Как было уже показано, для наблюдения интерференции света необходимо иметь когерентные световые пучки, для чего применяются различные приёмы. В опыте Юнга когерентные пучки получали разделением и последующим сведением световых лучей, исходящих из одного и того же источника (метод деления волнового фронта ).

Рассмотрим интерференционную картину, полученную методом Юнга (рис. 8.2).

Свет от источника S , прошедший через узкую щель в экране А , падет на экран В с двумя щелями S 1 и S 2 , расположенными достаточно близко друг к другу на расстоянии d . Эти щели являются когерентными источниками света. Интерференция наблюдается в области, в которой перекрываются волны от этих источников (поле интерференции ). На экране Э мы видим чередование полос с максимумом и минимумом интенсивности света.

Экран расположен на расстоянии l от щелей, причем .

Рассмотрим две световые волны, исходящие из точечных источников S 1 и S 2 . Показатель преломления среды – n .

Вычислим ширину полос интерференции (темных и светлых полос).

Интенсивность в произвольной точке P экрана, лежащей на расстоянии x от О , определяется (для вакуума, когда n = 1) оптической разностью хода .

Из рис. 8.1 имеем

; ,

отсюда , или

.

Из условия следует, что , поэтому

а минимумы – в случае, если

и не зависит от порядка интерференции (величины m ) и является постоянной для данных l , d .

Расстояние между двумя соседними максимумами называется расстоянием между интерференционными полосами , а расстояние между соседними минимумами – шириной интерференционной полосы .

Т.к. обратно пропорционально d , при большом расстоянии между источниками, например при , отдельные полосы становятся неразличимыми, сравнимыми с длиной волны . Поэтому необходимо выполнять условие .

Этот опыт показывает, что интерференционная картина, создаваемая на экране двумя когерентными источниками света, представляет собой чередование светлых и темных полос. Главный максимум , соответствующий , проходит через точку О . Вверх и вниз от него располагаются максимумы (минимумы ) первого (), второго () порядков и т. д.

Из перечисленных формул видно, что ширина интерференционной полосы и расстояние между ними зависят от длины волны λ. Только в центре картины при совпадут максимумы всех волн. По мере удаления от центра максимумы разных цветов смещаются друг относительно друга все больше и больше. Это приводит, при наблюдении в белом свете , ко все большему размытию интерференционных полос. Интерференционная картина будет окрашенной, но нечеткой (смазанной).

Измерив , зная l и d , можно вычислить длину волны λ. Именно так вычисляют длины волн разных цветов в спектроскопии.

Рассмотрим еще раз вопрос, который мы довольно подробно обсудили раньше, в гл. 37 (вып. 3). Сейчас мы используем идею об амплитуде во всей ее мощи, чтобы показать вам, как она работает. Вернемся к старому опыту, изображенному на фиг. 1.1, добавив к нему еще источник света и поместив его за щелями (ср. фиг. 37.4 гл. 37). В гл. 37 мы обнаружили следующий примечательный результат. Если мы заглядывали за щель 1 и замечали фотоны, рассеивавшиеся где-то за ней, то распределение вероятности того, что электрон попадал в при одновременном наблюдении этих фотонов, было в точности такое же, как если бы щель 2 была закрыта. Суммарное распределение для электронов, которые были «замечены» либо у щели , либо у щели 2, было суммой отдельных распределений и было совсем не похоже на распределение, которое получалось, когда свет бывал выключен. По крайней мере так бывало, когда использовался свет с малой длиной волн. Когда длина волны начинала расти и у нас исчезала уверенность в том, у какой из щелей произошло рассеяние света, распределение становилось похожим на то, которое бывало при выключенном свете.

Посмотрим теперь, что здесь происходит, используя наши новые обозначения и принципы композиции амплитуд. Чтобы упростить запись, можно через опять обозначить амплитуду того, что электрон придет в через щель 1, т. е.

