ОПРЕДЕЛЕНИЕ

Сероводород представляет собой бесцветный газ с характерным запахом гниющего белка.

Он немного тяжелее воздуха, сжижается при температуре -60,3 o С и затвердевает при -85,6 o С. На воздухе сероводород горит голубоватым пламенем, образуя диоксид серы и воду:

2H 2 S + 3O 2 = 2H 2 O + 2SO 2 .

Если внести в пламя сероводорода какой-нибудь холодный предмет, например фарфоровую чашку, то температура пламени значительно понижается и сероводород окисляется только до свободной серы, оседающей на чашке в виде желтого налета:

2H 2 S + O 2 = 2H 2 O + 2S.

Сероводород легко воспламеняется; смесь его с воздухом взрывает. Сероводород очень ядовит. Длительное вздыхание воздуха, содержащего этот газ даже в небольших количествах, вызывает тяжелые отравления.

При 20 o С один объем воды растворяет 2,5 объема сероводорода. Раствор сероводорода в воде называется сероводородной водой. При стоянии на воздухе, особенно на свету, сероводородная воды скоро становится мутной от выделяющейся серы. Это происходит в результате окисления сероводорода кислородом воздуха.

Получение сероводорода

При высокой температуре сера взаимодействует с водородом, образуя газ сероводород.

Практически сероводород обычно получают действием разбавленных кислот на сернистые металлы, например на сульфид железа:

FeS + 2HCl = FeCl 2 + H 2 S.

Более чистый сероводород можно получитьпри гидролизе CaS, BaS или A1 2 S 3 . Чистейший газполучается прямой реакцией водорода и серы при 600 °С.

Химические свойства сероводорода

Раствор сероводорода в воде обладает свойствами кислота. Сероводород - слабая двухосновная кислота. Она диссоциирует ступенчато и в основном по первой ступени:

H 2 S↔H + + HS — (K 1 = 6×10 -8).

Диссоциация по второй ступени

HS — ↔H + + S 2- (K 2 = 10 -14)

протекает в ничтожно малой степени.

Сероводород - сильный восстановитель. При действии сильных окислителей он окисляется до диоксида серы или до серной кислоты; глубина окисления зависит от условий: температуры, рН раствора, концентрации окислителя. Например, реакция с хлором обычно протекает до образования серной кислоты:

H 2 S + 4Cl 2 + 4H 2 O = H 2 SO 4 + 8HCl.

Средние соли сероводорода называют сульфидами.

Применение сероводорода

Применение сероводорода довольно ограничено, что, в первую очередь связано с его высокой токсичностью. Он нашел применение в лабораторной практике в качестве осадителя тяжелых металлов. Сероводород служит сырьем для получения серной кислоты, серы в элементарном виде и сульфидов

Примеры решения задач

ПРИМЕР 1

Задание Определите во сколько раз тяжелее воздуха сероводород H 2 S.
Решение Отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Данная величина показывает, во сколько раз первый газ тяжелее или легче второго газа.

Относительную молекулярную массу воздуха принимают равной 29 (с учетом содержания в воздухе азота, кислорода и других газов). Следует отметить, что понятие «относительная молекулярная масса воздуха» употребляется условно, так как воздух - это смесь газов.

D air (H 2 S) = M r (H 2 S) / M r (air);

D air (H 2 S) = 34 / 29 = 1,17.

M r (H 2 S) = 2 ×A r (H) + A r (S) = 2 × 1 + 32 = 2 + 32 = 34.

Ответ Сероводород H 2 S тяжелее воздуха в 1,17 раз.

ПРИМЕР 2

Задание Найдите плотность по водороду смеси газов, в которой объемная доля кислорода составляет 20%, водорода - 40%, остальное - сероводород H 2 S.
Решение Объемные доли газов будут совпадать с молярными, т.е. с долями количеств веществ, это следствие из закона Авогадро. Найдем условную молекулярную массу смеси:

M r conditional (mixture) = φ (O 2) ×M r (O 2) + φ (H 2) ×M r (H 2) + φ (H 2 S) ×M r (H 2 S);

H 2 S– бесцветный газ с запахом тухлых яиц, плотностьH 2 Sв 1,19 раза выше плотности воздуха, поэтому он скапливается на пониженных участках (устьевые шахты и амбары для хранения БР).

