) предназначен для сравнения исключительно двух совокупностей. Однако часто он неверно используется для попарного сравнения большего количества групп (рис. 1), что вызывает т.н. эффект множественных сравнений (англ. multiple comparisons; Гланц 1999, с. 101-104). Об этом эффекте и о том, как с ним бороться, мы поговорим позднее. В этом же сообщении я опишу принципы однофакторного дисперсионного анализа , как раз предназначенного для одновременного сравнения средних значений двух и более групп. Принципы дисперсионного анализа (англ. an alysis o f va riance , ANOVA) были разработаны в 1920-х гг. сэром Рональдом Эйлмером Фишером (англ. Ronald Aylmer Fisher ) - "гением, едва не в одиночку заложившим основы современной статистики " (Hald 1998).

Может возникнуть вопрос: почему метод, используемый для сравнения средних значений, называется дисперсионным анализом? Все дело в том, что при установлении разницы между средними значениями мы в действительности сравниваем дисперсии анализируемых совокупностей. Однако обо всем по порядку...

Постановка задачи

Рассмотренный ниже пример заимствован из книги Maindonald & Braun (2010). Имеются данные о весе томатов (все растение целиком; weight , в кг), которые выращивали в течение 2 месяцев при трех разных экспериментальных условиях (trt , от treatment ) - на воде (water ), в среде с добавлением удобрения (nutrient ), а также в среде с добавлением удобрения и гербицида 2,4-D (nutrient+24D ):

# Создадим таблицу с данными: tomato <- data.frame (weight= c (1.5 , 1.9 , 1.3 , 1.5 , 2.4 , 1.5 , # water 1.5 , 1.2 , 1.2 , 2.1 , 2.9 , 1.6 , # nutrient 1.9 , 1.6 , 0.8 , 1.15 , 0.9 , 1.6 ) , # nutrient+24D trt = rep (c ("Water" , "Nutrient" , "Nutrient+24D" ) , c (6 , 6 , 6 ) ) ) # Просмотрим результат: weight weight trt 1 1.50 Water 2 1.90 Water 3 1.30 Water 4 1.50 Water 5 2.40 Water 6 1.50 Water 7 1.50 Nutrient 8 1.20 Nutrient 9 1.20 Nutrient 10 2.10 Nutrient 11 2.90 Nutrient 12 1.60 Nutrient 13 1.90 Nutrient+24D 14 1.60 Nutrient+24D 15 0.80 Nutrient+24D 16 1.15 Nutrient+24D 17 0.90 Nutrient+24D 18 1.60 Nutrient+24D


Переменная trt представляет собой фактор с тремя уровнями. Для более наглядного сравнения экспериментальных условий в последующем, сделаем уровень "water " базовым (англ. reference ), т.е. уровнем, с которым R будет сравнивать все остальные уровни. Это можно сделать при помощи функции relevel() :


Чтобы лучше понять свойства имеющихся данных, визуализируем их при помощи наблюдаемые различия между групповыми средними несущественны и вызваны влиянием случайных факторов (т.е. в действительности все полученные измерения веса растений происходят из одной нормально распределенной генеральной совокупности):

Подчеркнем еще раз, что рассматриваемый пример соответствует случаю однофакторного дисперсионного анализа: изучается действие одного фактора - условий выращивания (с тремя уровнями - Water , Nutrient и Nutrient+24D ) на интересующую нас переменную-отклик - вес растений.

К сожалению, исследователь почти никогда не имеет возможности изучить всю генеральную совокупность. Как же нам тогда узнать, верна ли приведенная выше нулевая гипотеза, располагая только выборочными данными? Мы можем сформулировать этот вопрос иначе: какова вероятность получить наблюдаемые различия между групповыми средними, извлекая случайные выборки из одной нормально распределенной генеральной совокупности ? Для ответа на этот вопрос на нам потребуется статистический критерий, который количественно характеризовал бы величину различий между сравниваемыми группами.

Дисперсионный анализ используется для выявления влияния на изучаемый показатель некоторых факторов, обычно не поддающихся количественному измерению. Суть метода состоит в разложении общей вариации изучаемого показателя на части, соответствующие раздельному и совместному влиянию факторов, и статистическом изучении этих частей с целью выяснения приемлемости гипотез об отсутствии этих влияний. Модели дисперсионного анализа в зависимости от числа факторов классифицируются на однофакторные , двухфакторные и т.д. По цели исследования выделяют следующие модели: детерминированная (Ml) - здесь уровни всех факторов заранее фиксированы, и проверяют именно их влияние, случайная (М2) - здесь уровни каждого фактора получены как случайная выборка из генеральной совокупности уровней фактора, и смешанная (М3) - здесь уровни одних факторов заранее фиксированы, а уровни других - случайная выборка.

Однофакторный дисперсионный анализ

В основе однофакторного дисперсионного анализа лежит следующая вероятностная модель:

где - значение случайной величины У, принимаемое при уровне Д (,) , / =

1,2,..., v, фактора Л в &-м наблюдении, к = 1,2, ..., п,;

О 1 " 1 - эффект влияния на УГ уровня Д®;

е® - независимые случайные величины, отражающие влияние на У/"* неконтролируемых остаточных факторов, причем все е* 1 ~ N(0, o R).

При этом в модели Ml все 0 (,) - детерминированные величины

и?е ("Ч = 0 ; а в модели М2 0 (,) - случайные величины (значения слу-

чайного эффекта 0), 0® = 0 где 0 - ;V(0, ст в), и все 0® и е* ’ - независимы.

Найдем общую вариацию S 2 результативного признака У и две ее составляющие - S 2 A и S R , отражающие соответственно влияние фактора А и влияние остаточных факторов:

Нетрудно убедиться в том, что S 2 = S 2 A + . Разделив все части

этого равенства на я, получим:

Это правило читается так: «Общая дисперсия наблюдений равна сумме межгрупповой дисперсии (это дисперсия Су (0 групповых средних) и внутригрупповой дисперсии (это средняя а 2 из групповых дисперсий)».

