1.Знакомимся с тепловым движением

В соответствии с современными представлениями, атомы и молеку­лы, из которых состоит вещество, находятся в беспрерывном хаотичес­ком движении. Такое движение называется тепловым.

Тепловое движение невозможно увидеть невооруженным глазом, ведь размеры молекул очень малы.

Однако существует много физических явлений, объяснить которые мож­но только опираясь на тот факт, что молекулы постоянно двигаются.

Рис. 2.15. Воспользовавшись во­ронкой с длинным носиком, можно аккуратно налить раствор медного купороса на дно стакана с водой

Рис. 2.16. Наблюдение явления диффузии в жидкостях: в результате диффузии резкая граница между раствором медного купороса и водой постепенно исчезает

2. Вспоминаем определение диффузии

Бесспорным доказательством движения молекул служит физичес­кое явление , хорошо известное вам из курса природоведения,- диффузия (от лат. diffusio - распространение, растекание).

Напомним, что диффузией называют взаимное проникновение соприка­сающихся веществ друг в друга, происходящее в результате теплового (ха­отического) движения молекул (атомов).

3. Наблюдаем диффузию в газах и жидкостях

Вспомните, что происходит, если где-то в комнате разлить ароматное вещество, например духи,- его запах в скором времени будет ощущаться повсюду. Это значит, что молекулы ароматного вещества, двигаясь, попада­ют в промежутки между молекулами воздуха, которым заполнена комна­та, т. е. наблюдается диффузия . Именно в результате диффузии в газах мы ощущаем запах свежеиспеченного хлеба из булочной или запах прогретой солнцем травы.

Диффузию можно наблюдать и в жидкостях. Проведем такой опыт. В про­зрачный сосуд с чистой водой с помощью воронки нальем раствор медного купороса так, чтобы жидкости не смешались (рис. 2.15). Сначала мы наблю­даем резкую границу между водой и раствором медного купороса. Оставив сосуд в покое на несколько дней, мы увидим, что вся жидкость в сосуде при­обрела бирюзовый цвет (рис. 2.16). Причем перемешивание жидкостей произо­шло без вмешательства извне. Схематически процесс диффузии изображен на рис. 2.17. Многочисленные опыты свидетельствуют, что диффузия в жидкос­тях протекает значительно медленнее, чем в газах. Еще медленнее происхо­дит диффузия в твердых телах. Почему? Ответ на этот вопрос следует искать в особенностях расположения молекул газов, жидкостей и твердых тел.

4. Выясняем, как связаны скорость движения молекул и температура

Приготовим два сосуда, как показано на рис. 2.15. Один из сосудов поставим в теплое место, второй - в холодное. Посмотрев через некоторое время на сосуды, мы убедимся, что в теплом растворе диффузия произошла намно­го быстрее.

В случае повышения температуры скорость диффузии в газах также увеличивается.

Зависимость скорости диффузии от тем­пературы особенно заметна для твердых тел. Так, английский металлург Вильям Роберт Ос­тин провел следующий опыт. Он наплавил тон­кий диск золота на свинцовый цилиндр (рис. 2.18, а) и на несколько дней поместил этот ци­линдр в печь, где поддерживалась температура около 400 °С. Оказалось, что золото продиффундировало через весь цилиндр (рис. 2.18, б); тем временем при комнатной температуре диф­фузия практически не наблюдалась.

Таким образом, мы выяснили, что чем выше температура вещества , тем быстрее происходит диффузия, т. е. молекулы быстрее двигаются.

Довольно сложные эксперименты показыва­ют, что при любой температуре в веществе есть молекулы, двигающиеся довольно медленно, и молекулы, скорость которых высока. Если ко­личество молекул вещества, имеющих высокую скорость, увеличивается, т. е. увеличивается средняя скорость молекул, то это значит, что температура вещества также увеличивается.

5. Узнаем о диффузии в природе и ее применении в технике

Явление диффузии очень распространено в природе. Благодаря диффузии углекислый газ попадает в листву растений; кислород из воздуха - на дно водохранилищ; питательные вещества впитываются в кишечнике; кислород из легких попадает в кровь, а из крови - в тка­ни и т. д.

Диффузию широко применяют в технике. Одним из примеров является диффузное свари­вание металлов. Куски металлов крепко при­жимают друг к другу, нагревают до высокой температуры, но ниже температуры плавления. В месте соединения проис­ходит диффузия, и куски металлов как будто срастаются.

Рис. 2.17. Схематическое изображение процесса диффу­зии: молекулы одной жидкости проникают в промежутки между молекулами другой и в результа­те со временем жидкости полно­стью перемешиваются


Рис. 2.11 Опыт по наблюдению диффузии в твердых телах: а - свинцовый цилиндр с напаян­ной золотой пластинкой; б - тот же цилиндр в конце опыта

  • Подводим итоги

Атомы и молекулы, из которых состоит вещество, находятся в бес­прерывном хаотическом движении. Такое движение называется тепловым, поскольку увеличение температуры вещества соответствует увеличению средней скорости движения его молекул (атомов).

Одним из доказательств движения частиц вещества является физическое явление, которое называется диффузией. Диффузия - взаимное проникно­вение соприкасающихся веществ друг в друга, происходящее в результате теплового хаотического движения молекул (атомов).

  • Контрольные вопросы

1. Что называют тепловым движением?

2. Дайте определение диф­фузии.