H 2 Sобразует взрывоопасную смесь с воздухом в концентрации от 4,3 до 45% (метан в концентрации от 5 до 15%). Температура воспламененияH 2 S500 O F(260 O C), метана – 1000 O F(538 O C).H 2 Sгорит синим пламенем, при этом выделяется другой токсичный газ –SO 2 .H 2 Sхорошо растворяется в пресной воде, образуя слабую сероводородную кислоту.

Опасные свойства h2s

Наиболее опасное свойство H 2 S– это токсичность (таблица).

Кроме того, H 2 Sможет вызывать сильную коррозию. Признаками такой коррозии являются точечная коррозия и растрескивание под действием напряжений, ведущие к эрозии и разрушению труб.

Обнаружение и определение содержания h2s

Наличие H 2 Sв воздухе определяют с помощью электронных датчиков непрерывного контроля высокой чувствительности (регистрируютH 2 Sпри массовой доле 0,0001% и менее). При этом решающее значение имеет правильное размещение датчиков.

Отбор и анализ проб БР начинают за 50 м до вскрытия H 2 S-содержающего пласта.

Растворяясь в воде, H 2 Sдиссоциирует в два этапа с образованием гидросульфид- и сульфид-ионов:

I: H 2 S -> H + + HS - (pH = 4÷11)

II: HS - -> H + + S -- (pH > 11)

Так как pH> 11 в БР почти не бывает, то относительно «безобидные» сульфиды практически отсутствуют, а водорастворимые гидросульфиды могут снова превратиться вH 2 S:

HS - + H + ↔ H 2 S

Для обнаружения H 2 Sв БР используют «свинцовую» бумагу, т.е. полоски фильтровальной бумаги, пропитанныеPb(CH 3 COO) 2:

Pb(CH 3 COO) 2 + H 2 S -> PbS + 2CH 3 COOH

при этом бумага темнеет. Но этот метод позволяет только фиксировать наличие H 2 Sи сульфидов. Наиболее удобен газоанализатор Гаррэта, позволяющий определить весь объемH 2 Sи сульфидов, а также оценить эффективность поглотителяH 2 S. Если в фильтрате не обнаружено водорастворимых сульфидов, значитH 2 Sполностью удален из БР.

Влияние h2s на свойства бр и металл

Основные признаки поступления H 2 Sв БР:

    понижение pH;

    увеличение вязкости до нетекучести и фильтрации (коагуляция);

    сближение значений СНС за 1 и 10 мин;

    высокая адгезия глинистой корки, сальникообразование, приводящее к прихвату;

    почернение бурильных труб, которое легко удаляется ветошью, смоченной дизтопливом.

Как уже отмечалось, H 2 Sобладает высокой коррозионной активностью. Особенно опасно водородное «охрупчивание» металла. При «охрупчивании» образующийся в результате диссоциации сероводорода в воде атомарный водород диффундирует внутрь металла, резко изменяя его свойства. Повреждения металла при этом не имеют никаких внешних признаков и происходят не сразу. Существует так называемый инкубационный период, достигающий в зависимости от прочности стали и массовой долиH 2 Sдо 10000 часов. Затем внезапно наступает разрушение металла, при этом слом – пиловидный.

Нейтрализация h2s в буровом растворе

Химические реагенты, применяемые для нейтрализации (удаления) всех сульфидов, содержащихся в растворенном виде (H 2 S, ионыHS - иS --) называются «поглотителями сероводорода).

Идеальный поглотитель H 2 Sдолжен отвечать следующим требованиям:

    реакция должна быть полной, кратковременной и прогнозируемой; продукты реакции всегда должны оставаться инертными для БР;

    быть эффективным для различных химических и физических параметров БР;

    избыточное количество поглотителя не должно отрицательно влиять на свойства БР;

    сам поглотитель и продукты его реакции не должны оказывать коррозирующего действия;

    быть не токсичным.

