Дисперсия — это мера рассеяния, описывающая сравнительное отклонение между значениями данных и средней величиной. Является наиболее используемой мерой рассеяния в статистике, вычисляемая путем суммирования, возведенного в квадрат, отклонения каждого значения данных от средней величины. Формула для вычисления дисперсии представлена ниже:

s 2 – дисперсия выборки;

x ср — среднее значение выборки;

n размер выборки (количество значений данных),

(x i – x ср) — отклонение от средней величины для каждого значения набора данных.

Для лучшего понимания формулы, разберем пример. Я не очень люблю готовку, поэтому занятием этим занимаюсь крайне редко. Тем не менее, чтобы не умереть с голоду, время от времени мне приходится подходить к плите для реализации замысла по насыщению моего организма белками, жирами и углеводами. Набор данных, редставленный ниже, показывает, сколько раз Ренат готовит пищу каждый месяц:

Первым шагом при вычислении дисперсии является определение среднего значения выборки, которое в нашем примере равняется 7,8 раза в месяц. Остальные вычисления можно облегчить с помощью следующей таблицы.

Финальная фаза вычисления дисперсии выглядит так:

Для тех, кто любит производить все вычисления за один раз, уравнение будет выглядеть следующим образом:

Использование метода «сырого счета» (пример с готовкой)

Существует более эффективный способ вычисления дисперсии, известный как метод «сырого счета». Хотя с первого взгляда уравнение может показаться весьма громоздким, на самом деле оно не такое уж страшное. Можете в этом удостовериться, а потом и решите, какой метод вам больше нравится.

— сумма каждого значения данных после возведения в квадрат,

— квадрат суммы всех значений данных.

Не теряйте рассудок прямо сейчас. Позвольте представить все это в виде таблицы, и тогда вы увидите, что вычислений здесь меньше, чем в предыдущем примере.

Как видите, результат получился тот же, что и при использовании предыдущего метода. Достоинства данного метода становятся очевидными по мере роста размера выборки (n).

Расчет дисперсии в Excel

Как вы уже, наверное, догадались, в Excel присутствует формула, позволяющая рассчитать дисперсию. Причем, начиная с Excel 2010 можно найти 4 разновидности формулы дисперсии:

1) ДИСП.В – Возвращает дисперсию по выборке. Логические значения и текст игнорируются.

2) ДИСП.Г — Возвращает дисперсию по генеральной совокупности. Логические значения и текст игнорируются.

3) ДИСПА — Возвращает дисперсию по выборке с учетом логических и текстовых значений.

4) ДИСПРА — Возвращает дисперсию по генеральной совокупности с учетом логических и текстовых значений.

Для начала разберемся в разнице между выборкой и генеральной совокупностью. Назначение описательной статистики состоит в том, чтобы суммировать или отображать данные так, чтобы оперативно получать общую картину, так сказать, обзор. Статистический вывод позволяет делать умозаключения о какой-либо совокупности на основе выборки данных из этой совокупности. Совокупность представляет собой все возможные исходы или измерения, представляющие для нас интерес. Выборка — это подмножество совокупности.

Например, нас интересует совокупность группы студентов одного из Российских ВУЗов и нам необходимо определить средний бал группы. Мы можем посчитать среднюю успеваемость студентов, и тогда полученная цифра будет параметром, поскольку в наших расчетах будет задействована целая совокупность. Однако, если мы хотим рассчитать средний бал всех студентов нашей страны, тогда эта группа будет нашей выборкой.

Разница в формуле расчета дисперсии между выборкой и совокупностью заключается в знаменателе. Где для выборки он будет равняться (n-1), а для генеральной совокупности только n.

Теперь разберемся с функциями расчета дисперсии с окончаниями А, в описании которых сказано, что при расчете учитываются текстовые и логические значения. В данном случае при расчете дисперсии определенного массива данных, где встречаются не числовые значения, Excel будет интерпретировать текстовые и ложные логические значения как равными 0, а истинные логические значения как равными 1.

Итак, если у вас есть массив данных, рассчитать его дисперсию ни составит никакого труда, воспользовавшись одной из перечисленных выше функций Excel.