Сходным же образом будет обозначать амплитуду того, что электрон достигнет детектора через щель 2:

Это - амплитуды проникновения электрона через щель и появления в , когда света нет. А если свет включен, мы поставим себе вопрос: какова амплитуда процесса, в котором вначале электрон выходит из , а фотон испускается источником света , а в конце электрон оказывается в , а фотон обнаруживается у щели 1? Предположим, что мы с помощью счетчика наблюдаем фотон у щели 1 (фиг. 1.3), а такой же счетчик считает фотоны, рассеянные у щели 2. Тогда можно говорить об амплитуде появления фотона в счетчике , а электрона в и об амплитуде появления фотона в счетчике , а электрона в . Попробуем их подсчитать.

Фигура 1.3. Опыт, в котором определяется, через которую из щелей проник электрон.

Хоть мы и не располагаем правильной математической формулой для всех множителей, входящих в этот расчет, но дух расчета вы почувствуете из следующих рассуждений. Во-первых, имеется амплитуда того, что электрон доходит от источника к щели 1. Затем можно предположить, что имеется конечная амплитуда того, что, когда электрон находится у щели 1, он рассеивает фотон в счетчик . Обозначим эту амплитуду через . Затем имеется амплитуда того, что электрон переходит от щели 1 к электронному счетчику в . Амплитуда того, что электрон перейдет от к через щель 1 и рассеет фотон в счетчик , тогда равна

Или в наших прежних обозначениях это просто .

Имеется также некоторая амплитуда того, что электрон, проходя сквозь щель 2, рассеет фотон в счетчик . Вы скажете: «Это невозможно; как он может рассеяться в счетчик , если тот смотрит прямо в щель 1?» Если длина волны достаточно велика, появляются дифракционные эффекты, и это становится возможным. Конечно, если прибор будет собран хорошо и если используются лишь фотоны с короткой длиной волны, то амплитуда того, что фотон рассеется в счетчик от электрона в щели 2, станет очень маленькой. Но для общности рассуждения мы учтем тот факт, что такая амплитуда всегда имеется, и обозначим ее через . Тогда амплитуда того, что электрон проходит через щель 2 и рассеивает фотон в счетчик , есть

Амплитуда обнаружения электрона в и фотона в счетчике есть сумма двух слагаемых, по одному для каждого мыслимого пути электрона. Каждое из них в свою очередь составлено из двух множителей: первого, выражающего, что электрон прошел сквозь щель, и второго - что фотон рассеян таким электроном в счетчик ; мы имеем

Аналогичное выражение можно получить и для случая, когда фотон будет обнаружен другим счетчиком . Если допустить для простоты, что система симметрична, то будет также амплитудой попадания фотона в счетчик , когда электрон проскакивает через щель 2, а - амплитудой попадания фотона в счетчик , когда электрон проходит через щель 1. Соответствующая полная амплитуда - амплитуда того, что фотон окажется в счетчике , а электрон в ,- равна