Ни один из существующих поглотителей не может считаться идеальным. Но ряд химических реагентов могут применяться в качестве эффективных поглотителей H 2 S. Большинство из них обеспечивают удаление сульфидов из БР в результате образования нерастворимого осадка (водонерастворимого сульфида).

В атмосфере водорода, можно почувствовать неприятный запах протухших яиц. Это водород вступил в химическую реакцию с серой и образовался сероводород H 2 S. Этот запах можно почувствоват, если ехать мимо шельфа Чёрного моря. На глубине 150 м и глубже море имеет повышенную концентрацию сероводорода. Сероводород выходит наружу на мелководье. Он ядовит, поэтому что на глубине уже 150 м практически нет жизни.

Необходимо помнить, что сероводород – опасный и ядовитый газ, вызывающий поражение дыхательных путей. Смертельный исход может наступить при концентрации сероводорода в воздухе 1,2…2,8 мг/л. Опыты с сероводородом необходимо проводить только на открытом воздухе или под вытяжкой.

Человеческий организм способен улавливать молекулы сероводорода в воздухе уже при концентрации 0,0000001 мг/л. Но если пребывать в атмосфере этого газа достаточно долго, то, не смотря на концентрацию сероводорода в воздухе, наступает паралич обонятельного нерва, что влечёт отсутствие какого-либо дальнейшего ощущения газа.

Наличие сероводорода в воздухе можно легко определить путём влажной бумаги, которая смочена в специально приготовленном свинцовом растворе, то есть использовать растворимую соль свинца (кстати, соли свинца - тоже ядовиты!) в качестве индикатора. При взаимодействии сероводорода из воздуха с влажной бумагой (а точнее с раствором соли свинца) на бумаге постепенно будет появляться черный осадок. С химической точки зрения – это сульфид свинца PbS – нерастворимая соль свинца.

Конечно, нерастворимая – сильно сказано, на самом деле растворима, но в определенных растворителях, правильнее сказать – слабодисоциируемая в исходном растворе. Таким образом, легко определить присутствие сероводорода, например в яйцах, мясе.

Получение сероводорода

Получение сероводорода

Сероводород H 2 S в лабораторных (и домашних) условиях можно получить путём воздействия на сульфид железа FeS соляной кислотой HCl. Реакция будет сопровождаться интенсивным выделением газа – сероводорода. Реакция будет происходить так:

FeS + 2HCl→ H2S + FeCl2

например, для опытов дома не представляет никаких сложностей. Для этого можно использовать обыкновенный парафин от свечи. Для этого нам понадобится парафин, порошок мелкоизмельчённой серы и газовая горелка. Нужно расплавить в фарфоровой чашке (желательно в фарфоровой) около 25 г парафина и добавить туда порошок серы 15 г. После расплавления убираем горелку и даём постепенно смеси остывать, при этом необходимо помешивать получаемый раствор. Теперь, когда смесь застыла, её можно измельчить. Всё готово для получения сероводорода .

Итак, получим сероводород, для чего возьмём немного измельчённой смеси и будем медленно её нагревать, предварительно поместив смесь в пробирку с газоотводной трубкой. Нагревать нужно до температуры 170 0 С и больше. Получение сероводорода можно контролировать путём повышения или уменьшения температуры: сероводород выделяется более интенсивно при повышении температуры, при уменьшении температуры – меньше или совсем прекращается.
Так вот, в процессе химической реакции парафин (а именно водород, находящийся в парафине) взаимодействует с серой, при этом выделяется сероводород и образуется углерод.
Реакция протекает так.

Hydrogen Sulphide (H2S) – сероводород – опасный природный газ, с которым можно столкнуться в нефтегазовой промышленности. Проще говоря, на буровых платформах и местах хранения нефти, как offshore, так и onshore. Нас больше интересует оффшор. И здесь делаю дополнение, что под риск попадают не только те, кто работают на платформах, но и те, кто их обслуживает: суда снабжения, якорезаводки, даже те, кто проводят работы на нефтяных полях (DSV, ROV), FPSO и т.д. Знать свойства H2S и проводить подготовки должным образом – жизненно необходимо.