На данной странице описан стандартный пример нахождения дисперсии, также Вы можете посмотреть другие задачи на её нахождение

Пример 1. Определение групповой, средней из групповой, межгрупповой и общей дисперсии

Пример 2. Нахождение дисперсии и коэффициента вариации в группировочной таблице

Пример 3. Нахождение дисперсии в дискретном ряду

Пример 4. Имеются следующие данные по группе из 20 студентов заочного отделения. Нужно построить интервальный ряд распределения признака, рассчитать среднее значение признака и изучить его дисперсию

Построим интервальную группировку. Определим размах интервала по формуле:

где X max– максимальное значение группировочного признака;
X min–минимальное значение группировочного признака;
n – количество интервалов:

Принимаем n=5. Шаг равен: h = (192 - 159)/ 5 = 6,6

Составим интервальную группировку

Для дальнейших расчетов построим вспомогательную таблицу:

X"i– середина интервала. (например середина интервала 159 – 165,6 = 162,3)

Среднюю величину роста студентов определим по формуле средней арифметической взвешенной:

Определим дисперсию по формуле:

Формулу можно преобразовать так:

Из этой формулы следует, что дисперсия равна разности средней из квадратов вариантов и квадрата и средней.

Дисперсия в вариационных рядах с равными интервалами по способу моментов может быть рассчитана следующим способом при использовании второго свойства дисперсии (разделив все варианты на величину интервала). Определении дисперсии , вычисленной по способу моментов, по следующей формуле менее трудоемок:

где i - величина интервала;
А - условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
m1 - квадрат момента первого порядка;
m2 - момент второго порядка

Дисперсия альтернативного признака (если в статистической совокупности признак изменяется так, что имеются только два взаимно исключающих друг друга варианта, то такая изменчивость называется альтернативной) может быть вычислена по формуле:

Подставляя в данную формулу дисперсии q =1- р, получаем:

Виды дисперсии

Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.

Внутригрупповая дисперсия характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.



Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:

где хi - групповая средняя;
ni - число единиц в группе.

Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).

Часто в статистике при анализе какого-либо явления или процесса необходимо учитывать не только информацию о средних уровнях исследуемых показателей, но и разброс или вариацию значений отдельных единиц , которая является важной характеристикой изучаемой совокупности.

В наибольшей степени вариации подвержены курсы акций, объемы спроса и предложения, процентные ставки в разные периоды времени и в разных местах.

Основными показателями, характеризующими вариацию , являются размах, дисперсия, среднее квадратическое отклонение и коэффициент вариации.

Размах вариации представляет собой разность максимального и минимального значений признака: R = Xmax – Xmin . Недостатком данного показателя является то, что он оценивает только границы варьирования признака и не отражает его колеблемость внутри этих границ.

Дисперсия лишена этого недостатка. Она рассчитывается как средний квадрат отклонений значений признака от их средней величины:

Упрощенный способ расчета дисперсии осуществляется с помощью следующих формул (простой и взвешенной):

Примеры применения данных формул представлены в задачах 1 и 2.

Широко распространенным на практике показателем является среднее квадратическое отклонение :

Среднее квадратическое отклонение определяется как квадратный корень из дисперсии и имеет ту же размеренность, что и изучаемый признак.

Рассмотренные показатели позволяют получить абсолютное значение вариации, т.е. оценивают ее в единицах измерения исследуемого признака. В отличие от них, коэффициент вариации измеряет колеблемость в относительном выражении - относительно среднего уровня, что во многих случаях является предпочтительнее.

Формула для расчета коэффициента вариации.

Примеры решения задач по теме «Показатели вариации в статистике»

Задача 1 . При изучении влияния рекламы на размер среднемесячного вклада в банках района обследовано 2 банка. Получены следующие результаты:

Определить:
1) для каждого банка: а) средний размер вклада за месяц; б) дисперсию вклада;
2) средний размер вклада за месяц для двух банков вместе;
3) Дисперсию вклада для 2-х банков, зависящую от рекламы;
4) Дисперсию вклада для 2-х банков, зависящую от всех факторов, кроме рекламы;
5) Общую дисперсию используя правило сложения;
6) Коэффициент детерминации;
7) Корреляционное отношение.

Решение

1) Составим расчетную таблицу для банка с рекламой . Для определения среднего размера вклада за месяц найдем середины интервалов. При этом величина открытого интервала (первого) условно приравнивается к величине интервала, примыкающего к нему (второго).

