В данной теме будет рассмотрен только однофакторный дисперсионный анализ, используемый для несвязанных выборок. Оперируя как основным понятием дисперсии, этот анализ базируется на расчете дисперсий трех типов:

Общая дисперсия, вычисленная по всей совокупности экспериментальных данных;

Внутригрупповая дисперсия, характеризующая вариативность признака в каждой выборке;

Межгрупповая дисперсия, характеризующая вариативность групповых средних.

Основное положение дисперсионного анализа гласит: общая дисперсия равна сумме внутригрупповой и межгруппповой дисперсий.

Это положение можно записать в виде уравнения:

где х ij - значения всех переменных, полученных в эксперименте; при этом индекс j меняется от 1 до р , где р - число сравниваемых выборок, их может быть три и больше; индекс i соответствует числу элементов в выборке (их может быть два и больше);

Общая средняя всей анализируемой совокупности данных;

Средняя j выборки;

N - общее число всех элементов в анализируемой совокупности экспериментальных данных;

р - число экспериментальных выборок.

Проанализируем это уравнение более подробно.

Пусть у нас имеется р групп (выборок). В дисперсионном анализе каждую выборку представляют в виде одного столбца (или строки) чисел. Тогда, для того чтобы можно было указать на конкретную группу (выборку), вводится индекс j , который меняется соответственно от j = 1 до j = р. Например, если у нас 5 групп (выборок), то р=5, а индекс j меняется соответственно от j= 1 до j= 5.

Пусть перед нами стоит задача - указать конкретный элемент (значение измерения) какой-либо выборки. Для этого мы должны знать номер этой выборки, например 4, и расположение элемента (измеренного значения) в этой выборке. Этот элемент может располагаться в выборке начиная с первого значения (первая строчка) до последнего (последняя строчка). Пусть наш искомый элемент расположен на пятой строчке. Тогда его обо значение будет таково: х 54 . Это значит, что выбран пятый элемент в строчке из четвертой выборки.

В общем случае в каждой группе (выборке) число составляющих ее элементов может быть различным - поэтому обозначим число элементов в j группе (выборке) через n j . Полученные в эксперименте значения признака в j группе обозначим через х ij , где i = 1, 2, ... n - порядковый номер наблюдения в j группе.

Дальнейшие рассуждения целесообразно проводить с опорой на таблицу 35. Отметим, однако, что для удобства дальнейших рассуждений, выборки в этой таблице представлены не как столбцы, а как строчки (что, однако, не принципиально).

В итоговой, последней строке таблицы даны: общий объем всей выборки - N, сумма всех полученных значений G и общая средняя всей выборки . Эта общая средняя получена как сумма всех элементов анализируемой совокупности экспериментальных данных, обозначенная выше как G, деленная на число всех элементов N.


В крайнем правом столбце таблицы представлены величины средних по всем выборкам. Например, в j выборке (строчка таблицы обозначенная символом j) величина средней (по всей j выборке) такова:

Дисперсионный анализ позволяет исследовать различие между группами данных, определять, носят ли эти расхождения случайный характер или вызваны конкретными обстоятельствами. Например, если продажи фирмы в одном из регионов снизились, то с помощью дисперсионного анализа можно выяснить, случайно ли снижение оборотов в этом регионе по сравнению с остальными, и при необходимости произвести организационные изменения. При выполнении эксперимента в разных условиях дисперсионный анализ поможет определить, насколько влияют внешние факторы на измерения, или отклонения носят случайный характер. Если на производстве для улучшения качества продукции изменяют режим процессов, то дисперсионный анализ позволяет оценить результаты воздействия данного фактора.

На этом примере мы покажем, как выполнять дисперсионный анализ экспериментальных данных.

Задание 1 . Имеются четыре партии сырья для текстильной промышленности. Из каждой партии отобрано по пять образцов и проведены испытания на определение величины разрывной нагрузки. Результаты испытаний приведены в таблице.

71" height="29" bgcolor="white" style="border:.75pt solid black; vertical-align:top;background:white">

Рис.1


> Откройте табличный процессор Microsoft Excel. Щелкните мышью на ярлыке Лист2 (Sheet2), чтобы перейти на другой рабочий лист.

> Введите данные для дисперсионного анализа, изображенные на рис.1.

> Преобразуйте данные в числовой формат. Для этого выберите команду меню Формат Ячейки. На экранe появится окно формат ячеек (Рис.2). Выберите Числовой формат и введенные данные преобразуются к виду, показанному на рис. 3

> Выберите команду меню Сервис Анализ данных (Тоо1s * Dаtа Апа1уsis). На экранe появится окно Анализ данных (Dаtа Апа1уsis) (Рис.4).

> Щелкните мышью на строке Однофакторный дисперсионный анализ (Аnоvа: Single Factor) в списке Инструменты анализа (Апа1уsis Тоо1s).

> Нажмите кнопку ОК, чтобы закрыть окно Анализ данных (Dаtа Апа1уsis). На экране появится окно Однофакторный дисперсионный анализ для проведения дисперсионного анализа данных (Рис.5).

https://pandia.ru/text/78/446/images/image006_46.jpg" width="311" height="214 src=">

Рис.5

> Если в группе элементов управления Входные данные (Input) не установлен переключатель по строкам, то установите его, чтобы программа Ехcel воспринимала группы данных по строкам - партиям.

> Установите флажок Метки в первой строке (Labels in Firts Rom) в группе элементов управления Входные данные (Input), если первый столбец выделенного диапазона данных содержит названия строк.

> В поле ввода Альфа (А1рhа) группы элементов управления Входные данные по умолчанию отображается величина 0,05, которая связана с вероятностью возникновения ошибки в дисперсионном анализе.

> Если в группе элементов управления Параметры вывода (Input options) не установлен переключатель Новый рабочий лист (Nev Worksheet Ply), то установите его, чтобы результаты дисперсионного анализа были помещены на новый рабочий лист

> Нажмите кнопку ОК, чтобы закрыть окно Однофакторный дисперсионный анализ (Аnоvа: Single Factor). На новом рабочем листе появятся результаты дисперсионного анализа (Рис. 6).