И так, H2S токсичен .

H2S газ, после того, как его вдохнул человек, попадает в лёгкие, далее переносится кровью и парализует нервные центры мозга, которые отвечают за дыхание. Человек умирает от удушья, поскольку лёгкие прекращают работать, что неминуемо ведёт к отмиранию тканей.

- H2S присущ характерный запах .

По запаху H2S напоминает тухлые яйца (rotten eggs). От сюда этот газ ещё называют “Rotten Egg gas” или “sour gas”. Однако этот запах можно распознать только при низкой концентрации. В средней и высокой концентрации H2S притупляет обоняние и запах невозможно распознать. Поэтому не следует доверять своему носу в попытках определить присутствие сероводорода.

- H2S бесцветный газ.

И этот факт делает H2S газ ещё более опасным. Зрительно этот газ определить нельзя.

- H2S тяжелее воздуха .

Удельный вес H2S относительно воздуха составляет 1,189, что означает, что H2S тяжелее воздуха на 20% и во время утечки при отсутствии ветра он будет стелиться внизу. Таким образом, более безопасным местом, в таком случае, будет считаться мостик (если говорить о судне), где и назначают место сбора во время H2S тревоги.

- H2S взрывоопасен .

При определенной концентрации H2S становится взрывоопасным. Верхняя и нижняя границы этой концентрации соответственно 4,3% – 46%.

- H2S воспламеняемый .

Продуктом горения H2S является также опасный газ – SO2. Однако SO2 тяжелее, чем H2S, и соответственно тяжелее воздуха.

- H2S растворим в воде .

В результате комбинации H2S и воды получается кислота. Что объяснят ощущение жжения в области глаз у людей, в случаях утечки H2S.

- H2S является коррозийным .

H2S разъедает железо, сталь, латунь с высоким содержанием цинка, природный каучук и даже некоторые виды пластика.

- H2S переносится ветром .

Ветер может подхватить H2S газ и переносить его даже вертикально вверх (если из-за конструктивных особенностей объектов ветер приобретает такую направленность). Во время опасности утечки H2S, правильным будет уходить от места утечки против ветра.

Теперь поговорим о единицах измерения и вреде H2S при разных концентрациях.

H2S измеряется в ppm (parts per million). И переход от ppm к % следующий:

1 ppm = 0.0001% 10 ppm = 0.001% 100 ppm = 0.01% 1000 ppm = 0.1% 10000 ppm = 1%

То, как долго человек может пребывать в присутствии H2S в воздухе, зависит от физиологического состояния самого человека. Безопасным считается пребывание около 8 часов в день, не более 5 дней в неделю при 10 ppm H2S.

У человека, который длительный срок подвергается воздействию H2S, наблюдаются: нарушение нормальной работы лёгких; головная боль, тошнота, депрессия, слабость; нарушение сердечно-сосудистой системы.

Признаки и опасность различных концентраций H2S.

0.13 ppm – нижний порог, при котором распознаётся запах тухлых яиц;

10 ppm – возможна головная боль, начинается болезненная чувствительность глаз;

27 ppm – верхний порог запаха. Ощущается очень сильный и неприятный запах;

20-50 ppm – ощущается боль в дыхательных путях, глазах (также слёзоточивость и чувствительность к свету) и лёгких;

100-200 ppm – пропадает обоняние;

250-500 ppm – отёк лёгких (лёгкие набираются жидкости);

500 ppm – постепенная потеря сознания;

700-1000 ppm – стремительная потеря сознания, остановка дыхания с последующим летательным исходом;

1000 ppm и выше – смерть.