Вот и все. Теперь мы легко можем рассчитать вероятность тех или иных случаев. Скажем, мы желаем знать, с какой вероятностью будут получаться отсчеты в счетчике при попадании электрона в . Это будет квадрат модуля амплитуды, даваемой формулой (1.8), т. е. попросту . Поглядим на это выражение внимательнее. Прежде всего, если (мы хотели бы, чтобы наш прибор работал именно так), ответ просто равен с множителем . Это как раз то распределение вероятностей, которое получилось бы при наличии лишь одной щели, как показано на фиг. 1.4, а. С другой стороны, если длина волны велика, рассеяние за щелью 2 в счетчик может стать почти таким же, как за щелью 1. Хотя в и могут входить какие-то фазы, возьмем самый простой случай, когда обе фазы одинаковы. Если практически совпадает с , то полная вероятность обращается в , умноженное на , потому что общий множитель можно вынести. Но тогда выходит то самое распределение вероятностей, которое получилось бы, если бы фотонов вовсе не было. Следовательно, когда длина волны очень велика (и детектировать фотоны бесполезно), вы возвращаетесь к первоначальной кривой распределения, на которой видны интерференционные эффекты, как показано на фиг. 1.4, б. Когда же детектирование частично все же оказывается эффективным, возникает интерференция между большим количеством и малым количеством и вы получаете промежуточное распределение, такое, какое намечено на фиг. 1.4, в. Само собой разумеется, если нас заинтересуют одновременные отсчеты фотонов в счетчике и электронов в , то мы получим тот же результат. Если вы вспомните рассуждения гл. 37 (вып. 3), то увидите, что эти результаты описывают количественно то, что было сказано там., или в . Должны ли вы складывать амплитуды (1.8) и (1.9)? Нет! Никогда не складывайте амплитуды разных, отличных друг от друга конечных состояний. Как только фотон был воспринят одним из фотонных счетчиков, мы всегда, если надо, можем узнать, не возмущая больше системы, какая из альтернатив (взаимоисключающих событий) реализовалась. У каждой альтернативы есть своя вероятность, полностью независимая от другой. Повторяем, не складывайте амплитуд для различных конечных условий (под «конечным» мы понимаем тот момент, когда нас интересует вероятность, т. е. когда опыт «закончен»). Зато нужно складывать амплитуды для различных неразличимых альтернатив в ходе самого опыта, прежде чем целиком закончится процесс. В конце процесса вы можете, если хотите, сказать, что вы «не желаете смотреть на фотон». Это ваше личное дело, но все же амплитуды складывать нельзя. Природа не знает, на что вы смотрите, на что нет, она ведет себя так, как ей положено, и ей безразлично, интересуют ли вас ее данные или нет. Так что мы не должны складывать амплитуды. Мы сперва возводим в квадрат модули амплитуд для всех возможных разных конечных состояний, а затем уж складываем. Правильный результат для электрона в : и фотона то ли в , то ли в таков:

(1.10)

Огибание волнами препятствий или отклонение от прямолинейного распространения в оптически неоднородной среде получило название дифракции.

Дифракция возникает при прохождении световых волн через отверстия в непрозрачных экранах, вблизи границ непрозрачных тел и т.д.

Различаются два вида дифракции световых волн: дифракция Френеля, или дифракция в расходящихся лучах, и дифракция Фраунгофера, или дифракция в параллельных лучах.

В первом случае на препятствие падает сферическая или плоская волна, а дифракционная картина наблюдается на экране, который находится позади препятствия на конечном расстоянии от него.

Во втором случае на препятствие падает плоская волна, а дифракционная картина наблюдается на экране, который находится в фокальной плоскости собирающей линзы, установленной на пути прошедшего через препятствие света.

2.1. Дифракция Фраунгофера на узкой длинной щели в непрозрачном экране

Ширина щели BC=b, длина волны, падающего света λ. Свет падает на щель нормально к её поверхности так что колебания во всех точках щели совершаются в одной фазе. О – оптический центр линзы. Дифракционная картина наблюдается на экране, который установлен в фокальной плоскости линзы. φ – угол дифракции, или угол отклонения от прямолинейного распространения падающих волн, который может принимать значения от 0 до .

F 0 – центр дифракционной картины, где интерферируют лучи, угол дифракции которых равен нулю. В F наблюдается центральный дифракционный максимум.

Параллельные лучи BM и CN, идущие от краёв щели под углом дифракции φ, собираются линзой в побочном фокусе F φ .

Линза обладает тем свойством, что оптические пути лучей BM и DNF φ , где D – основание перпендикуляра, опущенного из точки В на направление луча CN, одинаковы.

Результат интерференции в точке F φ экрана зависит от разности хода волн и длины волн падающего света. Щель можно разбить по ширине на зоны, которые получили название зон Френеля. Зоны имеют вид параллельных ребру В полосок, разность хода от краев которых равна λ/2.

Число зон Френеля, укладывающихся в отверстие, равно:

.