3. Приведите примеры диффузии в газах, жидкостях и твер­дых телах.

4. От чего зависит скорость диффузии? Объясните при­чины этой зависимости.

5. Приведите примеры диффузии в природе.


Упражнения

1. В чем отличие холодной воды от горячей на «молекулярный взгляд»?
2. В каком состоянии вещества (газообразном, твердом или жидком) диффузия происходит быстрее? Почему?
3. Углекислый газ более тяжелый, чем другие газы, однако он при­сутствует в верхних слоях атмосферы. Объясните это явление.
4. Запрещено перевозить вместе с пищей такие вещества, как керо­син, бензин, краски. Почему?
5. Скорость движения молекул газа составляет несколько сотен мет­ров в секунду. Почему же мы ощущаем запах разлитой жидкости не мгновенно, а спустя некоторое время?
6 Почему чай заваривают кипят­ком, а не холодной водой? 7. Почему сушеная слива разбу­хает в воде? 8 В два стакана с водой одновре­менно опустили по одинаковому кусочку сахара (см. рисунок). В каком стакане начальная температура воды была выше?
9. Ощутив опасность, кальмар выбрасывает темно-синюю защитную жидкость. Почему через некоторое время вода, окрашен­ная этой жидкостью, даже в спокойном состоянии снова становится прозрачной?

10. Правильным ли, по вашему мнению, является утверждение, что запах свежего хлеба из пекарни распространяется лишь в том на­правлении, куда дует ветер? Обоснуйте свой ответ.

  • Экспериментальные задания

1. Надуйте два воздушных шарика. Один шарик поместите в теплое место, вто­рой - в холодное. Через сутки срав­ните, какой шарик оказался меньше сдутым. Почему?
2. Приготовьте крепкий раствор кухонной соли. Налейте в стакан чистую воду, потом с помощью воронки осторож­но налейте раствор соли на дно стака­на (см. рисунок). Попробуйте верхнюю жидкость на вкус, убедитесь, что она несоленая. Отставьте стакан на сутки, а потом снова попробуйте воду. Какой результат вы получили? Объясните его.


3. Возьмите два тонкостенных стакана. В один из них налейте холод­ную воду, в другой - горячую. С помощью пипетки опустите на дно каждого стакана несколько капель крепкого чая. Объясните результаты.

  • Физика и техника в Украине

Иван Павлович Пулюй (1845- 1918) родился на Тернополь­щине.

Ученые особенно отмечают работы Ивана Пулюя в области молекулярной физики - данные о коэффициентах внутреннего трения и диффузии газов и пара. Эти данные являются исходны­ми при вычислении таких микроскопических величин, как сред­няя длина свободного пробега молекул, их количество в одной грамм-молекуле и т. п. В области электротехники Иван Пулюй усовершенствовал технологию изготовления осветительных ламп, первым исследовал неоновый свет. При участии Пулюя запущен ряд электростанций на постоянном токе в Австро-Венг­рии, а также первая в Европе на переменном токе. Значительный вклад был внесен Пулюем в исследование рентгеновских лучей.

Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Диффузия

Примером диффузии может служить перемешивание газов (например, распространение запахов) или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: атомы соприкасающихся металлов перемешиваются на границе соприкосновения. Важную роль диффузия частиц играет в физике плазмы .

Обычно под диффузией понимают процессы, сопровождающиеся переносом материи , однако иногда диффузионными называют также другие процессы переноса: теплопроводность , вязкое трение и т. п.

Скорость протекания диффузии зависит от многих факторов. Так, в случае металлического стержня тепловая диффузия проходит очень быстро. Если же стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно. Диффузия молекул в общем случае протекает ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом , то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микронов только через несколько тысяч лет.

Количественно описание процессов диффузии было дано немецким физиологом А. Фиком (англ. ) в 1855 г.

Общее описание

Все виды диффузии подчиняются одинаковым законам. Скорость диффузии пропорциональна площади поперечного сечения образца, а также разности концентраций , температур или зарядов (в случае относительно небольших величин этих параметров). Так, тепло будет в четыре раза быстрее распространяться через стержень диаметром в два сантиметра, чем через стержень диаметром в один сантиметр. Это тепло будет распространяться быстрее, если перепад температур на одном сантиметре будет 10 °C вместо 5 °C. Скорость диффузии пропорциональна также параметру, характеризующему конкретный материал. В случае тепловой диффузии этот параметр называется теплопроводность , в случае потока электрических зарядов - электропроводность . Количество вещества, которое диффундирует в течение определённого времени, и расстояние, проходимое диффундирующим веществом, пропорциональны квадратному корню времени диффузии.

Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Скорость диффузии в связи с этим пропорциональна средней скорости молекул. В случае газов средняя скорость малых молекул больше, а именно она обратно пропорциональна квадратному корню из массы молекулы и растёт с повышением температуры. Диффузионные процессы в твёрдых телах при высоких температурах часто находят практическое применение. Например, в определённых типах электронно-лучевых трубок (ЭЛТ) применяется металлический торий , продиффундировавший через металлический вольфрам при 2000 °C.