И следует упомянуть, что смерть от отравления H2S газом наступает в районе 1000 ppm, что составляет всего лишь 0,1%, а свойство взрывоопасности H2S присутствует при концентрации 4,3% – 46%. Именно по этому токсичность рассматривают как первоочередную опасность. Так как пока дело дойдёт до взрыва, уже никого может не остаться в живых.

Чтобы обезопасить себя от опасностей , связанных с H2S , нужно:

Знать, что нельзя доверять своему носу в попытках определить присутствие H2S газа;

Следовать процедурам (проводить замеры газа приборами, следовать проверочным листам);

Регулярно проверять фиксированные и портативные газ детекторы;

Портативные газ детекторы не должны находиться в кармане во время работы в потенциально опасных местах;

Портативные газ детекторы должны подавать визуальное и звуковое оповещение при концентрации H2S в 10ppm и выше;

Уметь надевать дыхательный аппарат в течение 30 секунд;

Запрещено проводить поиково-спасательные операции в дыхательных аппаратах, предназначенных только для покидания мест (предназначенные на 10-15 минут использования) с содержанием H2S в воздухе. Для поиска и спасения должны быть специальные дыхательные аппараты продолжительного использования.

Оказание первой помощи:

Как можно скорее переместить пострадавшего в безопасное место;

Если пострадавший без сознания, то сделать искусственное дыхание и непрямой массаж сердца;

Если пострадавший в сознании, то проводить меры по необходимости (кислород для облегчения дыхания, промыть глаза в течение 10-15 минут, если ощущается боль);

Снять одежду, которая могла пропитаться H2S газом (например, если человек потел, и одежда влажная). При раздражении кожи, также промыть участки кожи под струёй воды (при необходимости предоставить душ) в течение 10-15 минут.

Здесь отдельный акцент сделаю на том, что мы упомянули, что носу доверять нельзя. А что же тогда может послужить индикатором? Газ детектор – это понятно, но если он неисправен или отсутствует? Мы говорили, что H2S в соединении с водой образует кислоту. Если человек вспотел, то он будет ощущать дискомфорт (раздражение кожи, чесаться), также ощущается жжение в области глаз. Поэтому Ваше собственное тело или люди вокруг могут послужить тем верным индикатором, который укажет на опасность.

С уважением Евгений Богаченко

Примеры решения задач. Пример 2.1.Рассчитать эквивалент и молярную массу эквивалентов H2S и NaOH в реакциях H2S + 2NaOH = Na2S + 2H2O (1) и

H 2 S + NaOH = NaHS + H 2 O (2)

Решение кислоты или основания , участвующихв кислотно-основной реакции, рассчитывается по формуле

М эк (кислоты, основания) = ,

где М – молярная масса кислоты или основания; n – для кислот – число атомов водорода, замещенных в данной реакции на металл; для оснований – число гидроксильных групп, замещенных в данной реакции на кислотный остаток.

Значение эквивалента и молярной массы эквивалентов вещества зависит от реакции, в которой это вещество участвует.

В реакции H 2 S + 2NaOH = Na 2 S + 2H 2 O (1) оба иона водорода молекулы H 2 S замещаются на металл и, таким образом, одному иону водорода эквивалентна условная частица ½ H 2 S. В этом случае

Э (H 2 S) = ½ H 2 S, а М эк (H 2 S) = .

В реакции H 2 S + NaOH = NaHS + H 2 O (2) в молекуле H 2 S на металл замещается только один ион водорода и, следовательно, одному иону эквивалентна реальная частица – молекула H 2 S. В этом случае

Э (H 2 S) = 1 H 2 S, а М эк (H 2 S) = = 34 г/моль.

Эквивалент NaOH в реакциях (1) и (2) равен 1 NaOH, так как в обоих случаях на кислотный остаток замещается одна гидроксильная группа.

М эк (NaOH) = 40 г/моль.

Таким образом, эквивалент H 2 S в реакции (1) равен ½ H 2 S, реакции (2) −

1H 2 S, молярные массы эквивалентов H 2 S равны соответственно 17 (1) и 34 (2) г/моль; эквивалент NaOH в реакциях (1) и (2) равен 1NaOH, молярная масса эквивалентов основания составляет 40 г/моль.