Средний размер вклада найдем по формуле средней арифметической взвешенной:

29 000/50 = 580 руб.

Дисперсию вклада найдем по формуле:

23 400/50 = 468

Аналогичные действия произведем для банка без рекламы :

2) Найдем средний размер вклада для двух банков вместе. Хср =(580×50+542,8×50)/100 = 561,4 руб.

3) Дисперсию вклада, для двух банков, зависящую от рекламы найдем по формуле: σ 2 =pq (формула дисперсии альтернативного признака). Здесь р=0,5 – доля факторов, зависящих от рекламы; q=1-0,5, тогда σ 2 =0,5*0,5=0,25.

4) Поскольку доля остальных факторов равна 0,5, то дисперсия вклада для двух банков, зависящая от всех факторов кроме рекламы тоже 0,25.

5) Определим общую дисперсию, используя правило сложения.

= (468*50+636,16*50)/100=552,08

= [(580-561,4)250+(542,8-561,4)250] / 100= 34 596/ 100=345,96

σ 2 = σ 2 факт + σ 2 ост = 552,08+345,96 = 898,04

6) Коэффициент детерминации η 2 = σ 2 факт / σ 2 = 345,96/898,04 = 0,39 = 39% - размер вклада на 39% зависит от рекламы.

7) Эмпирическое корреляционное отношение η = √η 2 = √0,39 = 0,62 – связь достаточно тесная.

Задача 2 . Имеется группировка предприятий по величине товарной продукции:

Определить: 1) дисперсию величины товарной продукции; 2) среднее квадратическое отклонение; 3) коэффициент вариации.

Решение

1) По условию представлен интервальный ряд распределения. Его необходимо выразить дискретно, то есть найти середину интервала (х"). В группах закрытых интервалов середину найдем по простой средней арифметической. В группах с верхней границей - как разность между этой верхней границей и половиной размера следующего за ним интервала (200-(400-200):2=100).

В группах с нижней границей – суммой этой нижней границы и половины размера предыдущего интервала (800+(800-600):2=900).

Расчет средней величины товарной продукции делаем по формуле:

Хср = k×((Σ((х"-a):k)×f):Σf)+a. Здесь а=500 - размер варианта при наибольшей частоте, k=600-400=200 - размер интервала при наибольшей частоте. Результат поместим в таблицу:

Итак, средняя величина товарной продукции за изучаемый период в целом равна Хср = (-5:37)×200+500=472,97 тыс. руб.

2) Дисперсию найдем по следующей формуле:

σ 2 = (33/37)*2002-(472,97-500)2 = 35 675,67-730,62 = 34 945,05

3) среднее квадратическое отклонение: σ = ±√σ 2 = ±√34 945,05 ≈ ±186,94 тыс. руб.

4) коэффициент вариации: V = (σ /Хср)*100 = (186,94 / 472,97)*100 = 39,52%

Дисперсия случайной величины является мерой разброса значений этой величины. Малая дисперсия означает, что значения сгруппированы близко друг к другу. Большая дисперсия свидетельствует о сильном разбросе значений. Понятие дисперсии случайной величины применяется в статистике. Например, если сравнить дисперсию значений двух величин (таких как результаты наблюдений за пациентами мужского и женского пола), можно проверить значимость некоторой переменной. Также дисперсия используется при построении статистических моделей, так как малая дисперсия может быть признаком того, что вы чрезмерно подгоняете значения.

Шаги

Вычисление дисперсии выборки

  1. Запишите значения выборки. В большинстве случаев статистикам доступны только выборки определенных генеральных совокупностей. Например, как правило, статистики не анализируют расходы на содержание совокупности всех автомобилей в России – они анализируют случайную выборку из нескольких тысяч автомобилей. Такая выборка поможет определить средние расходы на автомобиль, но, скорее всего, полученное значение будет далеко от реального.