Все зоны излучают свет в рассматриваемом направлении с одинаковой амплитудой, причём колебания, вызываемые в точке F φ двумя соседними зонами противоположны по фазе.

Поэтому, если число зон Френеля в отверстии чётное

где k=1,2…,

то под углом дифракции, удовлетворяющем условию, наблюдается дифракционный минимум. k – порядок дифракционного минимума.

Если число зон Френеля нечётное

Где k=1,2…,

то под углом дифракции φ удовлетворяющему условию

наблюдается дифракционный максимум, соответствующий действию одной зоны Френеля (k - порядок дифракционного минимума).

Самый яркий центральный максимум наблюдается в главном фокусе линзы F 0 (φ=0).

С ростом k ширина зон Френеля уменьшается и интенсивность максимумов быстро падает.

Амплитуда и интенсивность света в точке F φ равны:

и ,

где А 0 – амплитуда, I 0 – интенсивность центрального максимума (φ=0).

2.2. Дифракция света на одномерной дифракционной решётке

Одномерная дифракционная решётка представляет собой систему из большого число N одинаковых по ширине и параллельных друг другу щелей в экране, раздельных также одинаковыми по ширине непрозрачными промежутками.

На рисунке 8 показаны только две соседние щели решётки. Величина d=a+b, называется периодом решётки (a=KC – ширина непрозрачного промежутка, b=BK – ширина щели,

Ширина решётки). Если плоская монохроматическая волна с длиной λ падает на решётку нормально, то колебания во всех точках щели происходят в одинаковой фазе. Колебания, возбуждаемые в произвольной точке Fφ фокальной плоскости линзы каждой из щелей, совпадают по амплитуде, но отличаются по фазе. Для каждой пары соседних щелей сдвиг по фазе Δφ0 μежду этими колебаниями одинаков. Сдвиг по фазе зависит от разности хода волн, идущих от точек В и С под углом дифракции φ и длины волны λ.

где - разность хода,

D – основание перпендикуляра, опущенного из точки В на направление луча С.

.

Условие наблюдения главных максимумов: или (k=1,2,3)

,

k – порядок интерференционного максимума.

Наибольший порядок спектра наблюдается под углом дифракции: ;

;

k может принимать только целые значения, поэтому результат, полученный от деления, нужно округлить до меньшего целого числа. Число максимумов наблюдаемых на экране . В центре экрана в точке F 0 наблюдается центральный максимум (φ=0, k=0).

Условие наблюдения главных минимумов:

или ;

,

k – порядок главного минимума.

2.3. Разрешающая способность дифракционной решётки

Пусть на дифракционную решётку падает немонохроматический свет с длиной волны λ 1 и λ 2 .

; (близкие длины волн).

Период дифракционной решётке d, число щелей N. В спектре k-ого порядка на экране (рисунок 9) под углом φ1 наблюдается максимум для длины волны λ1, а под углом дифракции φ2 – максимум для волны с λ2. (Fφ1 θ Fφ2 – ρоответственно), максимумы для двух длин волн на экране пространственно разделены, если выполняется условие:

(формула Рэлея).

Это условие получило название разрешающей способности дифракционной решётки. λ можно принять равным λ 1 или λ 2 .

2.4. Дифракция рентгеновских лучей

Кристаллическую решётку твёрдых тел можно рассматривать как пространственную дифракционную решётку, период которой значительно меньше длины волны видимого света (). Для видимого света кристаллы являются оптически однородной средой.

В тоже время для рентгеновских лучей кристаллы представляют естественные кристаллические решётки ().

