Деление ядер урана происходит следующим образом: вначале в ядро попадает нейтрон, словно пуля в яблоко. В случае с яблоком пуля проделала бы в нем дыру, либо разнесла бы на куски. Когда же нейтрон попадает в ядро, то он захватывается ядерными силами. Нейтрон, как известно нейтрален, поэтому он не отталкивается электростатическими силами.

Как происходит деление ядра урана

Итак, попав в состав ядра, нейтрон нарушает равновесие, и ядро возбуждается. Оно растягивается в стороны подобно гантели или знаку «бесконечность»: . Ядерные силы, как известно, действуют на расстоянии, соизмеримом с размерами частиц. Когда ядро растягивается, то действие ядерных сил становится несущественным для крайних частиц «гантели», в то время как электрические силы действуют на таком расстоянии очень мощно, и ядро попросту разрывается на две части. При этом еще излучается два-три нейтрона.

Осколки ядра и выделившиеся нейтроны разлетаются на огромной скорости в разные стороны. Осколки довольно быстро тормозятся окружающей средой, однако их кинетическая энергия огромна. Она преобразуется во внутреннюю энергию среды, которая нагревается. При этом величина выделяющейся энергии огромна. Энергия, полученная при полном делении одного грамма урана примерно равна энергии, получаемой от сжигания 2,5 тонн нефти.

Цепная реакция деления несколькоих ядер

Мы рассмотрели деление одного ядра урана. При делении выделилось несколько (чаще всего два-три) нейтронов. Они на огромной скорости разлетаются в стороны и могут запросто попасть в ядра других атомов, вызвав в них реакцию деления. Это и есть цепная реакция.

То есть полученные в результате деления ядра нейтроны возбуждают и принуждают делиться другие ядра, которые в свою очередь сами излучают нейтроны, которые продолжают стимулировать деление дальше. И так до тех пор, пока не произойдет деление всех ядер урана в непосредственной близости.

При этом цепная реакция может происходить лавинообразно , например, в случае взрыва атомной бомбы. Количество делений ядер увеличивается в геометрической прогрессии за короткий промежуток времени. Однако цепная реакция может происходить и с затуханием .

Дело в том, что не все нейтроны встречают на своем пути ядра, которые они побуждают делиться. Как мы помним, внутри вещества основной объем занимает пустота между частицами. Поэтому некоторые нейтроны пролетают все вещество насквозь, не столкнувшись по пути ни с чем. И если количество делений ядер уменьшается со временем, то реакция постепенно затухает.

Ядерные реакции и критическая масса урана

От чего зависит тип реакции? От массы урана. Чем больше масса - тем больше частиц встретит на своем пути летящий нейтрон и шансов попасть в ядро у него больше. Поэтому различают «критическую массу» урана - это такая минимальная масса, при которой возможно протекание цепной реакции.

Количество образовавшихся нейтронов будет равно количеству улетевших вовне нейтронов. И реакция будет протекать с примерно одинаковой скоростью, пока не выработается весь объем вещества. Это используют на практике на атомных электростанциях и называют управляемой ядерной реакцией.

Ядерные реакции. Взаимодействие частицы с атомным ядром, приводящее к превращению этого ядра в новое ядро с выделением вторичных частиц или гамма-квантов, называется ядерной реакцией.

Первая ядерная реакция была осуществлена Резерфордом в 1919 г. Он обнаружил, что при столкновениях альфа-частиц с ядрами атомов азота образуются быстро движущиеся протоны. Это означало, что ядро изотопа азота в результате столкновения с альфа-частицей превращалось в ядро изотопа кислорода :

.

Ядерные реакции могут протекать с выделением или поглощением энергии. Используя закон взаимосвязи массы и энергии, энергетический выход ядерной реакции можно определить, найдя разность масс частиц, вступающих в реакцию, и продуктов реакции:

Цепная реакция деления ядер урана. Среди различных ядерных реакций особо важное значение в жизни современного человеческого общества имеют цепные реакции деления некоторых тяжелых ядер.