В диапазоне ячеек А4:Е6 расположены результаты описательной статистики. В строке 4 находятся названия параметров, в строках статистические значения, вычисленные по партиям.

В столбце Счет (Соunt) расположены количества измерений, в столбце Сумма - суммы величин, в столбце Среднее (Аvегаgе) - средние арифметические значения, в столбце Дисперсия (Vаriаnсе) - дисперсии.

Полученные результаты показывают, что наибольшая средняя разрывная нагрузка в партии №3, а наибольшая дисперсия разрывной нагрузки –в партии №1.

В диапазоне ячеек А11: G 16 отображается информация, касающаяся существенности расхождений между группами данных. В строке 12 находятся названия параметров дисперсионного анализа, в строке 13 - результаты межгрупповой обработки, в строке 14 - результаты внутригрупповой обработки, а в строке 16 – суммы значений упоминавшихся двух строк.

В столбце SS (Qi ) расположены величины варьирования, т. е. суммы квадратов по всем отклонениям. Варьирование, как и дисперсия, характеризует разброс данных. По таблице можно заметить, что межгрупповой разброс разрывной нагрузки существенно выше величины внутригруппового варьирования.

В столбце df (k ) находятся значения чисел степеней свободы. Данные числа указывают на количество независимых отклонений, по которым будет вычисляться дисперсия. Например, межгрупповое число степеней свободы равняется разности количеству групп данных и единицы. Чем больше число степеней свободы, тем выше надежность дисперсионных параметров. Данные степеней свобод в таблице показывают, что для внутригрупповых результатов надежность выше, чем для межгрупповых параметров.

В столбце MS (S 2 ) расположены величины дисперсии, которые определяются отношением варьирования и числа степеней свобод. Дисперсия характеризует степень разброса данных, но в отличие от величины варьирования, не имеет прямой тенденции увеличиваться с ростом числа степеней свобод. Из таблицы видно, что межгрупповая дисперсия значительно больше внутригрупповой дисперсии.

В столбце F находится, значение F -статистики , вычисляемое отношением межгрупповой и внутригрупповой дисперсий.

В столбце F критическое (F crit) расположено F-критическое значение, рассчитываемое по числу степеней свободы и величине Альфа (А1рhа). F-статистика и F-критическое значение используют критерий Фишера -Снедекора.

Если F-статистика больше F-критического значения, то можно утверждать, что различия между группами данных носят неслучайный характер. т. е. на уровне значимости α = 0,05 (с надежностью 0,95) нулевая гипотеза отвергается и принимается альтернативная: различие между партиями сырья оказывает существенное влияние на величину разрывной нагрузки.

В столбце Р-значение (Р-value) находится значение вероятности того, что расхождение между группами случайно. Так как в таблице данная вероятность очень мала, то отклонение между группами носит неслучайный характер.

2. Решение задач двухфакторного дисперсионного анализ без повторений

Microsoft Excel располагает функцией Anova: (Two-Factor Without Replication), которая используется для выявления факта влияния контролируемых факторов А и В на результативный признак на основе выборочных данных, причем каждому уровню факторов А и В соответствует только одна выборка. Для вызова этой функции необходимо на панели меню выбрать команду Сервис –Анализ данных . На экране раскроется окно Анализ данных , в котором следует выбрать значение Двухфакторный дисперсионный анализ без повторений и щелкнуть на кнопке ОК. В результате на экране раскроется диалоговое окно, показанное на рисунке 1.

78" height="42" bgcolor="white" style="border:.75pt solid black; vertical-align:top;background:white">

2. Флажок опции Метки (Labels) устанавливается в том случае, если первая строка во входном диапазоне содержит заголовки столбцов. Если заголовки отсутствуют, флажок следует сбросить. В этом случае для данных выходного диапазона будут автоматически созданы стандартные названия.

3. В поле Aльфа вводится принятый уровень значимости α , соответствующий вероятности возникновения ошибки первого рода.

4. Переключатель в группе Output options может быть установлен в одно из трех положений: Output Range (Выходной диапазон), New Worksheet Ply (Новый рабочий лист) или New Workbook (Новая рабочая книга).

Пример.

Двухфакторный дисперсионный анализ без повторений (Anova: Two-Factor Without Replication) на следующем примере.

На рисунке. 2 представлены данные об урожайности (ц/га) четырех сортов пшеницы (четыре уровня фактора А), достигнутой при использовании пяти типов удобрений (пять уровней фактора В). Данные получены на 20 участках одинакового размера и аналогичного почвенного покрова. Необходимо определить , влияет ли сорт и тип удобрения на урожайность пшеницы.

Двухфакторный дисперсионный анализ без повторений представлены на рисунке 3.

Как видно по результатам, расчетное значение величины F-статистики для фактора А (тип удобрения) F А = l ,67 , а критическая область образуется правосторонним интервалом (3,49; +∞). Так как F А = l ,67 не попадает в критическую область, гипотезу НА: a 1 = a 2 + = ak принимаем , т. е. считаем, что в этом эксперименте тип удобрения не оказал влияния на урожайность.

Расчетное значение величины F-статистики для фактора В (сорт пшеницы) F В =2,03 , а критическая область образуется правосторонним интервалом (3,259;+∞).

Так как F В =2,03 не попадает в критическую область, гипотезу НВ : b 1 = b 2 = ... = bm

также принимаем, т. е. считаем, что в данном эксперименте сорт пшеницы также не оказал влияния на урожайность.

2. Двухфакторный дисперсионный анализ c повторениями

Microsoft Excel располагает функцией Anova: Двухфакторный дисперсионный анализ с повторениями (Two-Factor With Replication), которая также используется для выявления факта влияния контролируемых факторов А и В на результативный признак на основе выборочных данных, однако каждому уровню одного из факторов А (или В) соответствует более одной выборки данных .

Рассмотрим использование функции Двухфакторный дисперсионный анализ с повторениями на следующем примере.