Если в смеси газов масса одной молекулы в четыре раза больше другой, то такая молекула передвигается в два раза медленнее по сравнению с её движением в чистом газе. Соответственно, скорость диффузии её также ниже. Эта разница в скорости диффузии лёгких и тяжёлых молекул применяется, чтобы разделять субстанции с различными молекулярными весами. В качестве примера можно привести разделение изотопов . Если газ, содержащий два изотопа, пропускать через пористую мембрану, более лёгкие изотопы проникают через мембрану быстрее, чем тяжёлые. Для лучшего разделения процесс производится в несколько этапов. Этот процесс широко применялся для разделения изотопов урана (отделение 235 U от основной массы 238 U). Поскольку такой способ разделения требует больших энергетических затрат, были развиты другие, более экономичные способы разделения. Например, широко развито применение термодиффузии в газовой среде. Газ, содержащий смесь изотопов, помещается в камеру, в которой поддерживается пространственный перепад (градиент) температур. При этом тяжёлые изотопы со временем концентрируются в холодной области.

Уравнения Фика

С точки зрения термодинамики движущим потенциалом любого выравнивающего процесса является рост энтропии . При постоянных давлении и температуре в роли такого потенциала выступает химический потенциал µ , обуславливающий поддержание потоков вещества. Поток частиц вещества пропорционален при этом градиенту потенциала

~

В большинстве практических случаев вместо химического потенциала применяется концентрация C . Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал перестаёт быть связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то вышеприведённую формулу можно заменить на следующую:

которая показывает, что плотность потока вещества J пропорциональна коэффициенту диффузии D [()] и градиенту концентрации. Это уравнение выражает первый закон Фика. Второй закон Фика связывает пространственное и временное изменения концентрации (уравнение диффузии):

Коэффициент диффузии D зависит от температуры. В ряде случаев в широком интервале температур эта зависимость представляет собой уравнение Аррениуса .

Дополнительное поле, наложенное параллельно градиенту химического потенциала, нарушает стационарное состояние. В этом случае диффузионные процессы описываются нелинейным уравнением Фоккера-Планка . Процессы диффузии имеют большое значение в природе:

  • Питание, дыхание животных и растений;
  • Проникновение кислорода из крови в ткани человека.

Геометрическое описание уравнения Фика

Во втором уравнении Фика в левой части стоит скорость изменения концентрации во времени, а в правой части уравнения - вторая частная производная, которая выражает пространственное распределение концентрации, в частности, выпуклость функции распределения температур, проецируемую на ось х.

См. также

  • Поверхностная диффузия - процесс, связанный с перемещением частиц, происходящий на поверхности конденсированного тела в пределах первого поверхностного слоя атомов (молекул) или поверх этого слоя.

Примечания

Литература

  • Бокштейн Б. С. Атомы блуждают по кристаллу. - М .: Наука, 1984. - 208 с. - (Библиотечка «Квант» . Вып. 28). - 150 000 экз.

Ссылки

  • Диффузия (видеоурок, программа 7 класса)
  • Диффузия примесных атомов на поверхности монокристалла

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Диффузия" в других словарях:

    - [лат. diffusio распространение, растекание] физ., хим. проникновение молекул одного вещества (газа, жидкости, твердого тела) в другое при их непосредственном соприкосновении или через пористую перегородку. Словарь иностранных слов. Комлев Н.Г.,… … Словарь иностранных слов русского языка

    Диффузия - – проникновение в среду частиц одного вещества частиц другого вещества, происхо дящее вследствие теплового движения в направлении уменьшения концентрации другого вещества. [Блюм Э. Э. Словарь основных металловедческих терминов. Екатеринбург … Энциклопедия терминов, определений и пояснений строительных материалов

    Современная энциклопедия

    - (от лат. diffusio распространение растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или к установлению равновесного распределения концентраций частиц данного сорта в среде. В отсутствие… … Большой Энциклопедический словарь

    ДИФФУЗИЯ, перемещение вещества в смеси из область с высокой концентрацией в области с низкой концентрацией, вызванное случайным перемещением отдельных атомов или молекул. Диффузия прекращается, когда исчезает градиент концентрации. Скорость… … Научно-технический энциклопедический словарь

    диффузия - и, ж. diffusion f., нем. Diffusion <лат. diffusio растекание, распространение. Взаимное проникновение соприкасающихся веществ друг в друга вследствие теплового движения молекул и атомов. Диффузия газов, жидкостей. БАС 2. || перен. Они… … Исторический словарь галлицизмов русского языка

    Диффузия - (от латинского diffusio распространение, растекание, рассеивание), движение частиц среды, приводящее к переносу вещества и выравниванию концентраций или установлению их равновесного распределения. Обычно диффузия определяется тепловым движением… … Иллюстрированный энциклопедический словарь

    Перемещение частиц в направлении убывания их концентрации, обусловленное тепловым движением. Д. приводит к выравниванию концентраций диффундирующего вещества и равномерному заполнению частицами объема.… … Геологическая энциклопедия

Рассмотренная нами молекулярная диффузия является свободной, т.е. необремененной перегородкой между твердой (Т) и жидкой (Ж) фазами, (либо между растворами разной концентрации). При наличии клеточных оболочек, стенок и др., что имеет место при экстрагировании организованного (клеточного) сырья, диффузия веществ определяется как внутренняя диффузия, т.к. молекулы экстрактивных веществ диффундируют в толще, внутри самой клеточной оболочки, перегородки.