Для выяснения того, влияет ли фактор А на результативный признак:

  • ? в модели Ml проверяют гипотезу Н 0 : 0 (|) = 0 (2) = ... = 0 (v) =0 (если она будет принята, то для всех ink математическое ожидание МУ/"* = А/У [см. формулу (8.4.1)], а это означает, что при изменении уровня фактора групповая генеральная средняя не изменяется, т.е. рассматриваемые уровни фактора А не влияют на У;
  • ? в модели М2 проверяют гипотезу Н 0 = 0 (ее принятие означает что эффект 0 - постоянная величина, а с учетом условия М0 = 0 получим, что 0 = 0, т.е. фактор А не влияет на У).

Критерии проверки этих и других гипотез, а также оценки параметров модели (8.4.1) приведены в табл. 8.5.

Задача 8.7. Исследователь хочет выяснить, отличаются ли четыре способа рекламирования товара по влиянию на объем его продажи. Для этого в каждом из четырех однотипных городов (в них использовались различные способы рекламы) были собраны сведения об объемах продажи товара (в денежных единицах) в четырех случайно отобранных магазинах и вычислены соответствующие выборочные характеристики:

Решение. Здесь фактором А является способ рекламы; зафиксированы четыре его уровня, и выясняется, различаются ли по своему влиянию именно эти уровни, - это модель Ml однофакторного анализа.

где е** независимый?** N(0,g r).

Так как MY и все 0 (,) - постоянные величины, то при выполнении (8.4.3) наблюдения независимы и все

Допустим, что независимость наблюдений гарантируется организацией эксперимента; условие же (8.4.4) означает, что объем продаж при г"-м способе рекламы имеет нормальный закон распределения с математическим ожиданием а, = MY + 0 (,) и с дисперсией, одинаковой для всех способов. Допустим, что нормальное распределение имеет место. Используя критерий Бартлетта (см. табл. 8.3), убедимся, что результаты испытаний позволяют принять гипотезу Н"п : о? =... = ol. Вычислим


по табл. П. 6.3 при k=v-l=3np=a= 0,05 найдем % 2 а = Ха = 7,82 ; так как 1,538 Н" 0 принимаем.

Теперь проверим ключевую гипотезу дисперсионного анализа Н 0 : 0 м =... = 0 S 2 A = 220,19, S 2 R =39,27, S" 2 = 259,46; убедившись в справедливости равенства (8.4.2), найдем оценку (8.4.5) (см. табл. 8.5) s 2 = 39,27/12 = 3,27 дисперсии а 2 к ; проверим, выполняется ли неравенство (8.4.6) (см. табл. 8.5):

по табл. П. 6.4 при = 3, к 2 = 12 и р = а = 0,05 найдем F 2a = F a = 3,49 . Так как 22,43 > 3,49, неравенство (8.4.6) выполняется. Поэтому гипотезу

Условия и критерии проверки гипотез однофакторного дисперсионного анализа

Н 0: 0 (|) = ... = 0 (4) = 0 отклоняем: считаем, что зафиксированные способы рекламирования продукции влияют на объем продаж; при этом вли-

= 84,9% вариации объема продаж.

Изменим условие задачи. Предположим, что способы рекламирования товара заранее нс фиксированы, а выбраны случайным образом из всего набора способов. Тогда выяснение вопроса о том, влияет или нет способ рекламирования, сводится к проверке гипотезы Н 0: Og = 0 модели М2. Критерий ее проверки такой же, как и в модели Ml. Так как условие (8.4.6) отклонения гипотезы Н 0: о 2 в = 0 выполняется, гипотезу забраковываем, по крайней мере до получения дополнительных данных: считаем, что способ рекламирования товаров (во всем наборе этих способов) влияет на объем продаж.

Двухфакторный дисперсионный анализ

(с одинаковым числом т > 1 наблюдений при различных сочетаниях уровней факторов)

В основе двухфакторного дисперсионного анализа лежит следующая вероятностная модель:

где У/ 1 ’ 7) значение случайной величины У, принимаемое при уровне А (" i = 1,2, ..., v A , фактора А и уровне 5®, у =1,2, ..., v B , фактора В в к -м наблюдении, к = 1,2, ..., /и; 0^, 0 (й у) , 0^д у) - эффекты влияния на У/ 1 ’ соответственно уровней А (" 5® и взаимодействия А (0 и B ; - независимые случайные величины, отражающие влияние на У/ 1 ’ у) неконтролируемых остаточных факторов, причем е?’ л ~ /V((), а л).

Найдем общую вариацию S 2 признака У и ее четыре составляющие - S 2 a , S 2 B , S 2 ab , S 2 r , отражающие влияние соответственно факторов А, В, их взаимодействия и остаточных факторов:


Нетрудно убедится в том, что S 2 = + S 2 B + S 2 iB + S B .

Оценки параметров всех трех типов модели (8.4.9): Ml, М2 и М3, проверяемые гипотезы и критерии их проверки приведены в табл. 8.6. В моделях М2 и М3 предполагается, что все случайные эффекты независимы как между собой, так и с e^’ J) .

Предположим, что на автоматической линии несколько станков параллельно выполняют одинаковую операцию. Для правильного планирования последующей обработки важно знать, насколько однотипны средние размеры деталей, получаемые на параллельно работающих станках. Здесь имеет место лишь один фактор, влияющий на размер деталей, это станки, на которых они изготовляются. Необходимо выяснить, насколько существенно влияние этого фактора на размеры деталей. Предположим, что совокупности размеров деталей, изготовленных на каждом станке, имеют нормальное распределение и равные дисперсии.

Имеем т станков, следовательно, т совокупностей или уровней, на которых произведено n 1 , n 2 ,..., п т наблюдений. Для простоты рассуждений предположим, что n 1 =n 2 =…= п т. Размеры деталей, составляющие n i наблюдений на i -м уровне, обозначим х i 1 ,х i 2 ,..., x in . Тогда все наблюдения можно представить в виде таблицы, которая называется матрицей наблюдений (табл. 3.1).