Решение . Молярная масса эквивалентов оксида рассчитывается по формуле

М эк (оксида) = ,

где М – молярная масса оксида; n – число катионов соответствующего оксиду основания или число анионов соответствующей оксиду кислоты; |c.o.| – абсолютное значение степени окисления катиона или аниона.

В реакции P 2 O 5 + 3CaO = Ca 3 (PO 4) 2 эквивалент P 2 O 5 , образующего два трехзарядных аниона (РО 4) 3- , равен 1 / 6 P 2 O 5 , а

М эк (P 2 O 5) = г/моль. Эквивалент СаО, дающего один двухзарядный катион (Са 2+), равен ½ СаО, а М эк (СаО) = = 28 г/моль.

Пример 2.3. Вычислить эквивалент и молярную массу эквивалентов фосфора в соединениях РН 3 , Р 2 О 3 и Р 2 О 5 .

Решение. Чтобы определить молярную массу эквивалентов элемента в соединении, можно воспользоваться формулой

М эк (элемента) = ,

где М А – молярная масса элемента; |c.o.| – абсолютное значение степени окисления элемента.

Степень окисления фосфора в РН 3 , Р 2 О 3 , Р 2 О 5 соответственно равна ­3, +3 и +5. Подставляя эти значения в формулу, находим, что молярная масса эквивалентов фосфора в соединениях РН 3 и Р 2 О 3 равна 31/3 = 10,3 г/моль; в Р 2 О 5 ­

31/5 = 6,2 г/моль, а эквивалент фосфора в соединениях РН 3 и Р 2 О 3 равен 1 / 3 Р, в соединении Р 2 О 5 – 1 / 5 Р.

Решение . Молярная масса эквивалентов химического соединения равна сумме молярных масс эквивалентов составляющих его частей.

М эк (РН 3) = М эк (Р) + М эк (Н) = 10,3 + 1 = 11 г/моль;

М эк (Р 2 О 3) = М эк (Р) + М эк (О) = 10,3 + 8 = 18,3 г/моль;

М эк (Р 2 О 5) = М эк (Р) + М эк (О) = 6,2 + 8 = 14,2 г/моль.

Пример 2.5. На восстановление 7,09 г оксида металла со степенью окисления +2 требуется 2,24 л водорода (н.у.). Вычислить молярные массы эквивалентов оксида и металла. Чему равна молярная масса металла?

Решение. Задача решается по закону эквивалентов. Так как одно из реагирующих веществ находится в газообразном состоянии, то удобно воспользоваться формулой:

где V эк – объем одного моля эквивалентов газа. Для вычисления объема моля эквивалентов газа необходимо знать число молей эквивалентов (υ) в одном моле газа: υ = . Так, М (Н 2) = 2 г/моль; М эк (Н 2) = 1 г/моль. Следовательно, в одном моле молекул водорода Н 2 содержится υ = 2/1 = 2 моль эквивалентов водорода. Как известно, моль любого газа при нормальных условиях (н.у.) (Т=273 К, р=101,325 кПа) занимает объем 22,4 л. Значит, моль водорода займет объем 22,4 л, а так как в одном моле водорода содержится 2 моль эквивалентов водорода, то объем одного моля эквивалентов водорода равен V эк (Н 2) = 22,4 / 2 = 11,2 л. Аналогично М (О 2) = 32 г/моль, М эк (О 2) = 8 г/моль. В одном моле молекул кислорода О 2 содержится υ = 32 / 8 = 4 моль эквивалентов кислорода. Один моль эквивалентов кислорода при н.у. занимает объем V эк (О 2) = 22,4 / 4 = 5,6 л.

Подставив в формулу

численные значения, находим, что

М эк (оксида) = г/моль.

Молярная масса эквивалентов химического соединения равна сумме молярных масс эквивалентов составляющих его частей. Оксид – это соединение металла с кислородом, поэтому молярная масса эквивалентов оксида представляет собой сумму М эк (оксида) = М эк (металла) + М эк (кислорода). Отсюда М эк. (металла) = М эк. (оксида) − М эк. (кислорода) = 35,45 – 8 = 27,45 г/моль.