    • Например, проанализируем количество булочек, проданных в кафе за 6 дней, взятых в случайном порядке. Выборка имеет следующий вид: 17, 15, 23, 7, 9, 13. Это выборка, а не совокупность, потому что у нас нет данных о проданных булочках за каждый день работы кафе.
    • Если вам дана совокупность, а не выборка значений, перейдите к следующему разделу.
  2. Запишите формулу для вычисления дисперсии выборки. Дисперсия является мерой разброса значений некоторой величины. Чем ближе значение дисперсии к нулю, тем ближе значения сгруппированы друг к другу. Работая с выборкой значений, используйте следующую формулу для вычисления дисперсии:

    • s 2 {\displaystyle s^{2}} = ∑[( x i {\displaystyle x_{i}} - x̅) 2 {\displaystyle ^{2}} ] / (n - 1)
    • s 2 {\displaystyle s^{2}} – это дисперсия. Дисперсия измеряется в квадратных единицах измерения.
    • x i {\displaystyle x_{i}} – каждое значение в выборке.
    • x i {\displaystyle x_{i}} нужно вычесть x̅, возвести в квадрат, а затем сложить полученные результаты.
    • x̅ – выборочное среднее (среднее значение выборки).
    • n – количество значений в выборке.
  3. Вычислите среднее значение выборки. Оно обозначается как x̅. Среднее значение выборки вычисляется как обычное среднее арифметическое: сложите все значения в выборке, а затем полученный результат разделите на количество значений в выборке.

    • В нашем примере сложите значения в выборке: 15 + 17 + 23 + 7 + 9 + 13 = 84
      Теперь результат разделите на количество значений в выборке (в нашем примере их 6): 84 ÷ 6 = 14.
      Выборочное среднее x̅ = 14.
    • Выборочное среднее – это центральное значение, вокруг которого распределены значения в выборке. Если значения в выборке группируются вокруг выборочного среднего, то дисперсия мала; в противном случае дисперсия велика.
  4. Вычтите выборочное среднее из каждого значения в выборке. Теперь вычислите разность x i {\displaystyle x_{i}} - x̅, где x i {\displaystyle x_{i}} – каждое значение в выборке. Каждый полученный результат свидетельствует о мере отклонения конкретного значения от выборочного среднего, то есть как далеко это значение находится от среднего значения выборки.

    • В нашем примере:
      x 1 {\displaystyle x_{1}} - x̅ = 17 - 14 = 3
      x 2 {\displaystyle x_{2}} - x̅ = 15 - 14 = 1
      x 3 {\displaystyle x_{3}} - x̅ = 23 - 14 = 9
      x 4 {\displaystyle x_{4}} - x̅ = 7 - 14 = -7
      x 5 {\displaystyle x_{5}} - x̅ = 9 - 14 = -5
      x 6 {\displaystyle x_{6}} - x̅ = 13 - 14 = -1
    • Правильность полученных результатов легко проверить, так как их сумма должна равняться нулю. Это связано с определением среднего значения, так как отрицательные значения (расстояния от среднего значения до меньших значений) полностью компенсируются положительными значениями (расстояниями от среднего значения до больших значений).
  5. Как отмечалось выше, сумма разностей x i {\displaystyle x_{i}} - x̅ должна быть равна нулю. Это означает, что средняя дисперсия всегда равна нулю, что не дает никакого представления о разбросе значений некоторой величины. Для решения этой проблемы возведите в квадрат каждую разность x i {\displaystyle x_{i}} - x̅. Это приведет к тому, что вы получите только положительные числа, которые при сложении никогда не дадут 0.

    • В нашем примере:
      ( x 1 {\displaystyle x_{1}} - x̅) 2 = 3 2 = 9 {\displaystyle ^{2}=3^{2}=9}
      (x 2 {\displaystyle (x_{2}} - x̅) 2 = 1 2 = 1 {\displaystyle ^{2}=1^{2}=1}
      9 2 = 81
      (-7) 2 = 49
      (-5) 2 = 25
      (-1) 2 = 1
    • Вы нашли квадрат разности - x̅) 2 {\displaystyle ^{2}} для каждого значения в выборке.
  6. Вычислите сумму квадратов разностей. То есть найдите ту часть формулы, которая записывается так: ∑[( x i {\displaystyle x_{i}} - x̅) 2 {\displaystyle ^{2}} ]. Здесь знак Σ означает сумму квадратов разностей для каждого значения x i {\displaystyle x_{i}} в выборке. Вы уже нашли квадраты разностей (x i {\displaystyle (x_{i}} - x̅) 2 {\displaystyle ^{2}} для каждого значения x i {\displaystyle x_{i}} в выборке; теперь просто сложите эти квадраты.