Рассмотрим еще раз вопрос, который мы довольно подробно обсудили раньше, в гл. 37 (вып. 3). Сейчас мы используем идею об амплитуде во всей ее мощи, чтобы показать вам, как она работает. Вернемся к старому опыту, изображенному на фиг. 1.1, добавив к нему еще источник света и поместив его за щелями (ср. фиг. 37.4 гл. 37). В гл. 37 мы обнаружили следующий приме­чательный результат. Если мы заглядывали за щель 1 и заме­чали фотоны, рассеивавшиеся где-то за ней, то распределение вероятности того, что электрон попадал в х при одновременном наблюдении этих фотонов, было в точности такое же, как если бы щель 2 была закрыта. Суммарное распределение для элект­ронов, которые были «замечены» либо у щели 1, либо у щели 2, было суммой отдельных распределений и было совсем не похоже на распределение, которое получалось, когда свет бывал вы­ключен. По крайней мере так бывало, когда использовался свет с малой длиной волн. Когда длина волны начинала расти и у нас исчезала уверенность в том, у какой из щелей произо­шло рассеяние света, распределение становилось похожим на то, которое бывало при выключенном свете.

Посмотрим теперь, что здесь происходит, используя наши новые обозначения и принципы композиции амплитуд. Чтобы упростить запись, можно через  1 опять обозначить амплитуду того, что электрон придет в х через щель 1, т. е.

Сходным же образом  2 будет обозначать амплитуду того, что электрон достигнет детектора через щель 2:

Это - амплитуды проникновения электрона через щель и появле­ния в х, когда света нет. А если свет включен, мы поставим себе вопрос: какова амплитуда процесса, в котором вначале электрон выходит из s, а фотон испускается источником света L, а в конце электрон оказывается в ж, а фотон обнаруживается у щели 1? Предположим, что мы с помощью счетчика D 1 наблюдаем фотон у щели 1 (фиг. 1.3), а такой же счетчик D 2 считает фо­тоны, рассеянные у щели 2.

Фиг. 1.3 . Опыт, в котором определяется, через которую из щелей проник электрон.

Тогда можно говорить об ампли­туде появления фотона в счетчике D 1 а электрона в x; и об амплитуде появления фотона в счетчике D 2 , а электрона в х. Попробуем их подсчитать.

Хоть мы и не располагаем правильной математической формулой для всех множителей, входящих в этот расчет, но дух расчета вы почувствуете из следующих рассуждений. Во-первых, имеется амплитуда <1|s> того, что электрон доходит от источника к щели 1. Затем можно предположить, что имеется конечная амплитуда того, что, когда электрон находится у щели 1, он рассеивает фотон в счетчик D 1 . Обозначим эту ам­плитуду через а. Затем имеется амплитуда того, что электрон переходит от щели 1 к электронному счетчику в х. Амплитуда того, что электрон перейдет от s к х через щель 1 и рассеет фотон в счетчик D 1 тогда равна

a .

Или в наших прежних обозначениях это просто а 1 .

Имеется также некоторая амплитуда того, что электрон, проходя сквозь щель 2, рассеет фотон в счетчик D 1 . Вы скажете: «Это невозможно; как он может рассеяться в счетчик D 1? если тот смотрит прямо в щель 1?» Если длина волны достаточно велика, появляются дифракционные эффекты, и это становится возможным. Конечно, если прибор будет собран хорошо и если используются лишь фотоны с короткой длиной волны, то ам­плитуда того, что фотон рассеется в счетчик D 1 от электрона в щели 2, станет очень маленькой. Но для общности рассуждения мы учтем тот факт, что такая амплитуда всегда имеется, и обо­значим ее через b . Тогда амплитуда того, что электрон проходит через щель 2 и рассеивает фотон в счетчик D 1 есть

Амплитуда обнаружения электрона в х и фотона в счетчике D 1 есть сумма двух слагаемых, по одному для каждого мысли­мого пути электрона. Каждое из них в свою очередь составлено из двух множителей: первого, выражающего, что электрон прошел сквозь щель, и второго - что фотон рассеян таким электроном в счетчик D 1 ; мы имеем

Аналогичное выражение можно получить и для случая, ког­да фотон будет обнаружен другим счетчиком D 2 . Если допус­тить для простоты, что система симметрична, то а будет также амплитудой попадания фотона в счетчик D 2 , когда электрон проскакивает через щель 2, a b - амплитудой попадания фо­тона в счетчик D 2 , когда электрон проходит через щель 1. Соот­ветствующая полная амплитуда - амплитуда того, что фотон окажется в счетчике D 2 , а электрон в х,- равна