Реакция деления ядер урана при бомбардировке их нейтронами была открыта в 1939 г. В результате экспериментальных и теоретических исследований, выполненных Э. Ферми, И. Жолио-Кюри, О. Ганом, Ф. Штрассманом, Л. Мейтнер, О. Фришем, Ф. Жолио-Кюри, было установлено, что при попадании в ядро урана одного нейтрона ядро делится на две-три части.

При делении одного ядра урана освобождается около 200 МэВ энергии. На кинетическую энергию движения ядер-осколков приходится примерно 165 МэВ, остальную энергию уносят гамма-кванты.

Зная энергию, выделяющуюся при делении одного ядра урана, можно подсчитать, что выход энергии при делении всех ядер 1 кг урана составляет 80 тысяч миллиардов джоулей. Это в несколько миллионов раз больше, чем выделяется при сжигании 1 кг каменного угля или нефти. Поэтому были предприняты поиски путей освобождения ядерной энергии в значительных количествах для использования ее в практических целях.

Впервые предположение о возможности осуществления цепных ядерных реакций высказал Ф. Жолио-Кюри в 1934 г. Он же в 1939 г. вместе с X. Xалбаном и Л. Коварски экспериментально обнаружил, что при делении ядра урана, кроме осколков-ядер, вылетают также 2-3 свободных нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. При делении трех ядер урана должно освободиться 6-9 новых нейтронов, они попадут в новые ядра урана и т.д. Схема развития цепной реакции деления ядер урана представлена на рисунке 316.

Рис. 316

Практическое осуществление цепных реакций - не такая простая задача, как это выглядит на схеме. Нейтроны, освобождающиеся при делении ядер урана, способны вызывать деление лишь ядер изотопа урана с массовым числом 235, для разрушения же ядер изотопа урана с массовым числом 238 их энергия оказывается недостаточной. В природном уране на долю урана с массовым числом 238 приходится 99,8%, а на долю урана с массовым числом 235 - всего лишь 0,7%. Поэтому первый возможный путь осуществления цепной реакции деления связан с разделением изотопов урана и получением в чистом виде в достаточно больших количествах изотопа . Необходимое условие для осуществления цепной реакции - наличие достаточно большого количества урана, так как в образце малых размеров большинство нейтронов пролетает сквозь образец, не попав ни в одно ядро. Минимальная масса урана, в котором может возникнуть цепная реакция, называется критической массой. Критическая масса для урана-235 - несколько десятков килограммов.



Простейшим способом осуществления цепной реакции в уране-235 является следующий: изготавливают два куска металлического урана, каждый с массой, несколько меньшей критической. Цепная реакция в каждом из них в отдельности идти не может. При быстром соединении этих кусков развивается цепная реакция и выделяется колоссальная энергия. Температура урана достигает миллионов градусов, сам уран и любые другие вещества, находящиеся поблизости, превращаются в пар. Раскаленный газообразный шар быстро расширяется, сжигая и разрушая все на своем пути. Так происходит ядерный взрыв.

Использовать энергию ядерного взрыва в мирных целях очень трудно, так как выделение энергии при этом не поддается контролю. Управляемые цепные реакции деления ядер урана осуществляются в ядерных реакторах.

Ядерный реактор. Первыми ядерными реакторами были реакторы на медленных нейтронах (рис. 317). Большинство нейтронов, освобождающихся при делении ядер урана, обладают энергией 1-2 МэВ. Скорости их при этом равны примерно 107 м/с, поэтому их называют быстрыми нейтронами. При таких энергиях нейтроны взаимодействуют с ядрами урана и урана примерно с одинаковой эффективностью. А так как ядер урана в природном уране в 140 раз больше, чем ядер урана , большая часть этих нейтронов поглощается ядрами урана и цепная реакция не развивается. Нейтроны, движущиеся со скоростями, близкими к скорости теплового движения (около 2·10 3 м/с), называются медленными или тепловыми. Медленные нейтроны хорошо взаимодействуют с ядрами урана-235 и поглощаются ими в 500 раз эффективнее, чем быстрые. Поэтому при облучении природного урана медленными нейтронами большая часть их поглощается не в ядрах урана-238, а в ядрах урана-235 и вызывает их деление. Следовательно, для развития цепной реакции в природном уране скорости нейтронов должны быть уменьшены до тепловых.