    • В нашем примере: 9 + 1 + 81 + 49 + 25 + 1 = 166 .
  7. Полученный результат разделите на n - 1, где n – количество значений в выборке. Некоторое время назад для вычисления дисперсии выборки статистики делили результат просто на n; в этом случае вы получите среднее значение квадрата дисперсии, которое идеально подходит для описания дисперсии данной выборки. Но помните, что любая выборка – это лишь небольшая часть генеральной совокупности значений. Если взять другую выборку и выполнить такие же вычисления, вы получите другой результат. Как выяснилось, деление на n - 1 (а не просто на n) дает более точную оценку дисперсии генеральной совокупности, в чем вы и заинтересованы. Деление на n – 1 стало общепринятым, поэтому оно включено в формулу для вычисления дисперсии выборки.

    • В нашем примере выборка включает 6 значений, то есть n = 6.
      Дисперсия выборки = s 2 = 166 6 − 1 = {\displaystyle s^{2}={\frac {166}{6-1}}=} 33,2
  8. Отличие дисперсии от стандартного отклонения. Заметьте, что в формуле присутствует показатель степени, поэтому дисперсия измеряется в квадратных единицах измерения анализируемой величины. Иногда такой величиной довольно сложно оперировать; в таких случаях пользуются стандартным отклонением, которое равно квадратному корню из дисперсии. Именно поэтому дисперсия выборки обозначается как s 2 {\displaystyle s^{2}} , а стандартное отклонение выборки – как s {\displaystyle s} .

    • В нашем примере стандартное отклонение выборки: s = √33,2 = 5,76.

    Вычисление дисперсии совокупности

    1. Проанализируйте некоторую совокупность значений. Совокупность включает в себя все значения рассматриваемой величины. Например, если вы изучаете возраст жителей Ленинградской области, то совокупность включает возраст всех жителей этой области. В случае работы с совокупностью рекомендуется создать таблицу и внести в нее значения совокупности. Рассмотрим следующий пример:

      • В некоторой комнате находятся 6 аквариумов. В каждом аквариуме обитает следующее количество рыб:
        x 1 = 5 {\displaystyle x_{1}=5}
        x 2 = 5 {\displaystyle x_{2}=5}
        x 3 = 8 {\displaystyle x_{3}=8}
        x 4 = 12 {\displaystyle x_{4}=12}
        x 5 = 15 {\displaystyle x_{5}=15}
        x 6 = 18 {\displaystyle x_{6}=18}
    2. Запишите формулу для вычисления дисперсии генеральной совокупности. Так как в совокупность входят все значения некоторой величины, то приведенная ниже формула позволяет получить точное значение дисперсии совокупности. Для того чтобы отличить дисперсию совокупности от дисперсии выборки (значение которой является лишь оценочным), статистики используют различные переменные:

      • σ 2 {\displaystyle ^{2}} = (∑( x i {\displaystyle x_{i}} - μ) 2 {\displaystyle ^{2}} ) / n
      • σ 2 {\displaystyle ^{2}} – дисперсия совокупности (читается как «сигма в квадрате»). Дисперсия измеряется в квадратных единицах измерения.
      • x i {\displaystyle x_{i}} – каждое значение в совокупности.
      • Σ – знак суммы. То есть из каждого значения x i {\displaystyle x_{i}} нужно вычесть μ, возвести в квадрат, а затем сложить полученные результаты.
      • μ – среднее значение совокупности.
      • n – количество значений в генеральной совокупности.
    3. Вычислите среднее значение совокупности. При работе с генеральной совокупностью ее среднее значение обозначается как μ (мю). Среднее значение совокупности вычисляется как обычное среднее арифметическое: сложите все значения в генеральной совокупности, а затем полученный результат разделите на количество значений в генеральной совокупности.