Вот и все. Теперь мы легко можем рассчитать вероятность тех или иных случаев. Скажем, мы желаем знать, с какой ве­роятностью будут получаться отсчеты в счетчике D 1 при попада­нии электрона в х. Это будет квадрат модуля амплитуды, давае­мой формулой (1.8), т. е. попросту |a1+b 2 | 2 . Поглядим на это выражение внимательнее. Прежде всего, если b=0 (мы хотели бы, чтобы наш прибор работал именно так), ответ просто равен | 1 | 2 с множителем |a| 2 . Это как раз то рас­пределение вероятностей, которое получилось бы при наличии лишь одной щели, как показано на фиг. 1.4, а.

Фиг. 1.4. Вероятность отсчета электрона в х при условии, что в D 1 замечен фотон в опыте, показанном на фиг. 1.3. а - при b =0; б - при b =а; в - при 0< b <а.

С другой сторо­ны, если длина волны велика, рассеяние за щелью 2 в счетчик D 1 может стать почти таким же, как за щелью 1. Хотя в а и b могут входить какие-то фазы, возьмем самый простой случай, когда обе фазы одинаковы. Если а практически совпадает с b , то полная вероятность обращается в |  1 + 2 | 2 , умноженное на |а | 2 , потому что общий множитель а можно вынести. Но тогда выходит то самое распределение вероятностей, которое получилось бы, если бы фотонов вовсе не было. Следовательно, когда длина волны очень велика (и детектировать фотоны бес­полезно), вы возвращаетесь к первоначальной кривой распре­деления, на которой видны интерференционные эффекты, как показано на фиг. 1.4,б . Когда же детектирование частично все же оказывается эффективным, возникает интерференция между большим количеством  1 и малым количеством  2 и вы получаете промежуточное распределение, такое, какое намечено на фиг. 1.4,в . Само собой разумеется, если нас заинтересуют одно­временные отсчеты фотонов в счетчике D 2 и электронов в х, то мы получим тот же результат. Если вы вспомните рассужде­ния гл. 37 (вып. 3), то увидите, что эти результаты описывают количественно то, что было сказано там.

Нам хотелось бы подчеркнуть очень важное обстоятельство и предостеречь от часто допускаемой ошибки. Пусть вас инте­ресует только амплитуда того, что электрон попадает в х, причем вам безразлично, в какой счетчик попал фотон - в D 1 или в D 2 . Должны ли вы складывать амплитуды (1.8) и (1.9)? Нет! Никог­да не складывайте амплитуды разных, отличных друг от друга конечных состояний. Как только фотон был воспринят одним из фотонных счетчиков, мы всегда, если надо, можем узнать, не возмущая больше системы, какая из альтернатив (взаимо­исключающих событий) реализовалась. У каждой альтерна­тивы есть своя вероятность, полностью независимая от другой. Повторяем, не складывайте амплитуд для различных конечных условий (под «конечным» мы понимаем тот момент, когда нас интересует вероятность, т. е. когда опыт «закончен»). Зато нужно складывать амплитуды для различных неразличимых альтернатив в ходе самого опыта, прежде чем целиком закон­чится процесс. В конце процесса вы можете, если хотите, ска­зать, что вы «не желаете смотреть на фотон». Это ваше личное дело, но все же амплитуды складывать нельзя. Природа не знает, на что вы смотрите, на что нет, она ведет себя так, как ей положено, и ей безразлично, интересуют ли вас ее данные или нет. Так что мы не должны складывать амплитуды. Мы сперва возводим в квадрат модули амплитуд для всех возможных разных конечных состояний, а затем уж складываем. Пра­вильный результат для электрона в x и фотона то ли в D 1 то ли в D 2 таков: