг от друга (рис. 1.40).


Рис. 1.38. Известный английский ученый Исаак Ньютон (1643-1727)

Впервые серьезные исследования этого явления были проведены английским ученым Уильямом Гильбертом (1544-1603) в конце XVI века.


Рис. 1.39. Наэлектризованный шарик притягивает к себе лист бумаги


Рис. 1.40. Два заряженных шари­ка взаимодействуют между собой: а - притягиваются; б - отталкиваются

Взаимодействие между заряженными телами Гильберт назвал электрическим (от греч. слова elektron - янтарь), так как еще древние греки заметили, что янтарь, если его потереть, начинает притягивать к себе мелкие предметы.

Вы хорошо знаете, что стрелка компаса, если дать ей возможность свободно вращать­ся, всегда останавливается так, что один ее конец указывает на север, а другой - на юг (рис. 1.41). Это связано с тем, что стрелка ком­паса - магнит, наша планета Земля - тоже магнит , причем огромный, а два магнита всег­да взаимодействуют друг с другом. Возьмите два любых магнита, и как только вы попробу­ете приблизить их друг к другу, сразу же по­чувствуете притяжение или отталкивание. Та­кое взаимодействие называется магнитным.

Физики установили, что законы, описыва­ющие электрические и магнитные взаимодейс­твия, едины. Поэтому в науке принято говорить о едином электромагнитном взаимодействии.

С электромагнитными взаимодействиями мы встречаемся буквально на каждом шагу - ведь при ходьбе мы взаимодействуем с покрытием дороги (отталкиваемся), и природа этого взаи­модействия электромагнитная. Благодаря элек­тромагнитным взаимодействиям мы двигаемся, сидим, пишем. Видим, слышим, обоняем и ося­заем мы также с помощью электромагнитного взаимодействия (рис. 1.42). Действие большинс­тва современных приборов и бытовой техники основано на электромагнитном взаимодействии.

Скажем больше: существование физических тел, в том числе и нас с вами, было бы невоз­можно без электромагнитного взаимодействия. Ho как со всем этим связано взаимодействие заряженных шариков и магнитов? - спросите вы. He спешите: изучая физику , вы обязатель­но убедитесь, что эта связь существует.

4. Сталкиваемся с нерешенными проблемами

Наше описание окажется неполным, если мы не упомянем еще два вида взаимодейс­твий, которые были открыты только в середине прошлого века.


Рис. 1.41 Стрелка компаса всегда сориентирована на север


Рис. 1.42 Видим, слышим, понимаем благодаря электро­ магнитному взаимодействию

Они называются сильное и слабое взаимодействия и дей­ствуют только в пределах микромира. Таким образом, существуют четыре различных вида взаимодействий. He много ли? Конечно, было бы гораздо удобнее иметь дело с единым универсальным видом взаимодействия. Тем более, что пример объединения различных взаимодействий - электричес­кого и магнитного - в единое электромагнитное уже имеется.

На протяжении многих десятилетий ученые пытаются создать теорию такого объединения. Некоторые шаги уже сделаны. В 60-х годах XX века удалось создать теорию так называемого электрослабого взаимодействия, в рамках которой были объединены электромагнитное и слабое взаимодействия. Ho до полного («великого») объединения всех видов взаимодействия еще далеко. Поэтому у каждого из вас есть шанс совершить научное откры­тие мирового значения!

  • Подводим итоги

Взаимодействием в физике называется действие тел или частиц друг на друга. Мы коротко охарактеризовали два вида взаимодействия из четы­рех, известных науке: гравитационное и электромагнитное.

Притяжение тел к Земле, планет к Солнцу и наоборот - это примеры проявления гравитационного взаимодействия.

Примером электрического взаимодействия является взаимодействие на­электризованного воздушного шарика с листочками бумаги. Примером маг­нитного взаимодействия служит взаимодействие стрелки компаса с Землей, которая также является магнитом, в результате чего один конец стрелки всегда указывает на север, а второй - на юг.

Электрическое и магнитное взаимодействия - это проявления единого электромагнитного взаимодействия.

  • Контрольные вопросы

1. Приведите примеры взаимодействия тел.

2. Какие виды взаимо­действий существуют в природе?

3. Приведите примеры гравитацион­ного взаимодействия.

4. Кто открыл закон, согласно которому между всеми телами во Вселенной существует взаимное притяжение?

5. При­ведите примеры электромагнитного взаимодействия.

  • Упражнение

Напишите короткое сочинение на тему «Мой опыт, подтверждающий взаимодействие тел» (это могут быть даже стихи!).

  • Физика и техника в Украине

Значительную часть своей короткой жизни Лев Васильевич Шубников (1901- 1945) прожил в Харькове, где возглавлял лабо­раторию низких температур. Уровень точности многих измерений в лаборатории не уступал современному. В лаборатории в 30-х го­дах были получены кислород, азот и другие газы в жидком состоя­нии. Шубников был родоначальником исследования металлов в так называемом сверхпроводимом состоянии, когда электрическое сопростивление материалу равно нулю. Наивысшая награда для уче­ного - это когда для названия открытого им явления используют вместо технического термина фамилию самого ученого. «Эффект Шубникова- де Гааза»; «фаза Шубникова»; «метод Обреимова- Шубникова» - это лишь несколько примеров вклада известного украинского ученого в строительство современной физики.

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.