Рис. 317

Замедление нейтронов происходит в результате столкновения с атомными ядрами среды, в которой они движутся. Для замедления нейтронов в реакторе используется специальное вещество, называемое замедлителем. Ядра атомов вещества-замедлителя должны обладать сравнительно небольшой массой, так как при столкновении с легким ядром нейтрон теряет энергию большую, чем при столкновении с тяжелым. Наиболее распространенными замедлителями являются обычная вода и графит.

Пространство, в котором протекает цепная реакция, называется активной зоной реактора. Для уменьшения утечки нейтронов активную зону реактора окружают отражателем нейтронов, отбрасывающим значительную часть вылетающих нейтронов внутрь активной зоны. В качестве отражателя используют обычно то же вещество, которое служит замедлителем.

Энергия, выделяющаяся при работе реактора, выводится при помощи теплоносителя. В качестве теплоносителя могут использоваться лишь жидкости и газы, не обладающие способностью поглощать нейтроны. Широко применяется в качестве теплоносителя обычная вода, иногда применяются углекислый газ и даже жидкий металлический натрий.

Управление реактором осуществляется с помощью специальных управляющих (или регулирующих) стержней, вводимых в активную зону реактора. Управляющие стержни изготавливаются из соединений бора или кадмия, поглощающих тепловые нейтроны с очень большой эффективностью. Перед началом работы реактора их полностью вводят в его активную зону. Поглощая значительную часть нейтронов, они делают невозможным развитие цепной реакции. Для запуска реактора управляющие стержни постепенно выводят из активной зоны до тех пор, пока выделение энергии не достигнет заданного уровня. При увеличении мощности свыше установленного уровня включаются автоматы, погружающие управляющие стержни в глубь активной зоны.

Ядерная энергетика. Ядерная энергия на службу мира была поставлена впервые в нашей стране. Первым организатором и руководителем работ по атомной науке и технике в СССР был академик Игорь Васильевич Курчатов (1903-1960).

В настоящее время крупнейшая в СССР и в Европе Ленинградская АЭС им. В.И. Ленина имеет мощность 4000 МВт, т.е. в 800 раз большую мощности первой АЭС.

Себестоимость электроэнергии, вырабатываемой на крупных атомных электростанциях, ниже себестоимости электроэнергии, вырабатываемой на тепловых электростанциях. Поэтому атомная энергетика развивается ускоренными темпами.

Ядерные реакторы применяются в качестве силовых установок на морских кораблях. Первый в мире мирный корабль с ядерной силовой установкой - атомный ледокол "Ленин" - был построен в Советском Союзе в 1959 г.

Советский атомный ледокол "Арктика", построенный в 1975 г., стал первым в мире надводным кораблем, достигшим Северного полюса.

Термоядерная реакция. Ядерная энергия освобождается не только в ядерных реакциях деления тяжелых ядер, но и в реакциях соединения легких атомных ядер.

Для соединения одноименно заряженных протонов необходимо преодолеть кулоновские силы отталкивания, что возможно при достаточно больших скоростях сталкивающихся частиц. Необходимые условия для синтеза ядер гелия из протонов имеются в недрах звезд. На Земле термоядерная реакция синтеза осуществлена при экспериментальных термоядерных взрывах.

Синтез гелия из легкого изотопа водорода происходит при температуре около 108 К, а для синтеза гелия из тяжелых изотопов водорода - дейтерия и трития - по схеме

требуется нагревание примерно до 5·10 7 К.

При синтезе 1 г гелия из дейтерия и трития выделяется энергия 4,2·10 11 Дж. Такая энергия выделяется при сжигании 10 тонн дизельного топлива.

Запасы водорода на Земле практически неисчерпаемы, поэтому использование энергии термоядерного синтеза в мирных целях является одной из важнейших задач современной науки и техники.