Молярная масса эквивалентов элемента (М эк.) связана с атомной массой элемента (М А) соотношением: М эк (элемента) = , где ½с.о.½ − степень окисления элемента. Отсюда М А = М эк (металла) ∙ ½с.о.½ = 27,45×2 = 54,9 г/моль.

Таким образом, М эк. (оксида) = 35,45 г/моль; М эк. (металла) = 27,45 г/моль; М А (металла) = 54,9 г/моль.

Пример 2.6. При взаимодействии кислорода с азотом получено 4 моль эквивалентов оксида азота (IV). Рассчитать объемы газов, вступивших в реакцию при нормальных условиях.

Решение. По закону эквивалентов число молей эквивалентов веществ, вступающих в реакцию и образующихся в результате реакции, равны между собой, т.е. υ (О 2) = υ (N 2) = υ (NO 2). Так как получено 4 моль эквивалентов оксида азота (IV), то, следовательно, в реакцию вступило 4 моль эквивалентов О 2 и 4 моль эквивалентов N 2 .

Азот изменяет степень окисления от 0 (в N 2) до +4 (в NО 2), и так как в его молекуле 2 атома, то вместе они отдают 8 электронов, поэтому

М эк (N 2) = = = 3,5 г/моль. Находим объем, занимаемый молем эквивалентов азота (IV):

28 г/моль N 2 – 22,4 л

3,5 г/моль N 2 – х

х = л.

Так как в реакцию вступило 4 моль эквивалентов N 2 , то их объем составляет V (N 2) = 2,8·4 = 11,2 л. Зная, что моль эквивалентов кислорода при н.у. занимает объем 5,6 л, рассчитываем объем 4 моль эквивалентов О2, вступивших в реакцию: V (O 2) = 5,6·4 = 22,4 л.



Итак, в реакцию вступило 11,2 л азота и 22,4 л кислорода.

Пример 2.7. Определить молярную массу эквивалентов металла, если из 48,15 г его оксида получено 88,65 г его нитрата.

Решение. Учитывая, что М эк (оксида) = М эк (металла) + М эк (кислорода), а М эк (соли) = М эк (металла) + М эк (кислотного остатка), подставляем соответствующие данные в закон эквивалентов:

; ;

М эк (металла) = 56,2 г/моль.

Пример 2.8. Вычислить степень окисления хрома в оксиде, содержащем 68,42 % (масс.) этого металла.

Решение. Приняв массу оксида за 100%, находим массовую долю кислорода в оксиде: 100 – 68,42 = 31,58%, т.е. на 68,42 частей массы хрома приходится 31,58 частей массы кислорода, или на 68,42 г хрома приходится 31,58 г кислорода. Зная, что молярная масса эквивалентов кислорода равна 8 г/моль, определим молярную массу эквивалентов хрома в оксиде по закону эквивалентов:

; М эк (Cr)= г/моль.

Степень окисления хрома находим из соотношения

М эк (Cr)= , отсюда |c. o.|= .

Задачи

№ 2.1. При взаимодействии 6,75 г металла с серой образовалось 18,75 г сульфида. Рассчитать молярные массы эквивалентов металла и его сульфида. Молярная масса эквивалентов серы равна 16 г/моль.

(Ответ: 9 г/моль; 25 г/моль).

№ 2.2. Вычислить степень окисления золота в соединении состава: 64,9% золота и 35,1% хлора. Молярная масса эквивалентов хлора 35,45 г/моль.

(Ответ: 3).

№ 2.3. Вычислить молярные массы эквивалентов и эквиваленты Р 2 О 5 в реакциях, идущих по уравнениям:

Р 2 О 5 + 3MgO = Mg 3 (PO 4) 2 ;

P 2 O 5 + MgO = Mg(PO 3) 2 .

(Ответ: 23,7 г/моль; 71 г/моль).