      • Имейте в виду, что средние величины не всегда вычисляются как среднее арифметическое.
      • В нашем примере среднее значение совокупности: μ = 5 + 5 + 8 + 12 + 15 + 18 6 {\displaystyle {\frac {5+5+8+12+15+18}{6}}} = 10,5
    4. Вычтите среднее значение совокупности из каждого значения в генеральной совокупности. Чем ближе значение разности к нулю, тем ближе конкретное значение к среднему значению совокупности. Найдите разность между каждым значением в совокупности и ее средним значением, и вы получите первое представление о распределении значений.

      • В нашем примере:
        x 1 {\displaystyle x_{1}} - μ = 5 - 10,5 = -5,5
        x 2 {\displaystyle x_{2}} - μ = 5 - 10,5 = -5,5
        x 3 {\displaystyle x_{3}} - μ = 8 - 10,5 = -2,5
        x 4 {\displaystyle x_{4}} - μ = 12 - 10,5 = 1,5
        x 5 {\displaystyle x_{5}} - μ = 15 - 10,5 = 4,5
        x 6 {\displaystyle x_{6}} - μ = 18 - 10,5 = 7,5
    5. Возведите в квадрат каждый полученный результат. Значения разностей будут как положительными, так и отрицательными; если нанести эти значения на числовую прямую, то они будут лежать справа и слева от среднего значения совокупности. Это не годится для вычисления дисперсии, так как положительные и отрицательные числа компенсируют друг друга. Поэтому возведите в квадрат каждую разность, чтобы получить исключительно положительные числа.

      • В нашем примере:
        ( x i {\displaystyle x_{i}} - μ) 2 {\displaystyle ^{2}} для каждого значения совокупности (от i = 1 до i = 6):
        (-5,5) 2 {\displaystyle ^{2}} = 30,25
        (-5,5) 2 {\displaystyle ^{2}} , где x n {\displaystyle x_{n}} – последнее значение в генеральной совокупности.
      • Для вычисления среднего значения полученных результатов нужно найти их сумму и разделить ее на n:(( x 1 {\displaystyle x_{1}} - μ) 2 {\displaystyle ^{2}} + ( x 2 {\displaystyle x_{2}} - μ) 2 {\displaystyle ^{2}} + ... + ( x n {\displaystyle x_{n}} - μ) 2 {\displaystyle ^{2}} ) / n
      • Теперь запишем приведенное объяснение с использованием переменных: (∑( x i {\displaystyle x_{i}} - μ) 2 {\displaystyle ^{2}} ) / n и получим формулу для вычисления дисперсии совокупности.

Среди множества показателей, которые применяются в статистике, нужно выделить расчет дисперсии. Следует отметить, что выполнение вручную данного вычисления – довольно утомительное занятие. К счастью, в приложении Excel имеются функции, позволяющие автоматизировать процедуру расчета. Выясним алгоритм работы с этими инструментами.

Дисперсия – это показатель вариации, который представляет собой средний квадрат отклонений от математического ожидания. Таким образом, он выражает разброс чисел относительно среднего значения. Вычисление дисперсии может проводиться как по генеральной совокупности, так и по выборочной.

Способ 1: расчет по генеральной совокупности

Для расчета данного показателя в Excel по генеральной совокупности применяется функция ДИСП.Г . Синтаксис этого выражения имеет следующий вид:

ДИСП.Г(Число1;Число2;…)

Всего может быть применено от 1 до 255 аргументов. В качестве аргументов могут выступать, как числовые значения, так и ссылки на ячейки, в которых они содержатся.

Посмотрим, как вычислить это значение для диапазона с числовыми данными.


Способ 2: расчет по выборке

В отличие от вычисления значения по генеральной совокупности, в расчете по выборке в знаменателе указывается не общее количество чисел, а на одно меньше. Это делается в целях коррекции погрешности. Эксель учитывает данный нюанс в специальной функции, которая предназначена для данного вида вычисления – ДИСП.В. Её синтаксис представлен следующей формулой:

ДИСП.В(Число1;Число2;…)

Количество аргументов, как и в предыдущей функции, тоже может колебаться от 1 до 255.


Как видим, программа Эксель способна в значительной мере облегчить расчет дисперсии. Эта статистическая величина может быть рассчитана приложением, как по генеральной совокупности, так и по выборке. При этом все действия пользователя фактически сводятся только к указанию диапазона обрабатываемых чисел, а основную работу Excel делает сам. Безусловно, это сэкономит значительное количество времени пользователей.