Физиологическое состояние клеточной оболочки определяет возможности массообмена. В живой клетке оболочка изнутри выстлана протоплазмой, пропускающей воду только внутрь клетки и не выпускающей из клетки растворенные в плазме вещества. Процесс экстракции, массообмена, не имеет места, пока жива протоплазма, из клетки нельзя извлечь никаких веществ. Всем известен пример намачивания разрезанной свежей свеклы, моркови в холодной воде- экстракции, выделения веществ из неразрушенных клеток не происходит.

По-другому ведет себя высушенная, умерщвленная клетка. Погибшая протоплазма становится проницаемой, клеточная оболочка становится пористой перегородкой , пронизанной ультрамикропорами, через которые проходит диффузия, идет процесс диализа.

Механизм диффузии вещества через клеточную оболочку заключается в следующем: молекулы диффундируемого вещества “А” вначале сорбируются из первичного сока материалом мембраны стенок растительной клетки, затем диффундируют через нее и десорбируются с другой стороны перегородки, накапливаются в пограничном (диффузионном слое ) и только затем перемещаются в окружающую толщу растворителя.

Наличие в организованном сырье клеточной стенки, мембраны, перегородки, ее строение, а также инкрустация клеточной оболочки воском, кутином, суберином, наличие лигнина и др. компонентов, очень сказывается на массообмене, снижая его еще в большей степени - на несколько порядков в сравнении со свободной молекулярной диффузией.



Естественно, коэффициент диффузии для вещества, диффундирующего через клеточную стенку, оболочку, будет меньшим по сравнению со свободной диффузией. Поэтому, в случае определения величины диффузии веществ из растительного материала в коэффициент молекулярной (свободной) диффузии “D св. ” вводится поправочный коэффициент “В”, учитывающий перечисленные осложнения процесса. “D” приобретает индекс “Коэффициента внутренней диффузии” - D вн. , а уравнение внутренней диффузии имеет следующий вид:

После подставления значения D вн. в уравнение внутренней диффузии оно в развернутом виде имеет вид:

Конвективная диффузия

Молекулярная диффузия проходит в неподвижной системе и протекает относительно медленно. Поэтому большее практическое значение для практики экстракций имеет диффузия в движущейся среде, т.н. конвективная диффузия (от лат. convectio - привоз, принесение).

В этом случае молекулы вещества переходят из одной фазы в другую не только вследствие молекулярного движения, но и механически - путем перемещения отдельных небольших (элементарных) объемов жидкой фазы под влиянием циркуляции, сотрясений, разницы температур, давлений и т.п.

Конвективная диффузия подчиняется закономерностям, согласно которым величина (конвективной) диффузии возрастает с увеличением поверхности массообмена, разности концентраций, продолжительности процесса и коэффициента конвективной диффузии.

Размер молекул диффундируемого вещества, кинетическая их энергия здесь оказываются второразрядными факторами.

Уравнение конвективной диффузии имеет следующее выражение:

S конв. =  · F·  C част.· 

S конв. - количество вещества, перенесенное конвективной диффузией, кг

 - коэффициент конвективной диффузии, представляющий собой количество вещества, перенесенное движущейся жидкостью за 1 сек, с единицы поверхности 1 м 2:, при разности концентрации в 1 кг/куб. м;

F - площадь поверхности диффузионного процесса, кв. м;

 С частн. - разность концентрации вещества у поверхности раздела фаз и в центре движущегося (частного) объема жидкости, кг/м 3 ;

 - время, сек.

Скорость конвективного переноса вещества представляет величину, отражающую количество перенесенного вещества в единицу времени;

(кг/с)

Скорость конвективной диффузии W конв. в десятки раз больше скорости молекулярной диффузии (W своб.).

Суммарный процесс переноса веществ из растительного материала в экстрагент выражается основным уравнением массопередачи.

Процесс массопередачи , имеющий место при наличии двух видов диффузии (молекулярной и конвективной диффузии), может быть представлен уравнением:

S=K· F·  C·  (кг)

Количество вещества, переходящее из фазы в фазу (в нашем случае из клетки в извлекатель) зависит от коэффициента массопередачи (К), поверхности раздела фаз (F), разности концентрации ( С) и времени ().

К - коэффициент массопередачи суммирует значения всех видов диффузии, имеющих место при извлечении материала, и в обобщенном виде может быть записан так:

, где

r - радиус частиц растительного материала, м;

 - поправочный коэффициент на анатомические особенности растительных тканей;

D, d,  - те же значения, что и выше.

При этом два последних слагаемых знаменателя являются величинами переменными, зависящими от гидростатического состояния системы, т.е. от скорости перемещения жидкой фазы.

Как уже упоминалось, процесс массопередачи проходит через пограничный(ламинарный, диффузионный) слой, представляющий собой концентрированный раствор вещества у границы раздела твердой и жидкой фаз. Этот слой оказывает основное сопротивление молекулярной диффузии, его толщина очень влияет на интенсивность массообмена: с увеличением ламинарного (диффузионного) слоя количество вещества “А” в жидкой фазе “Ж” возрастает очень медленно, с уменьшением слоя - быстро, поскольку разность концентраций поддерживается на максимальном значении.

Толщина этого слоя зависит, в основном, от скорости перемещения экстрагента.

1. Если процесс массопередачи (извлечения действующих и сопутствующих веществ из растительного сырья) идет в полном макропокое, например, при методе мацерации , тогда коэффициент конвективной диффузии “ “ будет равен нулю и значимыми будут только два слагаемых знаменателя - внутренней и свободной диффузии, т.е. первый и второй слагаемые. Коэффициент массопередачи в таком случае будет равен:

Учитывая, что значения коэффициента конвективной диффузии на несколько порядков больше коэффициента свободной диффузии, и тем более внутренней, то и массопередача в целом проходит мало эффективно.