Таблица 3.1

Уровни Результаты наблюдений
1 2 j n
x 11 x 12 x 1 j x 1 n
x 21 x 22 x 2 j x 2 n
x 31 x 32 x 3 j x 3 n
i x i1 x i2 x i j x i n
m x m1 x m2 x mj x mn

Будем полагать, что для i -го уровня п наблюдений имеют среднюю β i , равную сумме общей средней µ и вариации ее, обусловленной i -м уровнем фактора, т.е. β i = µ + γ i . Тогда одно наблюдение можно представить в следующем виде:

x i j = µ + γ i . +ε ij = β i +ε ij (3.1)

где µ - общая средняя; γ i - эффект, обусловленный i -м уровнем фактора; ε ij - вариация результатов внутри отдельного уровня.

Член ε ij характеризует влияние всех не учтенных моделью (3.1) факторов. Согласно обшей задаче дисперсионного анализа нужно оценить существенность влияния фактора γ на размеры деталей. Общую вариацию переменной x i j можно разложить на части, одна из которых характеризует влияние фактора γ, другая - влияние неучтенных факторов. Для этого необходимо найти оценку общей средней µ и оценки средних по уровням β i . Очевидно, что оценкой β является средняя арифметическая п наблюдений i-го уровня, т.е.

Звездочка в индексе при х означает, что наблюдения фиксированы на i-м уровне. Средняя арифметическая всей совокупности наблюдений является оценкой общей средней µ, т.е.

Найдем сумму квадратов отклонений x i j от , т.е.

Представим ее в виде (3.2)

Причем =

Но = 0, так как это есть сумма отклонений переменных одной совокупности от средней арифметической этой же совокупности, т.е. вся сумма равна нулю. Второй член суммы (3.2) запишем в виде:



Или

Слагаемое является суммой квадратов разностей между средними уровней и средней всей совокупности наблюдений. Эта сумма называется суммой квадратов отклонений между группами и характеризует расхождение между уровнями. Величину , называют также рассеиванием по факторам, т.е. рассеиванием за счет исследуемого фактора.

Слагаемое является суммой квадратов разностей между отдельными наблюдениями и средней i-го уровня. Эта сумма назы­вается суммой квадратов отклонений внутри группы и характеризует расхождение между наблюдениями i-го уровня. Величину называют также остаточным рассеиванием, т.е. рассеиванием за счет неучтенных факторов.

Величину называется общей или полной суммой квадратов отклонений отдельных наблюдений от общей средней .

Зная суммы квадратов SS, SS 1 и SS 2 , можно оценить несмещенные оценки соответствующих дисперсий - общей, межгрупповой и внутригрупповой (таблица 3.2).

Если влияние всех уровней фактора γ одинаково, то и - оценки общей дисперсии.

Тогда для оценки существенности влияния фактора γ достаточно проверить нулевую гипотезу H 0: = .

Для этого вычисляют критерий Фишера F B = , с числом степеней свободы k 1 = т - 1 и k 2 = т(п - 1). Затем по таблице F-распределения (см. таблицу распределения критерия Фишера) для уровня значимости α находят критическое значение F кр.

Таблица 3.2

Если F B > F кр то нулевая гипотеза отвергается и делается заключение о существенном влиянии фактора γ.

При F B < F кр нет основания отвергать нулевую гипотезу и можно считать, что влияние фактора γ несущественно.



Сравнивая межгрупповую и остаточную дисперсии, по величине их отношения судят, насколько сильно проявляется влияние факторов.

Пример 3.1. Имеется четыре партии тканей для спецодежды. Из каждой партии отобрано по пять образцов и проведены испытания на определение величины разрывной нагрузки. Результаты испытаний приведены в табл. 3.3.

Таблица 3.3

Номер партии, т

Требуется выяснить, существенно ли влияние различных партий сырья на величину разрывной нагрузки.

Решение.

В данном случае т = 4, п = 5. Среднюю арифметическую каждой строки вычисляем по формуле

Имеем: =(200+140+170+145+165)/5=164; =170; =202; = 164.

Найдем среднюю арифметическую всей совокупности:

Вычислим величины, необходимые для построения табл. 3.4:

· сумму квадратов отклонений между группами SS 1 , с k 1 =т –1=

4-1=3 степенями свободы:

· сумму квадратов отклонений внутри группы SS 2 с k 2 = тп – т= =20-4=16 степенями свободы:

· полную сумму квадратов SS c k=mn-1=20-1=19 степенями свободы:

По найденным значениям оценим дисперсию, по формулам (табл. 3.2) составим (табл. 3.4) для рассматриваемого примера.

Таблица 3.4

Проведем статистический анализ по критерию Фишера. Вычислим F B = =(4980 1/3)/(7270 1/16) =1660/454,4= 3,65.

По таблице F-распределения (см. приложения) находим значение F Kp при k 2 = 16 и k 1 = 3 степенях свободы и уровне значимости α = 0,01. Имеем F Kp = 5,29.

Вычисленное значение F B меньше табличного, поэтому можно утверждать, что нулевая гипотеза не отвергается, а это значит, что различие между тканями в партиях не влияет на величину разрывной нагрузки.

В пакете Анализ данных инструмент Однофакторный дисперсионный анализ используется для проверки гипотезы о сходстве средних значений двух или более выборок, принадлежащих одной и той же генеральной совокупности. Рассмотрим работу пакета для проведения однофакторного дисперсионного анализа.

Решим пример 3.1, используя инструмент Однофакторный дисперсионный анализ.

Дисперсионный анализ есть совокупность статистических методов, предназначенных для проверки гипотез о связи между определенными признаками и исследуемыми факторами, которые не имеют количественного описания, а также для установления степени влияния факторов и их взаимодействия. В специальной литературе его часто называют ANOVA (от англоязычного названия Analysis of Variations). Впервые этот метод был разработан Р. Фишером в 1925 г.