Пример 2 . В таблице. 6 приведены суточные привесы (г) собранных для исследования 18 поросят в зависимости от метода удержания поросят (фактор А) и качества их кормления (фактор В).

75" height="33" bgcolor="white" style="border:.75pt solid black; vertical-align:top;background:white">

В этом диалоговом окне задаются следующие параметры.

1. В поле Входной интервал (Input Range) вводится ссылка на диапазон ячеек, содержащий анализируемые данные. Необходимо выделить ячейки от G 4 до I 13.

2. В поле Число строк для выборки (Rows per sample) определяется число выборок, которое приходится на каждый уровень одного из факторов. Каждый уровень фактора должен содержать одно и то же количество выборок (строк таблицы). В нашем случае число строк равно трем.

3. В поле Альфа (Alpha) вводится принятое значение уровня значимости α , которое равно вероятности возникновения ошибки первого рода.

4. Переключатель в группе Output options может быть установлен в одно из трех положений: Output Range (Выходной интервал), New Worksheet Ply (Новый рабочий лист) или New Workbook (Новая рабочая книга).

Результаты двухфакторного дисперсионного анализа с помощью функции Двухфакторный дисперсионный анализ сповторениями существенным. В силу того что взаимодействие указанных факторов незначимо (на 5%-ном уровне).

Задание на дом

1. В течение шести лет использовались пять различных технологий по выращиванию сельскохозяйственной культуры. Данные по эксперименту (в ц/га) приведены в таблице:

https://pandia.ru/text/78/446/images/image024_11.jpg" width="642" height="190 src=">

Требуется на уровне значимости α = 0,05 установить зависимость выпуска качественных плиток от линии выпуска (фактора А).

3. Имеются следующие данные об урожайности четырех сортов пшеницы на выделенных пяти участках земли (блоках):

https://pandia.ru/text/78/446/images/image026_9.jpg" width="598" height="165 src=">

Требуется на уровне значимости α = 0,05 установить влияние на производительность труда технологий (фактора А) и предприятий (фактора В).

) предназначен для сравнения исключительно двух совокупностей. Однако часто он неверно используется для попарного сравнения большего количества групп (рис. 1), что вызывает т.н. эффект множественных сравнений (англ. multiple comparisons; Гланц 1999, с. 101-104). Об этом эффекте и о том, как с ним бороться, мы поговорим позднее. В этом же сообщении я опишу принципы однофакторного дисперсионного анализа , как раз предназначенного для одновременного сравнения средних значений двух и более групп. Принципы дисперсионного анализа (англ. an alysis o f va riance , ANOVA) были разработаны в 1920-х гг. сэром Рональдом Эйлмером Фишером (англ. Ronald Aylmer Fisher ) - "гением, едва не в одиночку заложившим основы современной статистики " (Hald 1998).

Может возникнуть вопрос: почему метод, используемый для сравнения средних значений, называется дисперсионным анализом? Все дело в том, что при установлении разницы между средними значениями мы в действительности сравниваем дисперсии анализируемых совокупностей. Однако обо всем по порядку...

Постановка задачи

Рассмотренный ниже пример заимствован из книги Maindonald & Braun (2010). Имеются данные о весе томатов (все растение целиком; weight , в кг), которые выращивали в течение 2 месяцев при трех разных экспериментальных условиях (trt , от treatment ) - на воде (water ), в среде с добавлением удобрения (nutrient ), а также в среде с добавлением удобрения и гербицида 2,4-D (nutrient+24D ):

# Создадим таблицу с данными: tomato <- data.frame (weight= c (1.5 , 1.9 , 1.3 , 1.5 , 2.4 , 1.5 , # water 1.5 , 1.2 , 1.2 , 2.1 , 2.9 , 1.6 , # nutrient 1.9 , 1.6 , 0.8 , 1.15 , 0.9 , 1.6 ) , # nutrient+24D trt = rep (c ("Water" , "Nutrient" , "Nutrient+24D" ) , c (6 , 6 , 6 ) ) ) # Просмотрим результат: weight weight trt 1 1.50 Water 2 1.90 Water 3 1.30 Water 4 1.50 Water 5 2.40 Water 6 1.50 Water 7 1.50 Nutrient 8 1.20 Nutrient 9 1.20 Nutrient 10 2.10 Nutrient 11 2.90 Nutrient 12 1.60 Nutrient 13 1.90 Nutrient+24D 14 1.60 Nutrient+24D 15 0.80 Nutrient+24D 16 1.15 Nutrient+24D 17 0.90 Nutrient+24D 18 1.60 Nutrient+24D


Переменная trt представляет собой фактор с тремя уровнями. Для более наглядного сравнения экспериментальных условий в последующем, сделаем уровень "water " базовым (англ. reference ), т.е. уровнем, с которым R будет сравнивать все остальные уровни. Это можно сделать при помощи функции relevel() :


Чтобы лучше понять свойства имеющихся данных, визуализируем их при помощи наблюдаемые различия между групповыми средними несущественны и вызваны влиянием случайных факторов (т.е. в действительности все полученные измерения веса растений происходят из одной нормально распределенной генеральной совокупности):

Подчеркнем еще раз, что рассматриваемый пример соответствует случаю однофакторного дисперсионного анализа: изучается действие одного фактора - условий выращивания (с тремя уровнями - Water , Nutrient и Nutrient+24D ) на интересующую нас переменную-отклик - вес растений.

К сожалению, исследователь почти никогда не имеет возможности изучить всю генеральную совокупность. Как же нам тогда узнать, верна ли приведенная выше нулевая гипотеза, располагая только выборочными данными? Мы можем сформулировать этот вопрос иначе: какова вероятность получить наблюдаемые различия между групповыми средними, извлекая случайные выборки из одной нормально распределенной генеральной совокупности ? Для ответа на этот вопрос на нам потребуется статистический критерий, который количественно характеризовал бы величину различий между сравниваемыми группами.