2. В случае слабого (умеренного, т.е. не более 0,5 м/сек.) перемещения жидкости (экстрагента) все коэффициенты диффузии будут значимыми, и они суммируются, т.е. коэффициент массопередачи имеет значение:

Действительно, при перколяционном, реперколяционном и противоточных методах экстракции процесс массообмена весьма эффективен.

3. Третий возможный случай экстракции, когда экстрагент перемещается с большой скоростью. В этом случае вещество, преодолев клеточную оболочку, попадает в общий объем извлечения, т.е. фазы “Ж”. При этом совершенно отсутствует диффузионный слой, толщина этого слоя “d” равна нулю и,т.о., второе слагаемое равно нулю.

Поскольку коэффициент конвективной диффузии возрастает при этом до бесконечности (  ), то и третье слагаемое будет равно “0”, т.к. I = 0, и коэффициент массопередачи определяется только первым слагаемым:

Такая картина имеет место при вихревом методе экстракции, когда пропеллерная мешалка вращается со скоростью 9.000-12.000 оборотов в минуту, а также при акустическом и электрогидродинамическом методах экстракции, при экстракции с применением роторно-пульсационного аппарата. В последнее время предложено экстрагирование с применением электрических разрядов, с использованием электроплазмолиза и электродиализа. В этих случаях появляется возможность влиять на коэффициент внутренней диффузии Dвн., что позволяет значительно ускорить процесс экстрагирования на самой его медленной стадии.

Другие основные факторы, влияющие на процесс массообмена:

Поверхность раздела фаз (F), “твердое лекарственное сырье-жидкость” зависит от степени измельчения сырья и будет тем больше, чем меньше его частички. Однако на практике известно, что при чрезмерно тонком измельчении сырье может слеживаться, а при содержании слизистых веществ - ослизняться, в результате чего через такие массы экстрагент будет проходить очень плохо. При слишком тонком измельчении резко увеличивается количество разорванных клеток, что приводит к вымыванию сопутствующих веществ, загрязняющих вытяжку (белки, слизи, пектины и другие высокомолекулярные соединения). Кроме того, в экстрагент переходит большое количество взвешенных частиц. В результате вытяжки получаются мутные, трудноосветляемые и фильтруемые. Отсюда следует, что крупное сырье следует измельчать до оптимальных размеров: листья, цветы, травы до 3-5 мм; стебли, корни, кору до 1-3 мм, плоды и семена до 0,3-0,5 мм. При этом в исходном материале будут сохраняться клеточная структура и преобладать диффузионные процессы, экстрагирование замедлится, но полученная вытяжка будет содержать меньше механических примесей и легче очищаться.

Разность концентраций в сырье С 1 и экстрагенте С 2 является движущей силой процесса экстракции. Во время экстракции необходимо стремиться к максимальному перепаду концентраций, что достигается более частой сменой экстрагента (ремацерация вместо мацерации), проведением противоточного процесса и др.

Время (продолжительность) экстрагирования. Из основного уравнениямассопередачи следует, что количество вещества, продиффундировавшего через некоторый слой, прямо пропорционально времени экстракции. Однако нужно стремиться к максимальной полноте извлечения в кратчайший срок, максимально использовав все прочие факторы, ведущие к интенсификации процесса.

Чрезмерная продолжительность извлечения приводит к загрязнению вытяжек сопутствующими высокомолекулярными соединениями, скорость диффузии которых значительно меньше, чем у биологически активных веществ. При длительном экстрагировании могут протекать нежелательные процессы под влиянием ферментов. Общая продолжительность экстракции зачастую определяется экономическими соображениями. При этом бывает целесообразно прекратить процесс в какой-то момент, учитывая, что дополнительно извлеченные количества веществ не окупят избыточных расходов и увеличивающихся при этом потерь ценных экстрагентов (спирт, эфир).

Вязкость экстрагента. По закону Фика количество растворенного вещества, продиффундировавшего через некоторый слой экстрагента, обратно пропорционально вязкости этого экстрагента при данной температуре. Следовательно, менее вязкие растворы обладают большей диффузионной способностью. Для уменьшения вязкости при экстрагировании растительными маслами используют подогрев.

Перспективными в этом отношении являются используемые в последнее время сжиженные газы - углерода диоксид (СО 2), пропан, бутан, жидкий аммиак и др. Наиболее часто используют сжиженный углерода диоксид, который химически индифферентен к большому числу действующих веществ. Его вязкость в 14 раз меньше вязкости воды и в 5 раз - меньше вязкости этанола. Сжиженный углерода диоксид хорошо извлекает эфирные масла и другие гидрофобные вещества. Гидрофильные вещества хорошо экстрагируются сжиженными газами с высокой диэлектрической проницаемостью (аммиак, метил хлористый, метиленоксид и др.)

Температура. Повышение температуры ускоряет процесс экстрагирования, но в условиях фитохимических производств подогрев используют только для водных извлечений. Спиртовая и тем более эфирная экстракция проводится при комнатной (или более низкой) температуре, поскольку с ее повышением увеличиваются потери экстрагентов, а следовательно, вредность и опасность работы с ними.