Виды и критерии дисперсионного анализа

Этот метод используется для исследования связи между качественными (номинальными) признаками и количественной (непрерывной) переменной. По сути, он осуществляет тестирование гипотезы о равенстве средних арифметических нескольких выборок. Таким образом, его можно рассматривать как параметрический критерий для сравнения центров сразу нескольких выборок. Если использовать этот метод для двух выборок, то результаты дисперсионного анализа будут идентичны результатам t-критерия Стьюдента. Однако, в отличие от других критериев, это исследование позволяет изучить проблему более детально.

Дисперсионный анализ в статистике базируется на законе: сумма квадратов отклонений объединенной выборки равна сумме квадратов внутригрупповых отклонений и сумме квадратов межгрупповых отклонений. Для исследования используется критерий Фишера для установления значимости различия межгрупповых дисперсий от внутригрупповых. Однако для этого необходимыми предпосылками являются нормальность распределения и гомоскедастичность (равенство дисперсий) выборок. Различают одномерный (однофакторный) дисперсионный анализ и многомерный (многофакторный). Первый рассматривает зависимость исследуемой величины от одного признака, второй - сразу от многих, а также позволяет выявить связь между ними.

Факторы

Факторами называют контролируемые обстоятельства, что влияют на конечный результат. Его уровнем или способом обработки называют значение, которое характеризует конкретное проявление этого условия. Эти цифры обычно подают в номинальной или порядковой шкале измерений. Часто выходные значения измеряют в количественных или порядковых шкалах. Тогда возникает проблема группировки выходных данных в ряде наблюдений, что соответствуют примерно одинаковым числовым значениям. Если количество групп взять чрезмерно большим, то количество наблюдений в них может оказаться недостаточным для получения надежных результатов. Если брать число чрезмерно малым, это может привести к потере существенных особенностей влияния на систему. Конкретный способ группировки данных зависит от объема и характера варьирования значений. Количество и размеры интервалов при однофакторном анализе чаще всего определяют по принципу равных промежутков или по принципу равных частот.

Задачи дисперсионного анализа

Итак, существуют случаи, когда нужно сравнить две или больше выборок. Именно тогда и целесообразно применение дисперсионного анализа. Название метода указывает на то, что выводы делают на основе исследования составляющих дисперсии. Суть изучения состоит в том, что общее изменение показателя разбивают на составляющие части, которые соответствуют действию каждого отдельно взятого фактора. Рассмотрим ряд задач, которые решает типичный дисперсионный анализ.

Пример 1

В цехе есть ряд станков - автоматов, которые изготавливают определенную деталь. Размер каждой детали - это случайная величина, которая зависит от настройки каждого станка и случайных отклонений, возникающих в процессе изготовления деталей. Нужно по данным измерений размеров деталей определить, одинаково ли настроены станки.

Пример 2

Во время изготовления электрического аппарата используют различные типы изоляционной бумаги: конденсаторную, электротехническую и др. Аппарат можно пропитать различными веществами: эпоксидной смолой, лаком, смолой МЛ-2 и др. Утечки можно устранять под вакуумом при повышенном давлении, при нагреве. Пропитывать можно методом погружения в лак, под непрерывной струей лака и т. п. Электрический аппарат в целом заливают определенным компаундом, вариантов которого есть несколько. Показателями качества являются электрическая прочность изоляции, температура перегрева обмотки в рабочем режиме и ряд других. Во время отработки технологического процесса изготовления аппаратов надо определить, как влияет каждый из перечисленных факторов на показатели аппарата.

Пример 3

Троллейбусное депо обслуживает несколько троллейбусных маршрутов. На них работают троллейбусы различных типов, и оплату за проезд собирают 125 контролеров. Руководство депо интересует вопрос: как сравнить экономические показатели работы каждого контролера (выручку) учитывая различные маршруты, различные типы троллейбусов? Как определить экономическую целесообразность выпуска троллейбусов определенного типа на тот или другой маршрут? Как установить обоснованные требования к величине выручки, которую приносит кондуктор, на каждом маршруте в различных типах троллейбусов?

Задача по выбору метода состоит в том, как получить максимум информации относительно влияния на конечный результат каждого фактора, определить числовые характеристики такого влияния, их надежность при минимальных затратах и за максимально короткое время. Решить такие задачи позволяют методы дисперсионного анализа.

Однофакторный анализ

Исследование своей целью ставит оценку величины влияния конкретного случая на анализируемый отзыв. Другой задачей однофакторного анализа может быть сравнение двух или нескольких обстоятельств друг с другом с целью определения разницы их влияния на отзыв. Если нулевую гипотезу отвергают, то следующим этапом будет количественное оценивание и построение доверительных интервалов для полученных характеристик. В случае, когда нулевая гипотеза не может быть отброшенной, обычно ее принимают и делают вывод о сущности влияния.

Однофакторный дисперсионный анализ может стать непараметрическим аналогом рангового метода Краскела-Уоллиса. Он разработан американскими математиком Уильямом Краскелом и экономистом Вильсоном Уоллисом в 1952 г. Этот критерий назначен для проверки нулевой гипотезы о равенстве эффектов влияния на исследуемые выборки с неизвестными, но равными средними величинами. При этом количество выборок должно быть больше двух.

Критерий Джонкхиера (Джонкхиера-Терпстра) был предложен независимо друг от друга нидерландским математиком Т. Дж. Терпстром в 1952 г. и британским психологом Е. Р. Джонкхиером в 1954 г. Его применяют тогда, когда заранее известно, что имеющиеся группы результатов упорядочены по росту влияния исследуемого фактора, который измеряют в порядковой шкале.

М - критерий Бартлетта, предложенный британским статистиком Маурисом Стивенсоном Бартлеттом в 1937 г., применяют для проверки нулевой гипотезы о равенстве дисперсий нескольких нормальных генеральных совокупностей, с которых взяты исследуемые выборки, в общем случае имеющие различные объемы (число каждой выборки должно быть не меньше четырех).

G - критерий Кохрена, который открыл американец Вильям Геммел Кохрен в 1941 г. Его используют для проверки нулевой гипотезы о равенстве дисперсий нормальных генеральных совокупностей по независимым выборкам равного объема.

Непараметрический критерий Левене, предложенный американским математиком Ховардом Левене в 1960 г., является альтернативой критерия Бартлетта в условиях, когда нет уверенности в том, что исследуемые выборки подчиняются нормальному распределению.

В 1974 г. американские статистики Мортон Б. Браун и Алан Б. Форсайт предложили тест (критерий Брауна-Форсайта), который несколько отличается от критерия Левене.

Двухфакторный анализ

Двухфакторный дисперсионный анализ применяют для связанных нормально распределенных выборок. На практике часто используют и сложные таблицы этого метода, в частности те, в которых каждая ячейка содержит набор данных (повторные измерения), соответствующих фиксированным значениям уровней. Если предположения, необходимые для применения двухфакторного дисперсионного анализа, не выполняются, то используют непараметрический ранговый критерий Фридмана (Фридмана, Кендалла и Смита), разработанный американским экономистом Милтоном Фридманом в конце 1930 г. Этот критерий не зависит от типа распределения.

Предполагается только, что распределение величин является одинаковым и непрерывным, а сами они независимы одна от другой. При проверке нулевой гипотезы выходные данные подают в форме прямоугольной матрицы, в которой строки соответствуют уровням фактора В, а столбцы - уровням А. Каждая ячейка таблицы (блока) может быть результатом измерений параметров на одном объекте или на группе объектов при постоянных значениях уровней обоих факторов. В этом случае соответствующие данные подают как средние значения определенного параметра по всем измерениям или объектам исследуемой выборки. Для применения критерия выходных данных необходимо перейти от непосредственных результатов измерений к их рангу. Ранжирование осуществляют по каждой строке отдельно, то есть величины упорядочивают для каждого фиксированного значения.

Критерий Пейджа (L-критерий), предложенный американским статистиком Е. Б. Пейджем в 1963 г., предназначен для проверки нулевой гипотезы. Для больших выборок применяют аппроксимацию Пейджа. Они при условии реальности соответствующих нулевых гипотез подчиняются стандартному нормальному распределению. В случае, когда в строках исходной таблицы есть одинаковые значения, необходимо использовать средние ранги. При этом точность выводов будет тем хуже, чем больше будет количеств таких совпадений.

Q - критерий Кохрена, предложенный В. Кохреном в 1937 г. Его используют в случаях, когда группы однородных субъектов подвергаются воздействиям, количество которых превышает два и для которых возможны два варианта отзывов - условно-отрицательный (0) и условно-положительный (1). Нулевая гипотеза состоит из равенства эффектов влияния. Двухфакторный дисперсионный анализ дает возможность определить существование эффектов обработки, однако не дает возможности установить, для каких именно столбцов существует этот эффект. При решении данной проблемы применяют метод множественных уравнений Шеффе для связанных выборок.

Многофакторный анализ

Задача многофакторного дисперсионного анализа возникает тогда, когда нужно определить влияние двух или большего количества условий на определенную случайную величину. Исследование предусматривает наличие одной зависимой случайной величины, измеренной в шкале разницы или отношений, и нескольких независимых величин, каждая из которых выражена в шкале наименований или в ранговой. Дисперсионный анализ данных является достаточно развитым разделом математической статистики, который имеет массу вариантов. Концепция исследования общая как для однофакторного, так и для многофакторного. Сущность ее состоит в том, что общую дисперсию разбивают на составляющие, что соответствует определенной группировке данных. Каждой группировке данных соответствует своя модель. Здесь мы рассмотрим только основные положения, нужные для понимания и практического использования наиболее применяемых его вариантов.

Дисперсионный анализ факторов требует достаточно внимательного отношения к сбору и подаче входных данных, а особенно к интерпретации результатов. В отличие от однофакторного, результаты которого можно условно разместить в определенной последовательности, результаты двухфакторного требуют более сложного представления. Еще сложнее ситуация возникает, когда есть три, четыре или больше обстоятельств. Из-за этого в модель достаточно редко включают больше трех (четырех) условий. Примером может быть возникновение резонанса при определенной величине емкости и индуктивности электрического круга; проявление химической реакции при определенной совокупности элементов, из которых построена система; возникновение аномальных эффектов в сложных системах при определенном совпадении обстоятельств. Наличие взаимодействия может в корне изменить модель системы и иногда привести к переосмыслению природы явлений, с которыми имеет дело экспериментатор.

Многофакторный дисперсионный анализ с повторными опытами

Данные измерений достаточно часто можно группировать не по двум, а по большему количеству факторов. Так, если рассматривать дисперсионный анализ срока службы покрышек колес троллейбуса с учетом обстоятельств (завод-производитель и маршрут, на котором эксплуатируются покрышки), то можно выделить как отдельное условие сезон, во время которого эксплуатируются покрышки (а именно: зимняя и летняя эксплуатация). В результате будем иметь задачу трехфакторного метода.

При наличии большего количества условий подход такой же, как и в двухфакторном анализе. Во всех случаях модель пытаются упростить. Явление взаимодействия двух факторов проявляется не так часто, а тройное взаимодействие бывает только в исключительных случаях. Включают то взаимодействие, для которого есть предыдущая информация и серьезные основания, чтобы ее учесть в модели. Процесс выделения отдельных факторов и их учета относительно простой. Поэтому часто возникает желание выделить больше обстоятельств. Этим не следует увлекаться. Чем больше условий, тем менее надежной становится модель и тем больше вероятность ошибки. Сама модель, в которую входит большое количество независимых переменных, становится достаточно сложной для интерпретации и неудобной для практического использования.

Общая идея дисперсионного анализа

Дисперсионный анализ в статистике - это метод получения результатов наблюдений, зависимых от различных одновременно действующих обстоятельств, и оценки их влияния. Управляемую переменную величину, которая соответствует способу воздействия на объект исследования и в некоторый период времени приобретает определенное значение, называют фактором. Они могут быть качественными и количественными. Уровни количественных условий приобретают определенное значение на числовой шкале. Примерами являются температура, давление прессования, количество вещества. Качественные факторы - это разные вещества, разные технологические способы, аппараты, наполнители. Их уровням соответствует шкала наименований.

К качественным можно отнести также вид упаковочного материала, условия хранения лекарственной формы. Сюда же рационально отнести степень измельчения сырья, фракционный состав гранул, имеющих количественное значение, однако плохо поддающихся регулированию, если использовать количественную шкалу. Число качественных факторов зависит от вида лекарственной формы, а также физических и технологических свойств лекарственных веществ. Например, из кристаллических веществ можно получать таблетки прямым прессованием. В этом случае достаточно провести выбор скользящих и смазывающих веществ.

Примеры качественных факторов для различных видов лекарственных форм

  • Настойки. Состав экстрагента, тип экстрактора, способ подготовки сырья, способ получения, способ фильтрации.
  • Экстракты (жидкие, густые, сухие). Состав экстрагента, способ экстракции, тип установки, способ удаления экстрагента и балластных веществ.
  • Таблетки. Состав вспомогательных веществ, наполнители, разрыхлители, связующие, смазывающие и скользящие вещества. Способ получения таблеток, вид технологического оборудования. Вид оболочки и ее компонентов, пленкообразователи, пигменты, красители, пластификаторы, растворители.
  • Инъекционные растворы. Вид растворителя, способ фильтрации, природа стабилизаторов и консервантов, условия стерилизации, способ заполнения ампул.
  • Суппозитории. Состав суппозиторной основы, способ получения суппозиториев, наполнителей, упаковки.
  • Мази. Состав основы, структурные компоненты, способ приготовления мази, вид оборудования, упаковка.
  • Капсулы. Вид оболочечного материала, способ получения капсул, тип пластификатора, консерванта, красителя.
  • Линименты. Способ получения, состав, тип оборудования, тип эмульгатора.
  • Суспензии. Вид растворителя, вид стабилизатора, метод диспергирования.

Примеры качественных факторов и их уровней, изучаемых в процессе изготовления таблеток

  • Разрыхлитель. Крахмал картофельный, глина белая, смесь натрия гидрокарбоната с кислотой лимонной, магния карбонат основной.
  • Связывающий раствор. Вода, крахмальный клейстер, сахарный сироп, раствор метилцеллюлозы, раствор оксипропилметилцеллюлозы, раствор поливинилпирролидона, раствор поливинилового спирта.
  • Скользящая вещество. Аэросил, крахмал, тальк.
  • Наполнитель. Сахар, глюкоза, лактоза, натрия хлорид, фосфат кальция.
  • Смазывающее вещество. Стеариновая кислота, полиэтиленгликоль, парафин.

Модели дисперсионного анализа в исследовании уровня конкурентоспособности государства

Одним из важнейших критериев оценки состояния государства, по которым проводится оценка уровня его благосостояния и социально-экономического развития, является конкурентоспособность, то есть совокупность свойств, присущих национальной экономике, которые определяют способность государства конкурировать с другими странами. Определив место и роль государства на мировом рынке, можно установить четкую стратегию обеспечения экономической безопасности в международных масштабах, ведь она является залогом положительных взаимоотношений России со всеми игроками мирового рынка: инвесторами, кредиторами, правительствами государств.

Для сравнения уровня конкурентоспособности государств проводится ранжирование стран с помощью комплексных индексов, которые включают различные взвешенные показатели. В основу этих индексов заложены ключевые факторы, влияющие на экономическое, политическое и т. п. положение. Комплекс моделей исследования конкурентоспособности государства предусматривает использование методов многомерного статистического анализа (в частности, это дисперсионный анализ (статистика), эконометрическое моделирование, принятие решений) и включает следующие основные этапы:

  1. Формирование системы показателей-индикаторов.
  2. Оценку и прогнозирование индикаторов конкурентоспособности государства.
  3. Сравнение показателей-индикаторов конкурентоспособности государств.

А теперь рассмотрим содержание моделей каждого из этапов данного комплекса.

На первом этапе с помощью методов экспертного изучения формируется обоснованный комплекс экономических показателей-индикаторов оценки конкурентоспособности государства с учетом специфики ее развития на основе международных рейтингов и данных статистических отделов, отражающих состояние системы в целом и ее процессов. Выбор этих показателей обоснован необходимостью отобрать те из них, которые наиболее полно с точки зрения практики позволяют определить уровень государства, его инвестиционную привлекательность и возможности относительной локализации существующих потенциальных и реально действующих угроз.

Основные показатели-индикаторы международных рейтинг-систем - это индексы:

  1. Глобальной конкурентоспособности (ИГК).
  2. Экономической свободы (ИЭС).
  3. Развития человеческого потенциала (ИРЧП).
  4. Восприятия коррупции (ИВК).
  5. Внутренних и внешних угроз (ИВЗЗ).
  6. Потенциала международного влияния (ИПМВ).

Второй этап предусматривает оценку и прогнозирование индикаторов конкурентоспособности государства по международным рейтингам для исследуемых 139 государств мира.

Третий этап предусматривает сравнение условий конкурентоспособности государств при помощи методов корреляционно-регрессионного анализа.

Используя результаты исследования можно определить характер протекания процессов в целом и по отдельным составляющим конкурентоспособности государства; проверить гипотезу о влиянии факторов и их взаимосвязи при соответствующем уровне значимости.

Реализация предложенного комплекса моделей позволит не только оценить сложившуюся ситуацию уровня конкурентоспособности и инвестиционной привлекательности государств, но и проанализировать недостатки управления, предупредить ошибки неправильных решений, не допустить развития кризиса в государстве.

Введение

Цель работы: познакомится с таким статистическим методом, как дисперсионный анализ.

Дисперсионный анализ (от латинского Dispersio – рассеивание) – статистический метод, позволяющий анализировать влияние различных факторов на исследуемую переменную. Метод был разработан биологом Р. Фишером в 1925 году и применялся первоначально для оценки экспериментов в растениеводстве. В дальнейшем выяснилась общенаучная значимость дисперсионного анализа для экспериментов в психологии, педагогике, медицине и др.

Целью дисперсионного анализа является проверка значимости различия между средними с помощью сравнения дисперсий. Дисперсию измеряемого признака разлагают на независимые слагаемые, каждое из которых характеризует влияние того или иного фактора или их взаимодействия. Последующее сравнение таких слагаемых позволяет оценить значимость каждого изучаемого фактора, а также их комбинации.

При истинности нулевой гипотезы (о равенстве средних в нескольких группах наблюдений, выбранных из генеральной совокупности), оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии.

При проведении исследования рынка часто встает вопрос о сопоставимости результатов. Например, проводя опросы по поводу потребления какого-либо товара в различных регионах страны, необходимо сделать выводы, на сколько данные опроса отличаются или не отличаются друг от друга. Сопоставлять отдельные показатели не имеет смысла и поэтому процедура сравнения и последующей оценки производится по некоторым усредненным значениям и отклонениям от этой усредненной оценки. Изучается вариация признака. За меру вариации может быть принята дисперсия. Дисперсия σ2 – мера вариации, определяемая как средняя из отклонений признака, возведенных в квадрат.

На практике часто возникают задачи более общего характера – задачи проверки существенности различий средних выборочных нескольких совокупностей. Например, требуется оценить влияние различного сырья на качество производимой продукции, решить задачу о влиянии количества удобрений на урожайность с/х продукции.



Иногда дисперсионный анализ применяется, чтобы установить однородность нескольких совокупностей (дисперсии этих совокупностей одинаковы по предположению; если дисперсионный анализ покажет, что и математические ожидания одинаковы, то в этом смысле совокупности однородны). Однородные же совокупности можно объединить в одну и тем самым получить о ней более полную информацию, следовательно, и более надежные выводы.

Дисперсионный анализ

1.1 Основные понятия дисперсионного анализа

В процессе наблюдения за исследуемым объектом качественные факторы произвольно или заданным образом изменяются. Конкретная реализация фактора (например, определенный температурный режим, выбранное оборудование или материал) называется уровнем фактора или способом обработки. Модель дисперсионного анализа с фиксированными уровнями факторов называют моделью I, модель со случайными факторами - моделью II. Благодаря варьированию фактора можно исследовать его влияние на величину отклика. В настоящее время общая теория дисперсионного анализа разработана для моделей I.

В зависимости от количества факторов, определяющих вариацию результативного признака, дисперсионный анализ подразделяют на однофакторный и многофакторный.

Основными схемами организации исходных данных с двумя и более факторами являются:

Перекрестная классификация, характерная для моделей I, в которых каждый уровень одного фактора сочетается при планировании эксперимента с каждой градацией другого фактора;

Иерархическая (гнездовая) классификация, характерная для модели II, в которой каждому случайному, наудачу выбранному значению одного фактора соответствует свое подмножество значений второго фактора.

Если одновременно исследуется зависимость отклика от качественных и количественных факторов, т.е. факторов смешанной природы, то используется ковариационный анализ /3/.

При обработке данных эксперимента наиболее разработанными и поэтому распространенными считаются две модели. Их различие обусловлено спецификой планирования самого эксперимента. В модели дисперсионного анализа с фиксированными эффектами исследователь намеренно устанавливает строго определенные уровни изучаемого фактора. Термин «фиксированный эффект» в данном контексте имеет тот смысл, что самим исследователем фиксируется количество уровней фактора и различия между ними. При повторении эксперимента он или другой исследователь выберет те же самые уровни фактора. В модели со случайными эффектами уровни значения фактора выбираются исследователем случайно из широкого диапазона значений фактора, и при повторных экспериментах, естественно, этот диапазон будет другим.

Таким образом, данные модели отличаются между собой способом выбора уровней фактора, что, очевидно, в первую очередь влияет на возможность обобщения полученных экспериментальных результатов. Для дисперсионного анализа однофакторных экспериментов различие этих двух моделей не столь существенно, однако в многофакторном дисперсионном анализе оно может оказаться весьма важным.

При проведении дисперсионного анализа должны выполняться следующие статистические допущения: независимо от уровня фактора величины отклика имеют нормальный (Гауссовский) закон распределения и одинаковую дисперсию. Такое равенство дисперсий называется гомогенностью. Таким образом, изменение способа обработки сказывается лишь на положении случайной величины отклика, которое характеризуется средним значением или медианой. Поэтому все наблюдения отклика принадлежат сдвиговому семейству нормальных распределений.

Говорят, что техника дисперсионного анализа является "робастной". Этот термин, используемый статистиками, означает, что данные допущения могут быть в некоторой степени нарушены, но несмотря на это, технику можно использовать.

При неизвестном законе распределения величин отклика используют непараметрические (чаще всего ранговые) методы анализа.

В основе дисперсионного анализа лежит разделение дисперсии на части или компоненты. Вариацию, обусловленную влиянием фактора, положенного в основу группировки, характеризует межгрупповая дисперсия σ2. Она является мерой вариации частных средних по группам вокруг общей средней и определяется по формуле:

,

где k - число групп;

nj - число единиц в j-ой группе;

Частная средняя по j-ой группе;

Общая средняя по совокупности единиц.

Вариацию, обусловленную влиянием прочих факторов, характеризует в каждой группе внутригрупповая дисперсия σj2.

.

Между общей дисперсией σ02, внутригрупповой дисперсией σ2 и межгрупповой дисперсией существует соотношение:

Внутригрупповая дисперсия объясняет влияние неучтенных при группировке факторов, а межгрупповая дисперсия объясняет влияние факторов группировки на среднее значение по группе /2/.

Однофакторный дисперсионный анализ

Однофакторная дисперсионная модель имеет вид:

x ij = μ + F j + ε ij, (1)

где х ij – значение исследуемой переменой, полученной на i-м уровне фактора (i=1,2,...,т) c j-м порядковым номером (j=1,2,...,n);

F i – эффект, обусловленный влиянием i-го уровня фактора;

ε ij – случайная компонента, или возмущение, вызванное влиянием неконтролируемых факторов, т.е. вариацией переменой внутри отдельного уровня.

Основные предпосылки дисперсионного анализа:

Математическое ожидание возмущения ε ij равно нулю для любых i, т.е.

M(ε ij) = 0; (2)

Возмущения ε ij взаимно независимы;

Дисперсия переменной x ij (или возмущения ε ij) постоянна для

любых i, j, т.е.

D(ε ij) = σ 2 ; (3)

Переменная x ij (или возмущение ε ij) имеет нормальный закон

распределения N(0;σ 2).

Влияние уровней фактора может быть как фиксированным или систематическим (модель I), так и случайным (модель II).

Пусть, например, необходимо выяснить, имеются ли существенные различия между партиями изделий по некоторому показателю качества, т.е. проверить влияние на качество одного фактора - партии изделий. Если включить в исследование все партии сырья, то влияние уровня такого фактора систематическое (модель I), а полученные выводы применимы только к тем отдельным партиям, которые привлекались при исследовании. Если же включить только отобранную случайно часть партий, то влияние фактора случайное (модель II). В многофакторных комплексах возможна смешанная модель III, в которой одни факторы имеют случайные уровни, а другие – фиксированные.

Пусть имеется m партий изделий. Из каждой партии отобрано соответственно n 1 , n 2 , …, n m изделий (для простоты полагается, что n 1 =n 2 =...=n m =n). Значения показателя качества этих изделий представлены в матрице наблюдений:

x 11 x 12 … x 1n

x 21 x 22 … x 2n

………………… = (x ij), (i = 1,2, …, m; j = 1,2, …, n).

x m1 x m2 … x mn

Необходимо проверить существенность влияния партий изделий на их качество.

Если полагать, что элементы строк матрицы наблюдений – это численные значения случайных величин Х 1 ,Х 2 ,...,Х m , выражающих качество изделий и имеющих нормальный закон распределения с математическими ожиданиями соответственно a 1 ,а 2 ,...,а m и одинаковыми дисперсиями σ 2 , то данная задача сводится к проверке нулевой гипотезы Н 0: a 1 =a 2 =...= а m , осуществляемой в дисперсионном анализе.

Усреднение по какому-либо индексу обозначено звездочкой (или точкой) вместо индекса, тогда средний показатель качества изделий i-й партии, или групповая средняя для i-го уровня фактора, примет вид:

где i* – среднее значение по столбцам;

Ij – элемент матрицы наблюдений;

n – объем выборки.

А общая средняя:

(5)

Сумма квадратов отклонений наблюдений х ij от общей средней ** выглядит так:

2 = 2 + 2 +

2 2 . (6)

Q = Q 1 + Q 2 + Q 3 .

Последнее слагаемое равно нулю

так как сумма отклонений значений переменной от ее средней равна нулю, т.е.

2 =0.

Первое слагаемое можно записать в виде:

В результате получается тождество:

Q = Q 1 + Q 2 , (8)

где - общая, или полная, сумма квадратов отклонений;

- сумма квадратов отклонений групповых средних от общей средней, или межгрупповая (факторная) сумма квадратов отклонений;

- сумма квадратов отклонений наблюдений от групповых средних, или внутригрупповая (остаточная) сумма квадратов отклонений.

В разложении (8) заключена основная идея дисперсионного анализа. Применительно к рассматриваемой задаче равенство (8) показывает, что общая вариация показателя качества, измеренная суммой Q, складывается из двух компонент – Q 1 и Q 2 , характеризующих изменчивость этого показателя между партиями (Q 1) и изменчивость внутри партий (Q 2), характеризующих одинаковую для всех партий вариацию под воздействием неучтенных факторов.

В дисперсионном анализе анализируются не сами суммы квадратов отклонений, а так называемые средние квадраты, являющиеся несмещенными оценками соответствующих дисперсий, которые получаются делением сумм квадратов отклонений на соответствующее число степеней свободы.

Число степеней свободы определяется как общее число наблюдений минус число связывающих их уравнений. Поэтому для среднего квадрата s 1 2 , являющегося несмещенной оценкой межгрупповой дисперсии, число степеней свободы k 1 =m-1, так как при его расчете используются m групповых средних, связанных между собой одним уравнением (5). А для среднего квадрата s22, являющегося несмещенной оценкой внутригрупповой дисперсии, число степеней свободы k2=mn-m, т.к. при ее расчете используются все mn наблюдений, связанных между собой m уравнениями (4).

Таким образом:

Если найти математические ожидания средних квадратов и , подставить в их формулы выражение xij (1) через параметры модели, то получится:

(9)

т.к. с учетом свойств математического ожидания

(10)

Для модели I с фиксированными уровнями фактора F i (i=1,2,...,m) – величины неслучайные, поэтому

M(S ) = 2 /(m-1) +σ 2 .

Гипотеза H 0 примет вид F i = F * (i = 1,2,...,m), т.е. влияние всех уровней фактора одно и то же. В случае справедливости этой гипотезы

M(S )= M(S )= σ 2 .

(12)

(13)

(14)

т.е. сами средние, вообще говоря, находить не обязательно.

Таким образом, процедура однофакторного дисперсионного анализа состоит в проверке гипотезы H 0 о том, что имеется одна группа однородных экспериментальных данных против альтернативы о том, что таких групп больше, чем одна. Под однородностью понимается одинаковость средних значений и дисперсий в любом подмножестве данных. При этом дисперсии могут быть как известны, так и неизвестны заранее. Если имеются основания полагать, что известная или неизвестная дисперсия измерений одинакова по всей совокупности данных, то задача однофакторного дисперсионного анализа сводится к исследованию значимости различия средних в группах данных /1/.