Управляемую термоядерную реакцию синтеза гелия из тяжелых изотопов водорода путем нагревания предполагается осуществить путем пропускания электрического тока через плазму. Для удержания нагретой плазмы от соприкосновения со стенками камеры применяется магнитное поле. На экспериментальной установке "Токамак-10" советским физикам удалось нагреть плазму до температуры 13 млн. градусов. До более высоких температур водород может быть нагрет с помощью лазерного излучения. Для этого световые пучки от нескольких лазеров должны быть сфокусированы на стеклянном шарике, внутри которого заключена смесь тяжелых изотопов дейтерия и трития. В экспериментах на лазерных установках уже получена плазма с температурой в несколько десятков миллионов градусов.

>> Деление ядер урана

§ 107 ДЕЛЕНИЕ ЯДЕР УРАНА

Делиться на части могут только ядра некоторых тяжелых элементов. При делении ядер испускаются два-три нейтрона и -лучи. Одновременно выделяется большая энергия .

Открытие деления урана. Деление ядер урана было открыто в 1938 г. немецкими учеными О. Ганом иФ. Штрассманом. Они установили, что нри бомбардировке урана нейтронами возникают элементы средней части периодической системы: барий, криптон и др. Однако правильное истолкование этого факта именно как деления ядра урана, захватившего нейтрон, было дано в начале 1939 г. английским физиком О. Фришем совместно с австрийским физиком Л. Мейтнером.

Захват нейтрона нарушает стабильность ядра. Ядро возбуждается и становится неустойчивым, что приводит к его делению на осколки. Деление ядра возможно потому, что масса покоя тяжелого ядра больше суммы масс покоя осколков, возникающих при делении. Поэтому происходит выделение энергии, эквивалентной уменьшению массы покоя, сопровождающему деление.

Возможность деления тяжелых ядер можно также объяснить с помощью графика зависимости удельной энергии связи от массового числа А (см. рис. 13.11). Удельная энергия связи ядер атомов элементов, занимающих в периодической системе последние места (А 200), примерно на 1 МэВ меньше удельной энергии связи в ядрах элементов, находящихся в середине периодической системы (А 100). Поэтому процесс деления тяжелых ядер на ядра элементов средней части периодической системы является энергетически выгодным. Система после деления переходит в состояние с минимальной внутренней энергией. Ведь, чем больше энергия связи ядра, тем большая энергия должна выделяться нри возникновении ядра и, следовательно, тем меньше внутренняя энергия образовавшейся вновь системы.

При делении ядра энергия связи, приходящаяся на каждый нуклон, увеличивается на 1 МэВ и общая выделяющаяся энергия должна быть огромной - порядка 200 МэВ. Ни при какой другой ядерной реакции (не связанной с делением) столь больших энергий не выделяется.

Непосредственные измерения энергии, выделяющейся при делении ядра урана , подтвердили приведенные соображения и дали значение200 МэВ. Причем большая часть этой энергии (168 МэВ) приходится на кинетическую энергию осколков. На рисунке 13.13 вы видите треки осколков делящегося урана в камере Вильсона.

Выделяющаяся при делении ядра энергия имеет электростатическое, а не ядерное происхождение. Большая кинетическая энергия , которую имеют осколки, возникает вследствие их кулоновского отталкивания.

Механизм делении ядра. Процесс деления атомного ядра можно объяснить иа основе капельной модели ядра. Согласно этой модели сгусток нуклонов напоминает капельку заряженной жидкости (рис. 13.14, а). Ядерные силы между нуклонами являются короткодействующими, подобно силам, действующим между молекулами жидкости. Наряду с большими силами электростатического отталкивания между протонами, стремящимиея разорвать ядро на части, действуют еще большие ядерные силы притяжения. Эти силы удерживают ядро от распада.

Ядро урана-235 имеет форму шара. Поглотив лишний нейтрон, оно возбуждается и начинает деформироваться, приобретая вытянутую форму (рис. 13.14, б). Ядро будет растягиваться до тех пор, пока силы отталкивания между половинками вытянутого ядра не начнут преобладать над силами притяжения, действующими в перешейке (рис. 13.14, в). После этого оно разрывается на две части (рис. 13.14, г).

Под действием кулоновских сил отталкивания эти осколки разлетаются со скоростью, равной 1/30 скорости света.

Испускание нейтронов в процессе деления. Фундаментальный факт ядерного деления - испускание в процессе деления двух-трех нейтронов . Именно благодаря этому оказалось возможным практическое использование внутриядерной энергии.

Понять, почему происходит испускание свободных нейтронов, можно исходя из следующих соображений. Известно, что отношение числа нейтронов к числу протонов в стабильных ядрах возрастает с повышением атомного номера. Поэтому у возникающих при делении осколков относительное число нейтронов оказывается большим, чем это допустимо для ядер атомов, находящихся в середине таблицы Менделеева . В результате несколько нейтронов освобождается в процессе деления. Их энергия имеет различные значения - от нескольких миллионов электрон-вольт до совсем малых, близких к нулю.

Деление обычно происходит на осколки, массы которых отличаются примерно в 1,5 раза. Осколки эти сильно радиоактивны, так как содержат избыточное количество нейтронов. В результате серии последовательных -распадов в конце концов получаются стабильные изотопы.

В заключение отметим, что существует также спонтанное деление ядер урана. Оно было открыто советскими физиками Г. Н. Флеровым и К. А. Петржаком в 1940 г. Период полураспада для спонтанного деления равен 10 16 лет. Это в два миллиона раз больше периода полураспада при -распаде урана.

Реакция деления ядер сопровождается выделением энергии.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Деление ядер урана при бомбардировке их нейтронами было открыто в 1939 г. немецкими учёными Отто Ганом и Фрицем Штрассманом.

Oттo Ган (1879-1968)
Немецкий физик, учёный-новатор в области радиохимии. Открыл расщепление урана, ряд радиоактивных элементов

Фриц Штрассман (1902-1980)
Немецкий физик и химик. Работы относятся к ядерной химии, ядерному делению. Дал химическое доказательство процессу деления

Рассмотрим механизм этого явления. На рисунке 162, а условно изображено ядро атома урана . Поглотив лишний нейтрон, ядро возбуждается и деформируется, приобретая вытянутую форму (рис. 162, б).

Рис. 162. Процесс деления ядра урана под воздействием попавшего в него нейтрона

Вы уже знаете, что в ядре действует два вида сил: электростатические силы отталкивания между протонами, стремящиеся разорвать ядро, и ядерные силы притяжения между всеми нуклонами, благодаря которым ядро не распадается. Но ядерные силы - короткодействующие, поэтому в вытянутом ядре они уже не могут удержать сильно удалённые друг от друга части ядра. Под действием электростатических сил отталкивания ядро разрывается на две части (рис. 162, в), которые разлетаются в разные стороны с огромной скоростью и излучают при этом 2-3 нейтрона.

Получается, что часть внутренней энергии ядра переходит в кинетическую энергию разлетающихся осколков и частиц. Осколки быстро тормозятся в окружающей среде, в результате чего их кинетическая энергия преобразуется во внутреннюю энергию среды (т. е. в энергию взаимодействия и теплового движения составляющих её частиц).

При одновременном делении большого количества ядер урана внутренняя энергия окружающей уран среды и соответственно её температура заметно возрастают (т. е. среда нагревается).

Таким образом, реакция деления ядер урана идёт с выделением энергии в окружающую среду.

Энергия, заключённая в ядрах атомов, колоссальна. Например, при полном делении всех ядер, имеющихся в 1 г урана, выделилось бы столько же энергии, сколько выделяется при сгорании 2,5 т нефти. Для преобразования внутренней энергии атомных ядер в электрическую на атомных электростанциях используют так называемые цепные реакции деления ядер .

Рассмотрим механизм протекания цепной реакции деления ядра изотопа урана . Ядро атома урана (рис. 163) в результате захвата нейтрона разделилось на две части, излучив при этом три нейтрона. Два из этих нейтронов вызвали реакцию деления ещё двух ядер, при этом образовалось уже четыре нейтрона. Эти, в свою очередь, вызвали деление четырёх ядер, после чего образовалось девять нейтронов и т. д.

Цепная реакция возможна благодаря тому, что при делении каждого ядра образуется 2-3 нейтрона, которые могут принять участие в делении других ядер.

На рисунке 163 показана схема цепной реакции, при которой общее число свободных нейтронов в куске урана лавинообразно увеличивается со временем. Соответственно резко возрастает число делений ядер и энергия, выделяющаяся в единицу времени. Поэтому такая реакция носит взрывной характер (она протекает в атомной бомбе).