Как было указано выше, при экстрагировании маслами используется подогрев. Но для термолабильных веществ применение горячего экстрагента допустимо лишь в течение коротких отрезков времени. Повышение температуры экстрагента нежелательно для эфиромасличного сырья, поскольку при нагревании эфирные масла в значительной степени теряются. Необходимо учитывать, что при использовании горячей воды происходит кластеризация крахмала, пептизация веществ; вытяжки в этом случае становятся слизистыми, и дальнейшая работа с ними значительно затрудняется. Повышение температуры целесообразно при экстрагировании из корней, корневищ, коры и кожистых листьев. Горячая вода в этом случае способствует лучшему отделению тканей и разрыву клеточных стенок, ускоряя тем самым течение диффузионного процесса.

Добавка поверхностно-активных веществ (ПАВ). Экспериментально установлено, что добавление небольших количеств ПАВ (0,01-0,1%) улучшает процесс экстрагирования. При этом увеличивается количество экстрагируемых веществ-алкалоидов, гликозидов, эфирных масел и других, а в некоторых случаях полнота извлечения достигается при меньшем объеме экстрагента. Добавки ПАВ снижают поверхностное натяжение на границе раздела фаз, улучшая смачиваемость содержимого клетки и облегчая проникновение экстрагента. Кроме того, существенную роль играет солюбилизирующая способность ПАВ.

Выбор экстрагента. Для обеспечения полноты извлечения действующих веществ и максимальной скорости экстрагирования к экстрагенту предъявляют следующие требования: селективность (избирательная растворимость), химическая и фармацевтическая индифферентность, малая токсичность, доступность.

Выбор экстрагента определяется степенью гидрофильности извлекаемых веществ. Для экстрагирования полярных веществ с высоким значением диэлектрической постоянной используют полярные растворители: воду, метанол, глицерин; для неполярных - кислоту уксусную, хлороформ, эфир этиловый и другие органические растворители. Наиболее часто в качестве экстрагента применяют этанол - малополярный растворитель, который при смешивании с водой дает растворы с разной степенью полярности, что позволяет использовать его для избирательного экстрагирования различных биологически активных веществ. Кроме этанола, из малополярных растворителей применяют ацетон, пропанол, бутанол.

Пористость и порозность сырья. Пористость сырья – это величина пустот внутри растительной ткани. Чем она выше, тем больше образуется внутреннего сока при набухании. Порозность - это величина пустот между кусочками измельченного материала. От величины пористости и порозности зависит скорость смачивания и набухания материала. Скорость набухания возрастает при предварительном вакуумировании сырья, а также при повышении давления и температуры.

Пористость и порозность сырья обуславливают его поглощающую способность, которая характеризуется коэффициентом поглощения сырья Кп:

Р 1 и Р 2 - масса сырья, соответственно, до и после набухания. Поглощающая способность сырья находится в прямой зависимости от степени его измельчения.

Коэффициент вымывания. Он характеризует степень разрушенных клеток в измельченном сырье. Если он низкий, это значит, что в сырье мало разрушенных клеток, экстрагирование идет медленно и определяется в основном скоростью молекулярной диффузии. За величину коэффициента вымывания принимают количество веществ в вытяжке, полученное из определенной навески сырья, при определенном соотношении (сырье-экстрагент) при экстрагировании сырья в течение одного часа при определенной скорости перемешивания.

Воздействие вибраций, пульсаций, измельчения и деформации сырья в среде экстрагента. Использование методов экстрагирования, в которых имеют место вибрация, пульсация, измельчение и деформация в среде экстрагента, позволяет значительно увеличить скорость и полноту экстрагирования из сырья. Объясняется это тем, что:

1) При интенсивном воздействии на твердые частицы появляются сильные турбулентные течения, гидродинамические микропотоки, способствующие переносу масс, растворению веществ. Такое явление отмечается как снаружи твердых частиц, так и внутри них. В результате достигается интенсивное перемешивание даже внутри отдельных клеток.

2) При интенсивном колебании частиц сырья в местах трения происходит локальное повышение температуры, уменьшение вязкости экстрагента, а следовательно, увеличение коэффициента внутренней диффузии.

3) В результате увеличения турбулентности, нарушения структуры прилегающих слоев, пограничный диффузионный слой истощается или же будет иметь предельно малую толщину.

4) Следствием интенсивных колебаний является чередование зон сжатия и растяжения. При этом, в момент растяжения, в экстрагенте образуются полости разрыва жидкости (кавитационные зоны), которые захлопываются с силой в несколько сот атмосфер. Положительное качество этого процесса - диспергирование частиц, приводящее к увеличению межфазной поверхности.

В результате появления турбулентного перемешивания как внутри, так и снаружи клеток молекулярно-кинетическое движение заменяется конвективным, что позволяет поддерживать разность концентраций в зоне соприкосновения фаз на высоком уровне.

Воздействие электроимпульсных разрядов. При экстрагировании с помощью электрических разрядов ускоряется процесс извлечения БАВ потому, что из-за искрового разряда в сырье происходит микровзрыв, разрывающий клеточные структуры материала. Процесс извлечения протекает быстрее за счет вымывания экстрактивных веществ и пульсации, увеличивающей скорость движения экстрагента. Возникающие в жидкости колебания сокращают время экстрагирования и повышают выход биологически активных веществ.