Применение статистики в этой заметке будет показано на сквозном примере. Предположим, что вы - руководитель производства в компании Perfect Parachute («Идеальный парашют»). Парашюты изготавливаются из синтетических волокон, поставляемых четырьмя разными поставщиками. Одной из основных характеристик парашюта является его прочность. Вам необходимо убедиться, что все поставляемые волокна обладают одинаковой прочностью. Чтобы ответить на этот вопрос, следует разработать схему эксперимента, в ходе которого измеряется прочность парашютов, сотканных из синтетических волокон разных поставщиков. Информация, полученная в ходе этого эксперимента, позволит определить, какой поставщик обеспечивают наибольшую прочность парашютов.

Многие приложения связаны с экспериментами, в которых рассматривается несколько групп или уровней одного фактора. Некоторые факторы, например, температура обжига керамики, могут иметь несколько числовых уровней (т.е. 300°, 350°, 400° и 450°). Другие факторы, например, местоположение товаров в супермаркете, могут иметь категориальные уровни (например, первый поставщик, второй поставщик, третий поставщик, четвертый поставщик). Однофакторные эксперименты, в ходе которых экспериментальные единицы случайным образом распределяются по группам или уровням фактора, называются полностью рандомизированными.

Использование F -критерия для оценки разностей между несколькими математическими ожиданиями

Если числовые измерения фактора в группах являются непрерывными и выполняются некоторые дополнительные условия, для сравнения математических ожиданий нескольких групп применяется дисперсионный анализ (ANOVA - An alysis o f Va riance). Дисперсионный анализ, использующий полностью рандомизированные планы, называется однофакторной процедурой ANOVA. В некотором смысле термин дисперсионный анализ является неточным, поскольку при этом анализе сравниваются разности между математическими ожиданиями групп, а не между дисперсиями. Однако сравнение математических ожиданий осуществляется именно на основе анализа вариации данных. В процедуре ANOVA полная вариация результатов измерений подразделяется на межгрупповую и внутригрупповую (рис. 1). Внутригрупповая вариация объясняется ошибкой эксперимента, а межгрупповая - эффектами условий эксперимента. Символ с обозначает количество групп.

Рис. 1. Разделение вариации в полностью рандомизированном эксперименте

Скачать заметку в формате или , примеры в формате

Предположим, что с групп извлечено из независимых генеральных совокупностей, имеющих нормальное распределение и одинаковую дисперсию. Нулевая гипотеза заключается в том, что математические ожидания генеральных совокупностей одинаковы: Н 0: μ 1 = μ 2 = … = μ с . Альтернативная гипотеза гласит, что не все математические ожидания одинаковы: Н 1 : не все μ j одинаковы j = 1, 2, …, с).

На рис. 2 представлена истинная нулевая гипотеза о математических ожиданиях пяти сравниваемых групп при условии, что генеральные совокупности имеют нормальное распределение и одинаковую дисперсию. Пять генеральных совокупностей, связанных с разными уровнями фактора, идентичны. Следовательно, они накладываются одна на другую, имея одинаковые математическое ожидание, вариацию и форму.

Рис. 2. Пять генеральных совокупностей имеют одинаковое математическое ожидание: μ 1 = μ 2 = μ 3 = μ 4 = μ 5

С другой стороны, предположим, что на самом деле нулевая гипотеза является ложной, причем четвертый уровень имеет наибольшее математическое ожидание, первый уровень - чуть меньшее математическое ожидание, а остальные уровни - одинаковые и еще меньшие математические ожидания (рис. 3). Обратите внимание на то, что за исключением величины математических ожиданий все пять генеральных совокупностей идентичны (т.е. имеют одинаковую изменчивость и форму).

Рис. 3. Наблюдается эффект условий эксперимента: μ 4 > μ 1 > μ 2 = μ 3 = μ 5

При проверке гипотезы о равенстве математических ожиданий нескольких генеральных совокупностей полная вариация разделяется на две части: межгрупповую вариацию, обусловленную разностями между группами, и внутригрупповую, обусловленную разностями между элементами, принадлежащими одной группе. Полная вариация выражается полной суммой квадратов (SST – sum of squares total). Поскольку нулевая гипотеза заключается в том, что математические ожидания всех с групп равны между собой, полная вариация равна сумме квадратов разностей между отдельными наблюдениями и общим средним (среднее средних) , вычисленным по всем выборкам. Полная вариация:

где - общее среднее, X ij - i -e наблюдение в j -й группе или уровне, n j - количество наблюдений в j -й группе, n - общее количество наблюдений во всех группах (т.е. n = n 1 + n 2 + … + n c ), с - количество изучаемых групп или уровней.

Межгрупповая вариация , называемая обычно межгрупповой суммой квадратов (SSA – sum of squares among groups), равна сумме квадратов разностей между выборочным средним каждой группы j и общим средним , умноженных на объем соответствующей группы n j :

где с - количество изучаемых групп или уровней, n j - количество наблюдений в j -й группе, j - среднее значение j -й группы, - общее среднее.

Внутригрупповая вариация , называемая обычно внутригрупповой суммой квадратов (SSW – sum of squares withing groups), равна сумме квадратов разностей между элементами каждой группы и выборочным средним этой группы j :

где Х ij - i -й элемент j -й группы, j - среднее значение j -й группы.

Поскольку сравнению подвергаются с уровней фактора, межгрупповая сумма квадратов имеет с – 1 степеней свободы. Каждый из с уровней обладает n j – 1 степенями свободы, поэтому внутригрупповая сумма квадратов имеет n – с степеней свободы, и

Кроме того, общая сумма квадратов имеет n – 1 степеней свободы, поскольку каждое наблюдение Х ij сравнивается с общим средним , вычисленным по всем n наблюдениям. Если каждую из этих сумм разделить на соответствующее количество степеней свободы, возникнут три вида дисперсии: межгрупповая (mean square among - MSA), внутригрупповая (mean square within - MSW) и полная (mean square total - MST):

Несмотря на то что основное предназначение дисперсионного анализа - сравнить математические ожидания с групп, чтобы выявить эффект условий эксперимента, его название обусловлено тем, что главным инструментом является анализ дисперсий разного типа. Если нулевая гипотеза является истинной, и между математическими ожиданиями с групп нет существенных различий, все три дисперсии - MSA, MSW и MST - являются оценками дисперсии σ 2 , присущей анализируемым данным. Таким образом, чтобы проверить нулевую гипотезу Н 0: μ 1 = μ 2 = … = μ с и альтернативную гипотезу Н 1 : не все μ j одинаковы j = 1, 2, …, с ), необходимо вычислить статистику F -критерия, представляющую собой отношение двух дисперсий, MSA и MSW. Тестовая F -статистика в однофакторном дисперсионном анализе

Статистика F -критерия подчиняется F -распределению с с – 1 степенями свободы в числителе MSA и n – с степенями свободы в знаменателе MSW . При заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная F F U , присущего F -распределению с с – 1 n – с степенями свободы в знаменателе. Таким образом, как показано на рис. 4, решающее правило формулируется следующим образом: нулевая гипотеза Н 0 отклоняется, если F > F U ; в противном случае она не отклоняется.

Рис. 4. Критическая область дисперсионного анализа при проверке гипотезы Н 0

Если нулевая гипотеза Н 0 является истинной, вычисленная F -статистика близка к 1, поскольку ее числитель и знаменатель являются оценками одной и той же величины - дисперсии σ 2 , присущей анализируемым данным. Если нулевая гипотеза Н 0 является ложной (и между математическими ожиданиями разных групп существует значительная разница), вычисленная F -статистика будет намного больше единицы, поскольку ее числитель, MSA, помимо естественной изменчивости данных, оценивает эффект условий эксперимента или разности между группами, в то время как знаменатель MSW оценивает лишь естественную изменчивость данных. Таким образом, процедура ANOVA представляет собой F -критерий, в котором при заданном уровне значимости α нулевая гипотеза отклоняется, если вычисленная F -статистика больше верхнего критического значения F U , присущего F -распределению с с – 1 степенями свободы в числителе и n – с степенями свободы в знаменателе, как показано на рис. 4.

Для иллюстрации однофакторного дисперсионного анализа вернемся к сценарию, изложенному в начале заметки. Цель эксперимента - определить, имеют ли парашюты, сотканные из синтетического волокна, полученного от разных поставщиков, одинаковую прочность. В каждой из групп соткано по пять парашютов. Группы разделены по поставщикам- Поставщик 1, Поставщик 2, Поставщик 3 и Поставщик 4. Прочность парашютов измеряется с помощью специального устройства, испытывающего ткань на разрыв с двух сторон. Сила, необходимая для разрыва парашюта, измеряется по особой шкале. Чем выше сила разрыва, тем прочнее парашют. Excel позволяет провести анализ F -статистики одним кликом. Пройдите по меню Данные Анализ данных , и выберите строку Однофакторный дисперсионный анализ , заполните открывшееся окно (рис. 5). Результаты эксперимента (сила разрыва), некоторые описательные статистики и результаты однофакторного дисперсионного анализа представлены на рис. 6.

Рис. 5. Окно Однофакторный дисперсионный анализ Пакета анализа Excel

Рис. 6. Показатели прочности парашютов, сотканных из синтетических волокон, полученных от разных поставщиков, описательные статистики и результаты однофакторного дисперсионного анализа

Анализ рисунка 6 показывает, что между выборочными средними наблюдается некоторая разница. Средняя прочность волокон, полученных от первого поставщика, равна 19,52, от второго - 24,26, от третьего - 22,84 и от четвертого - 21,16. Можно ли назвать эту разницу статистически значимой? Распределение силы разрыва продемонстрировано на диаграмме разброса (рис. 7). На ней ясно видны разности как между группами, так и внутри них. Если бы объем каждой группы был больше, для их анализа можно было бы применить диаграмму «ствол и листья», блочную диаграмму или график нормального распределения.

Рис. 7. Диаграмма разброса прочности парашютов, сотканных из синтетических волокон, полученных от четырех поставщиков

Нулевая гипотеза утверждает, что между средними показателями прочности нет существенных различий: Н 0: μ 1 = μ 2 = μ 3 = μ 4 . Альтернативная гипотеза заключается в том, что существует по крайней мере один поставщик, у которого средняя прочность волокон отличается от других: Н 1 : не все μ j одинаковы (j = 1, 2, …, с ).

Общее среднее (см. рис. 6) =СРЗНАЧ(D12:D15) = 21,945; для определения также можно усреднить все 20 исходных чисел: =СРЗНАЧ(A3:D7). Значения дисперсий рассчитываются Пакетом анализа и отражаются в табличке Дисперсионный анализ (см. рис. 6): SSA = 63,286, SSW = 97,504, SST = 160,790 (см. колонку SS таблицы Дисперсионный анализ рисунка 6). Средние значения вычисляются путем деления этих сумм квадратов на соответствующее количество степеней свободы. Поскольку с = 4, а n = 20, получаем следующие значения степеней свободы; для SSA: с – 1 = 3; для SSW: n – c = 16; для SST: n – 1 = 19 (см. колонку df ). Таким образом: MSA = SSA / (с – 1) = 21,095; MSW = SSW / (n – c ) = 6,094; MST = SST / (n – 1 ) = 8,463 (см. колонку MS ). F -статистика = MSA / MSW = 3,462 (см. колонку F ).

Верхнее критическое значение F U , характерное для F -распределения, определяется по формуле =F.ОБР(0,95;3;16) = 3,239. Параметры функции =F.ОБР(): α = 0,05, числитель имеет три степени свободы, а знаменатель - 16. Таким образом, вычисленная F -статистика, равная 3,462, превышает верхнее критическое значение F U = 3,239, нулевая гипотеза отклоняется (рис. 8).

Рис. 8. Критическая область дисперсионного анализа при уровне значимости, равном 0,05, если числитель имеет три степени свободы, а знаменатель -16

р -значение, т.е. вероятность того, что при истинной нулевой гипотезе F -статистика не меньше 3,46, равно 0,041 или 4,1% (см. колонку р-Значение таблицы Дисперсионный анализ рисунка 6). Поскольку эта величина не превышает уровень значимости α = 5%, нулевая гипотеза отклоняется. Более того, р -значение свидетельствует о том, что вероятность обнаружить такую или большую разность между математическими ожиданиями генеральных совокупностей при условии, что на самом деле они одинаковы, равна 4,1%.

Итак. Между четырьмя выборочными средними существует разница. Нулевая гипотеза заключалась в том, что все математические ожидания четырех генеральных совокупностей равны между собой. В этих условиях мера полной изменчивости (т.е. полная вариация SST) прочности всех парашютов вычисляется путем суммирования квадратов разностей между каждым наблюдением X ij и общим средним . Затем полная вариация разделялась на два компонента (см. рис. 1). Первый компонент представлял собой межгрупповую вариацию SSA, а второй - внутригрупповую SSW.

Чем объясняется изменчивость данных? Иначе говоря, почему все наблюдения не одинаковы? Одна из причин заключается в том, что разные фирмы поставляют волокна разной прочности. Это частично объясняет, почему группы имеют разные математические ожидания: чем сильнее эффект условий эксперимента, тем больше разность между математическими ожиданиями групп. Другой причиной изменчивости данных является естественная изменчивость любого процесса, в данном случае - производства парашютов. Даже если бы все волокна приобретались у одного и того же поставщика, их прочность была бы неодинаковой при прочих равных условиях. Поскольку этот эффект проявляется в каждой из групп, он называется внутригрупповой вариацией.

Разности между выборочными средними называются межгрупповой вариацией SSA. Часть внутригрупповой вариации, как уже указывалось, объясняется принадлежностью данных разным группам. Однако даже если бы группы были совершенно одинаковыми (т.е. нулевая гипотеза была бы истинной), межгрупповая вариация все равно существовала. Причина этого заключается в естественной изменчивости процесса производства парашютов. Поскольку выборки разные, их выборочные средние отличаются друг от друга. Следовательно, если нулевая гипотеза является истинной, как межгрупповая, так и внутригрупповая изменчивость представляют собой оценку изменчивости генеральной совокупности. Если нулевая гипотеза является ложной, межгрупповая гипотеза будет больше. Именно этот факт лежит в основе F -критерия для сравнения разностей между математическими ожиданиями нескольких групп.

После выполнения однофакторного дисперсионного анализа и обнаружения значительной разницы между фирмами остается неизвестным, какой же из поставщиков существенно отличается от остальных. Нам известно лишь, что математические ожидания генеральных совокупностей не равны. Иначе говоря, по крайней мере одно из математических ожиданий существенно отличается от других. Чтобы определить, какой из поставщиков отличается от других, можно воспользоваться процедурой Тьюки , использующей попарное сравнение между поставщиками. Эта процедура была разработана Джоном Тьюки. Впоследствии он и К. Крамер независимо друг от друга модифицировали эту процедуру для ситуаций, в которых объемы выборок отличаются друг от друга.

Множественное сравнение: процедура Тьюки-Крамера

В нашем сценарии для сравнения прочности парашютов использовался однофакторный дисперсионный анализ. Обнаружив значительные различия между математическими ожиданиями четырех групп, необходимо определить, какие именно группы отличаются друг от друга. Хотя существует несколько способов решить эту задачу, мы опишем лишь процедуру множественного сравнения Тьюки-Крамера. Этот метод является примером процедур апостериорного сравнения (post hoc comparison), поскольку проверяемая гипотеза формулируется после анализа данных. Процедура Тьюки-Крамера позволяет одновременно сравнить все пары групп. На первом этапе вычисляются разности X j – X j , где j ≠ j , между математическими ожиданиями с(с – 1)/2 групп. Критический размах процедуры Тьюки-Крамера вычисляется по формуле:

где Q U - верхнее критическое значение распределения стьюдентизированного размаха, имеющего с степеней свободы в числителе и n – с степеней свободы в знаменателе.

Если объемы выборок не одинаковы, критический размах вычисляется для каждой пары математических ожиданий отдельно. На последнем этапе каждая из с(с – 1)/2 пар математических ожиданий сравнивается с соответствующим критическим размахом. Элементы пары считаются значимо различными, если модуль разности |X j – X j | между ними превышает критический размах.

Применим процедуру Тьюки-Крамера к задаче о прочности парашютов. Поскольку компания, производящая парашюты, имеет четыре поставщика, следует проверить 4(4 – 1)/2 = 6 пар поставщиков (рис. 9).

Рис. 9. Попарные сравнения выборочных средних

Поскольку все группы имеют одинаковый объем (т.е. все n j = n j ), достаточно вычислить только один критический размах. Для этого по таблице Дисперсионного анализа (рис. 6) определим величину MSW = 6,094. Затем найдем величину Q U при α = 0,05, с = 4 (число степеней свободы в числителе) и n – с = 20 – 4 = 16 (число степеней свободы в знаменателе). К сожалению, я не нашел соответствующей функции в Excel, так что воспользовался таблицей (рис. 10).

Рис. 10. Критическое значение стьюдентизированного размаха Q U

Получаем:

Поскольку лишь 4,74 > 4,47 (см. нижнюю таблицу рис. 9), статистически значимая разница существует между первым и вторым поставщиком. Все остальные пары имеют выборочные средние, которые не позволяют говорить о их различии. Следовательно, средняя прочность парашютов, сотканных из волокон, приобретенных у первого поставщика, значимо меньше, чем у второго.

Необходимые условия однофакторного дисперсионного анализа

При решении задачи о прочности парашютов мы не проверяли, выполняются ли условия, при которых можно использовать однофакторный F -критерий. Как же узнать, можно ли применять однофакторный F -критерий при анализе конкретных экспериментальных данных? Однофакторный F -критерий можно применять, только если выполняются три основных предположения: экспериментальные данные должны быть случайными и независимыми, иметь нормальное распределение, а их дисперсии должны быть одинаковыми.

Первое предположение - случайность и независимость данных - должно выполняться всегда, поскольку корректность любого эксперимента зависит от случайности выбора и/или процесса рандомизации. Чтобы избежать искажения результатов, необходимо, чтобы данные извлекались из с генеральных совокупностей случайно и независимо друг от друга. Аналогично данные должны быть случайным образом распределенными по с уровням интересующего нас фактора (экспериментальным группам). Нарушение этих условий может серьезно исказить результаты дисперсионного анализа.

Второе предположение - нормальность - означает, что данные извлечены из нормально распределенных генеральных совокупностей. Как и для t -критерия, однофакторный дисперсионный анализ на основе F -критерия относительно мало чувствителен к нарушению этого условия. Если распределение не слишком значительно отличается от нормального, уровень значимости F -критерия изменяется мало, особенно если объем выборок достаточно велик. Если же условие о нормальности распределения нарушается серьезно, следует применять .

Третье предположение - однородность дисперсии - означает, что дисперсии каждой генеральной совокупности равны между собой (т.е. σ 1 2 = σ 2 2 = … = σ j 2). Это предположение позволяет решить, разделять или объединять внутригрупповые дисперсии. Если объемы групп совпадают, условие однородности дисперсии слабо влияет на выводы, полученные с помощью F -критерия. Однако, если объемы выборок неодинаковы, нарушение условия о равенстве дисперсий может серьезно исказить результаты дисперсионного анализа. Таким образом, следует стремиться к тому, чтобы объемы выборок были одинаковыми. Одним из методов проверки предположения об однородности дисперсии является критерий Левенэ , описанный ниже.

Если из всех трех условий нарушается лишь условие об однородности дисперсии, можно применять процедуру, аналогичную t -критерию, использующему раздельную дисперсию (подробнее см. ). Однако, если предположения о нормальном распределении и однородности дисперсии нарушаются одновременно, необходимо выполнить нормализацию данных и уменьшить разности между дисперсиями или применить непараметрическую процедуру.

Критерий Левенэ для проверки однородности дисперсии

Несмотря на то что F -критерий относительно устойчив к нарушениям условия о равенстве дисперсий в группах, грубое нарушение этого предположения существенно влияет на уровень значимости и мощность критерия. Возможно, одним из наиболее мощных является критерий Левенэ . Для проверки равенства дисперсий с генеральных совокупностей проверим следующие гипотезы:

Н 0: σ 1 2 = σ 2 2 = … = σ j 2

Н 1 : не все σ j 2 одинаковы (j = 1, 2, …, с )

Модифицированный критерий Левенэ основан на утверждении, что если изменчивость в группах одинакова, для проверки нулевой гипотезы о равенстве дисперсий можно применить анализ дисперсии абсолютных величин разностей между наблюдениями и медианами групп. Итак, сначала следует вычислить абсолютные величины разностей между наблюдениями и медианами в каждой группе, а затем выполнить однофакторный дисперсионный анализ полученных абсолютных величин разностей. Для иллюстрации критерия Левенэ вернемся к сценарию, изложенному в начале заметки. Используя данные, представленные на рис. 6, проведем аналогичный анализ, но в отношении модулей разниц исходных данных и медиан по каждой выборке отдельно (рис. 11).

Введение

Цель работы: познакомится с таким статистическим методом, как дисперсионный анализ.

Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации.

При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.

При проведении исследования рынка часто встает вопрос о сопоставимости результатов. Например, проводя опросы по поводу потребления какого-либо товара в различных регионах страны, необходимо сделать выводы, на сколько данные опроса отличаются или не отличаются друг от друга. Сопоставлять отдельные показатели не имеет смысла и поэтому процедура сравнения и последующей оценки производится по некоторым усредненным значениям и отклонениям от этой усредненной оценки. Изучается вариация признака. За меру вариации может быть принята дисперсия. Дисперсия σ2 – мера вариации, определяемая как средняя из отклонений признака, возведенных в квадрат.

На практике часто возникают задачи более общего характера – задачи проверки существенности различий средних выборочных нескольких совокупностей. Например, требуется оценить влияние различного сырья на качество производимой продукции, решить задачу о влиянии количества удобрений на урожайность с/х продукции.



Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы.

Дисперсионный анализ

1.1 Основные понятия дисперсионного анализа

В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.

В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.

Основными схемами организации исходных данных с двумя и более факторами являются:

Перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;

Иерархическая (гнездовая) классификация, характерная для модели II, в которой каждому случайному, наудачу выбранному значению одного фактора соответствует свое подмножество значений второго фактора.

Если одновременно исследуется зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ /3/.

При обработке данных эксперимента наиболее разработанными и поэтому распространенными считаются две модели. Их различие обусловлено спецификой планирования самого эксперимента. В модели дисперсионного анализа с фиксированными эффектами исследователь намеренно устанавливает строго определенные уровни изучаемого фактора. Термин «фиксированный эффект» в данном контексте имеет тот смысл, что самим исследователем фиксируется количество уровней фактора и различия между ними. При повторении эксперимента он или другой исследователь выберет те же самые уровни фактора. В модели со случайными эффектами уровни значения фактора выбираются исследователем случайно из широкого диапазона значений фактора, и при повторных экспериментах, естественно, этот диапазон будет другим.

Таким образом, данные модели отличаются между собой способом выбора уровней фактора, что, очевидно, в первую очередь влияет на возможность обобщения полученных экспериментальных результатов. Для дисперсионного анализа однофакторных экспериментов различие этих двух моделей не столь существенно, однако в многофакторном дисперсионном анализе оно может оказаться весьма важным.

При проведении дисперсионного анализа должны выполняться следующие статистические допущения: независимо от уровня фактора величины отклика имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений.

Говорят, что техника дисперсионного анализа является "робастной". Этот термин, используемый статистиками, означает, что данные допущения могут быть в некоторой степени нарушены, но несмотря на это, технику можно использовать.

При неизвестном законе распределения величин отклика используют непараметрические (чаще всего ранговые) методы анализа.