№ 2.4 . Сколько моль эквивалентов металла вступило в реакцию с кислотой, если при этом выделилось 5,6 л водорода при нормальных условиях?

(Ответ: 0,5 моль).

№ 2.5. На нейтрализацию 0,943 г фосфористой кислоты Н 3 РО 3 израсходовано 1,291 г КОН. Вычислить молярную массу эквивалентов кислоты.

(Ответ: 41 г/моль).

№ 2.6 . Определить молярную массу эквивалентов металла и назвать металл, если 8,34 г его окисляются 0,68 л кислорода (н.у.). Металл окисляется до степени окисления +2. (Ответ: 68,7 г/моль).

№ 2.7. Вычислить степень окисления свинца в оксиде, в котором на 1 г свинца приходится 0,1544 г кислорода. (Ответ: 4).

№ 2.8. Вычислить эквивалент и молярную массу эквивалентов Al(OH) 3 в каждой из следующих реакций, выраженных уравнениями:

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O;

Al(OH) 3 + 2HCl = AlOHCl 2 + 2H 2 O;

Al(OH) 3 + HCl = Al(OH) 2 Cl + H 2 O.

№ 2.9 . Для получения гидроксида железа (III) смешали растворы, содержащие 0,2 моль эквивалентов щелочи и 0,3 моль эквивалентов хлорида железа (III). Сколько граммов гидроксида железа (III) получилось в результате реакции? (Ответ: 7,13 г).

№ 2.10 . Из 1,3 г гидроксида металла получается 2,85 г его сульфата. Вычислить молярную массу эквивалентов этого металла. (Ответ: 9 г/моль).

№ 2.11. При взаимодействии 22 г металла с кислотой выделилось при н. у. 8,4 л водорода. Рассчитать молярную массу эквивалентов металла. Сколько литров кислорода потребуется для окисления этого же количества металла? (Ответ: 29,33 г/моль; 4,2 л.).

№ 2.12. Вычислить степень окисления мышьяка в соединении его с серой, в котором на 1 г мышьяка приходится 1,07 г серы. Молярная масса эквивалентов серы 16 г/моль. (Ответ: 5).

№ 2.13. Вычислить эквивалент и молярную массу эквивалентов Н 3 РО 4 в каждой из следующих реакций, выраженных уравнениями:

Н 3 РО 4 + КОН = КН 2 РО 4 + Н 2 О;

Н 3 РО 4 + 2КОН = К 2 НРО 4 + 2Н 2 О;

Н 3 РО 4 + 3КОН = К 3 РО 4 + 3Н 2 О.

№ 2.14. При взаимодействии водорода и азота получено 6 моль эквивалентов аммиака. Какие объемы водорода и азота вступили при этом в реакцию при нормальных условиях? (Ответ: 67,2 л; 22,4 л.)

№ 2.15. При пропускании сероводорода через раствор, содержащий 2,98 г хлорида металла, образуется 2,2 г его сульфида. Вычислить молярную массу эквивалентов металла. (Ответ: 39 г/моль).

№ 2.16 . Молярная масса эквивалентов металла равна 56,2 г/моль. Вычислить массовую долю металла в его оксиде. (Ответ: 87,54%).

№ 2.17 . Определить эквивалент и молярную массу эквивалентов азота, кислорода, углерода в соединениях NH 3 , H 2 O, CH 4 .

№ 2.19. На нейтрализацию 9,797 г ортофосфорной кислоты израсходовано 7,998 г NaOH. Вычислить эквивалент, молярную массу эквивалентов и основность Н 3 РО 4 в этой реакции. На основании расчета написать уравнение реакции. (Ответ: ½ H 3 РО 4 ; 49 г/моль; 2).

№ 2.20 . 0,43 г металла при реакции с кислотой вытеснили при н. у. 123,3 мл водорода. 1,555 г этого же металла вступают во взаимодействие с 1,415 г некоторого неметалла. Рассчитать молярную массу эквивалентов неметалла.

(Ответ: 35,5 г/моль).