Окончание массообмена совпадает с наступлением равновесного состояния концентрации вещества в обеих фазах (Т и Ж). Динамическое равновесие приводит к тому, что в растительном либо животном сырье остается часть извлечения с ценными компонентами (например, лекарственными веществами), которые затем выбрасываются в отвал. Такие материальные потери получили название “потери на диффузии”, их количество определяется уравнением:

(кг) , где

Px - количество экстрактивных веществ (либо конкретного вещества), оставшихся в истощенном растительном или животном сырье, т.е. материальные потери;

Xo - количество экстрактивных веществ (вещества “А”) в исходном сырье, кг;

v - количество экстрагента, оставшееся в материале после окончания процесса экстракции, литры;

V - количество экстрагента, использованного для экстракции, литры.

Из этого уравнения видно, что величину “Рх” можно уменьшить, изменяя переменные величины- “v” и “V”. Потери тем выше, чем больше v - количество экстрагента, оставшегося в шроте. Чтобы уменьшить количество вытяжки в шроте на производстве используют прессование или центрифугирование сырья.

Чем больше экстрагента берется в работу (V), тем потери на диффузии (Рх) меньше. Но беспредельно увеличивать “V“ нельзя, т.к. получается малоконцентрированная вытяжка, что не всегда приемлемо. Например, настойки готовятся в разведении 1:5 или 1:10, а жидкие экстракты 1:1 или 1:2. Получать разбавленные вытяжки и экономически невыгодно, поскольку, как правило, приходится упаривать большие объемы экстрагента при производстве густых, сухих и жидких экстрагентов.

Т.о., мы ознакомились с некоторыми сведениями о сущности и механизме процесса экстракции, факторах, влияющих на каждую из трех видов диффузии и на массоперенос в целом.

Следует сказать, что, несмотря на актуальность и практическую значимость, процесс экстракции еще очень мало изучен, работы в этом направлении проводятся.

Перейдем к другой задаче, для которой нам придется несколько изменить метод анализа, - к задаче о диффузии. Предположим, что мы взяли ящик, заполненный газом, находящимся в тепловом равновесии, а потом в любое место внутри ящика вспрыснули небольшое количество другого газа. Назовем первоначальный газ газом «фона», а новый газ - «особым» газом. Особый газ начинает распространяться по всему ящику, но распространение это замедляется наличием молекул фона. Явление такого замедленного распространения называется диффузией. Диффузия в основном определяется столкновениями молекул особого газа с молекулами фона. После многих столкновений особые молекулы более или менее равномерно распределятся по всему ящику. Важно не спутать диффузию газа с переносом больших количеств вещества в результате конвекционных токов. Обычно смешение двух газов происходит именно в результате комбинации конвекции и диффузии. Сейчас нас интересует только такое перемешивание, которое не сопровождается «порывами ветра». Газ распространяется только благодаря молекулярному движению, т. е. происходит диффузия. Давайте выясним, быстро ли происходит диффузия.

Итак, мы приступаем к вычислению общего потока молекул особого газа, порождаемого молекулярным движением. Общий поток не равен нулю только тогда, когда распределение молекул отличается от равновесного, иначе усреднение молекулярного движения сводит общий поток к нулю. Рассмотрим сначала поток в направлении оси х. Чтобы определить, чему этот поток равен, мы должны вообразить площадку, перпендикулярную к оси, и подсчитать число молекул, пересекающих эту площадку. Чтобы определить общий поток, мы должны считать положительными те молекулы, которые движутся в направлении положительных х, и вычесть из этого числа те молекулы, которые движутся в противоположном направлении. Как мы неоднократно убеждались, число молекул, пересекающих площадку в течение времени ΔT, равно числу молекул, находящихся к началу интервала ΔT внутри объема, заключенного между нашей площадкой и площадкой, расположенной от нее на расстоянии v ΔT. (Заметим, что здесь v - настоящая скорость молекулы, а отнюдь не скорость дрейфа.)

Мы упростим наши выкладки, если возьмем площадку единичной площади. Тогда число особых молекул, пересекающих площадку слева направо (справа от площадки лежат положительные x-направления), равно n_vΔT, где n_ - число особых молекул в единичном объеме слева от площадки (с точностью до множителя ˜ 1 / 6 , но мы такими множителями пренебрежем!). Аналогично, число особых молекул, движущихся справа налево, равно n + vΔT, где n + - плотность особых молекул справа от площадки. Если мы обозначим молекулярный поток буквой J, под которой мы будем понимать общий поток молекул через единичную площадку за единицу времени, то получим

А что понимать под n_ и n + ? Когда мы говорим «плотность слева от площадки», то как далеко налево? Мы должны измерить плотность в том месте, откуда молекула отправляется в свой «свободный полет», потому что число стартующих молекул определяется числом молекул, находящихся в этом месте. Таким образом, n_ - это плотность молекул на расстоянии длины свободного пробега l слева от нашей воображаемой площадки, а n + - плотность молекул на расстоянии длины свободного пробега справа от нее.

Распределение особых молекул в ящике удобно описывать с помощью непрерывной функции х, у и z, которую мы обозначим n а . Под n а (х, у, z) нужно понимать плотность особых молекул в маленьком объеме вокруг точки (х, у, z). Тогда разность (n + –n_) можно представить в виде

Подставляя этот результат в (43.22) и пренебрегая множителем 2, получаем

Мы выяснили, что поток особых молекул пропорционален производной плотности, или, как иногда говорят, «градиенту плотности».