В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия σ2. Она является мерой вариации частных средних по группам вокруг общей средней и определяется по формуле:

,

где k - число групп;

nj - число единиц в j-ой группе;

Частная средняя по j-ой группе;

Общая средняя по совокупности единиц.

Вариацию, обусловленную влиянием прочих факторов, характеризует в каждой группе внутригрупповая дисперсия σj2.

.

Между общей дисперсией σ02, внутригрупповой дисперсией σ2 и межгрупповой дисперсией существует соотношение:

Внутригрупповая дисперсия объясняет влияние неучтенных при группировке факторов, а межгрупповая дисперсия объясняет влияние факторов группировки на среднее значение по группе /2/.

Однофакторный дисперсионный анализ

Однофакторная дисперсионная модель имеет вид:

x ij = μ + F j + ε ij, (1)

где х ij – значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);

F i – эффект, обусловленный влиянием i-го уровня фактора;

ε ij – случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.

Основные предпосылки дисперсионного анализа:

Математическое ожидание возмущения ε ij равно нулю для любых i, т.е.

M(ε ij) = 0; (2)

Возмущения ε ij взаимно независимы;

Дисперсия переменной x ij (или возмущения ε ij) постоянна для

любых i, j, т.е.

D(ε ij) = σ 2 ; (3)

Переменная x ij (или возмущение ε ij) имеет нормальный закон

распределения N(0;σ 2).

Влияние уровней фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).

Пусть, например, необходимо выяснить, имеются ли существенные различия между партиями изделий по некоторому показателю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным партиям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие – фиксированные.

Пусть имеется m партий изделий. Из каждой партии отобрано соответственно n 1 , n 2 , …, n m изделий (для простоты полагается, что n 1 =n 2 =...=n m =n). Значения показателя качества этих изделий представлены в матрице наблюдений:

x 11 x 12 … x 1n

x 21 x 22 … x 2n

………………… = (x ij), (i = 1,2, …, m; j = 1,2, …, n).

x m1 x m2 … x mn

Необходимо проверить существенность влияния партий изделий на их качество.

Если полагать, что элементы строк матрицы наблюдений – это численные значения случайных величин Х 1 ,Х 2 ,...,Х m , выражающих качество изделий и имеющих нормальный закон распределения с математическими ожиданиями соответственно a 1 ,а 2 ,...,а m и одинаковыми дисперсиями σ 2 , то данная задача сводится к проверке нулевой гипотезы Н 0: a 1 =a 2 =...= а m , осуществляемой в дисперсионном анализе.

Усреднение по какому-либо индексу обозначено звездочкой (или точкой) вместо индекса, тогда средний показатель качества изделий i-й партии, или групповая средняя для i-го уровня фактора, примет вид:

где i* – среднее значение по столбцам;

Ij – элемент матрицы наблюдений;

n – объем выборки.

А общая средняя:

(5)

Сумма квадратов отклонений наблюдений х ij от общей средней ** выглядит так:

2 = 2 + 2 +

2 2 . (6)

Q = Q 1 + Q 2 + Q 3 .

Последнее слагаемое равно нулю

так как сумма отклонений значений переменной от ее средней равна нулю, т.е.

2 =0.

Первое слагаемое можно записать в виде:

В результате получается тождество:

Q = Q 1 + Q 2 , (8)

где - общая, или полная, сумма квадратов отклонений;

- сумма квадратов отклонений групповых средних от общей средней, или межгрупповая (факторная) сумма квадратов отклонений;

- сумма квадратов отклонений наблюдений от групповых средних, или внутригрупповая (остаточная) сумма квадратов отклонений.

В разложении (8) заключена основная идея дисперсионного анализа. Применительно к рассматриваемой задаче равенство (8) показывает, что общая вариация показателя качества, измеренная суммой Q, складывается из двух компонент – Q 1 и Q 2 , характеризующих изменчивость этого показателя между партиями (Q 1) и изменчивость внутри партий (Q 2), характеризующих одинаковую для всех партий вариацию под воздействием неучтенных факторов.

В дисперсионном анализе анализируются не сами суммы квадратов отклонений, а так называемые средние квадраты, являющиеся несмещенными оценками соответствующих дисперсий, которые получаются делением сумм квадратов отклонений на соответствующее число степеней свободы.

Число степеней свободы определяется как общее число наблюдений минус число связывающих их уравнений. Поэтому для среднего квадрата s 1 2 , являющегося несмещенной оценкой межгрупповой дисперсии, число степеней свободы k 1 =m-1, так как при его расчете используются m групповых средних, связанных между собой одним уравнением (5). А для среднего квадрата s22, являющегося несмещенной оценкой внутригрупповой дисперсии, число степеней свободы k2=mn-m, т.к. при ее расчете используются все mn наблюдений, связанных между собой m уравнениями (4).

Таким образом:

Если найти математические ожидания средних квадратов и , подставить в их формулы выражение xij (1) через параметры модели, то получится:

(9)

т.к. с учетом свойств математического ожидания

(10)

Для модели I с фиксированными уровнями фактора F i (i=1,2,...,m) – величины неслучайные, поэтому

M(S ) = 2 /(m-1) +σ 2 .

Гипотеза H 0 примет вид F i = F * (i = 1,2,...,m), т.е. влияние всех уровней фактора одно и то же. В случае справедливости этой гипотезы

M(S )= M(S )= σ 2 .

(12)

(13)

(14)

т.е. сами средние, вообще говоря, находить не обязательно.

Таким образом, процедура однофакторного дисперсионного анализа состоит в проверке гипотезы H 0 о том, что имеется одна группа однородных экспериментальных данных против альтернативы о том, что таких групп больше, чем одна. Под однородностью понимается одинаковость средних значений и дисперсий в любом подмножестве данных. При этом дисперсии могут быть как известны, так и неизвестны заранее. Если имеются основания полагать, что известная или неизвестная дисперсия измерений одинакова по всей совокупности данных, то задача однофакторного дисперсионного анализа сводится к исследованию значимости различия средних в группах данных /1/.