Ясно, что мы сделали несколько грубых приближений. Не говоря уже о том, что мы постоянно забывали о множителях, мы использовали v, когда нужно было ставить v x , а разместив объемы, содержащие молекулы n + и n_, на концах перпендикуляров к площадке, взяли перпендикуляры длиной l . Между тем для тех молекул, которые движутся не перпендикулярно к поверхности, l соответствует длине наклонного пути. Можно исправить эти недоделки; более тщательный анализ показал бы, что правую часть уравнения (43.24) нужно умножить на 1 / 3 . Итак, более правильный ответ выглядит следующим образом:

Аналогичные уравнения можно написать для токов вдоль у-и z-направлений.

С помощью макроскопических наблюдений можно измерить ток J x и градиент плотности dn a /dx. Их отношение, найденное экспериментально, называется «коэффициентом диффузии» D. Это значит, что

Мы смогли показать, что ожидаемое значение коэффициента D для газа равно

Пока мы изучили в этой главе два разных процесса: подвижность (дрейф молекул под действием «внешней» силы) и диффузию (разбегание молекул, определяемое только внутренними силами, случайными столкновениями). Однако эти процессы связаны друг с другом, потому что в основе обоих явлений лежит тепловое движение, и оба раза в расчетах появлялась длина свободного пробега l .

Если в уравнение (43.25) подставить l =vτ и τ=µm, то получится

Ho mv 2 зависит только от температуры. Мы еще помним, что

так что

Таким образом, D, коэффициент диффузии, равен произведению kТ на µ, коэффициент подвижности:

Оказывается, что (43.31) - это точное соотношение между коэффициентами. Хотя мы исходили из очень грубых предположений, не нужно к нему добавлять никаких дополнительных множителей. Можно показать, что (43.31) в самом деле всегда удовлетворяется точно. Это верно даже в очень сложных случаях (например, для случая взвешенных в жидкости мелких частиц), когда наши простые вычисления явно отказываются служить.

Чтобы показать, что (43.31) верно в самых общих случаях, мы выведем его иначе, используя только основные принципы статистической механики. Представьте себе, что почему-то существует градиент «особых» молекул и возник ток диффузии, пропорциональный, согласно (43.26), градиенту плотности. Тогда мы создадим в направлении оси х силовое поле так, что на каждую особую молекулу будет действовать сила F. По определению подвижности µ скорость дрейфа дается соотношением

Используя обычные аргументы, можно найти ток дрейфа (общее число молекул, пересекающих единичную площадку за единицу времени):

или

А теперь можно так распорядиться силой F, что ток дрейфа, вызываемый силой F, скомпенсирует диффузию, тогда полный ток особых молекул будет равен нулю. В этом случае мы имеем J x + J др = 0, или

В этом случае «компенсации» существует постоянный (во времени) градиент плотности, равный

Теперь уже легко соображать дальше! Ведь мы добились равновесия и можем теперь применять наши равновесные законы статистической механики. По этим законам вероятность найти молекулу около точки х пропорциональна ехр (-U/kT), где U - потенциальная энергия. Если говорить о плотности молекул n а , то это значит:

Дифференцируя (43.37) по х, получаем

или

В нашем случае сила F направлена вдоль оси х и потенциальная энергия U равна -Fx, a-dU/dx = F. Уравнение (43.39) принимает вид

[Это в точности уравнение (40.2), из которого мы и вывели exp(–U/kT); круг замкнулся.] Сравнивая (43.40) и (43.36), мы получаем уравнение (43.31). Мы показали, что в уравнении (43.31), которое выражает ток диффузии через подвижность, все коэффициенты правильны, а само уравнение правильно всегда. Подвижность и диффузия тесно связаны. Эту связь открыл Эйнштейн.

— явление проникновения молекул одного вещества в промежутки между молекулами другого вещества.

Мы ощущаем запах духов на некотором расстоянии от флакона. Это объясняется тем, что молекулы духов, так же как и молекулы воздуха, движутся. Между молекулами существуют промежутки. Молекулы духов проникают в промежутки между молекулами воздуха, а молекулы воздуха - в промежутки между молекулами духов.

Опыты показывают, что диффузии в газах - самый быстрый процесс, в жидкостях он протекает гораздо медленнее, но может наблюдаться даже в твердых телах . Соединив гладко отполированными поверхностями два бруска из разных металлов, например из меди и алюминия, и оставив их в таком положении на длительное время (на 4-5 лет), мы обнаружим их сращивание за счет проникновения атомов меди в алюминиевый образец и, наоборот, проникновения атомов алюминия в медный.

Диффузия в газах происходит быстрее, чем в жидкостях, потому, что газы имеют меньшую плотность, чем жидкости, т.е. молекулы газов расположены на больших расстояниях друг от друга. Ещё медленнее происходит диффузия в твёрдых телах, поскольку молекулы твёрдых тел находятся ещё ближе друг к другу, чем молекулы жидкостей.

Скорость диффузии зависит не только от агрегатного состояния вещества, но и от температуры . При более высокой температуре диффузия будет происходить быстрее. Это происходит потому, что при повышении температуры быстрее движутся молекулы. Скорость движения молекул и температура тела взаимосвязаны. Чем больше средняя скорость движения молекул тела, тем выше его температура.

Проявление диффузии: окрашивание, склеивание, проникновение питательных веществ из кишечника в кровь.