Рис. 163. Цепная реакция деления ядер урана

Возможен другой вариант, при котором число свободных нейтронов уменьшается со временем. В этом случае цепная реакция прекращается. Следовательно, такую реакцию тоже нельзя использовать для производства электроэнергии.

В мирных целях возможно использовать энергию только такой цепной реакции, в которой число нейтронов не меняется с течением времени.

Как же добиться того, чтобы число нейтронов всё время оставалось постоянным? Для решения этой проблемы нужно знать, какие факторы влияют на увеличение и на уменьшение общего числа свободных нейтронов в куске урана, в котором протекает цепная реакция.

Одним из таких факторов является масса урана. Дело в том, что не каждый нейтрон, излучённый при делении ядра, вызывает деление других ядер (см. рис. 163). Если масса (и соответственно размеры) куска урана слишком мала, то многие нейтроны вылетят за его пределы, не успев встретить на своём пути ядро, вызвать его деление и породить таким образом новое поколение нейтронов, необходимых для продолжения реакции. В этом случае цепная реакция прекратится. Чтобы реакция не прекращалась, нужно увеличить массу урана до определённого значения, называемого критическим .

Почему при увеличении массы цепная реакция становится возможной? Чем больше масса куска, тем больше его размеры и тем длиннее путь, который проходят в нём нейтроны. При этом вероятность встречи нейтронов с ядрами возрастает. Соответственно увеличивается число делений ядер и число излучаемых нейтронов.

При критической массе урана число нейтронов, появившихся при делении ядер, становится равным числу потерянных нейтронов (т. е. захваченных ядрами без деления и вылетевших за пределы куска).

Поэтому их общее число остаётся неизменным. При этом цепная реакция может идти длительное время, не прекращаясь и не приобретая взрывного характера.

  • Наименьшая масса урана, при которой возможно протекание цепной реакции, называется критической массой

Если масса урана больше критической, то в результате резкого увеличения числа свободных нейтронов цепная реакция приводит к взрыву, а если меньше критической, то реакция не протекает из-за недостатка свободных нейтронов.

Уменьшить потерю нейтронов (которые вылетают из урана, не прореагировав с ядрами) можно не только за счет увеличения массы урана, но и с помощью специальной отражающей оболочки. Для этого кусок урана помещают в оболочку, сделанную из вещества, хорошо отражающего нейтроны (например, из бериллия). Отражаясь от этой оболочки, нейтроны возвращаются в уран и могут принять участие в делении ядер.

Существует ещё несколько факторов, от которых зависит возможность протекания цепной реакции. Например, если кусок урана содержит слишком много примесей других химических элементов, то они поглощают большую часть нейтронов и реакция прекращается.

Наличие в уране так называемого замедлителя нейтронов также влияет на ход реакции. Дело в том, что ядра урана-235 с наибольшей вероятностью делятся под действием медленных нейтронов. А при делении ядер образуются быстрые нейтроны. Если быстрые нейтроны замедлить, то большая их часть захватится ядрами урана-235 с последующим делением этих ядер. В качестве замедлителей используются такие вещества, как графит, вода, тяжёлая вода (в состав которой входит дейтерий - изотоп водорода с массовым числом 2), и некоторые другие. Эти вещества только замедляют нейтроны, почти не поглощая их.

Таким образом, возможность протекания цепной реакции определяется массой урана, количеством примесей в нём, наличием оболочки и замедлителя и некоторыми другими факторами.

Критическая масса шарообразного куска урана-235 приблизительно равна 50 кг. При этом его радиус составляет всего 9 см, поскольку уран имеет очень большую плотность.

Применяя замедлитель и отражающую оболочку и уменьшая количество примесей, удаётся снизить критическую массу урана до 0,8 кг.

Вопросы

  1. Почему деление ядра может начаться только тогда, когда оно деформируется под действием поглощённого им нейтрона?
  2. Что образуется в результате деления ядра?
  3. В какую энергию переходит часть внутренней энергии ядра при его делении; кинетическая энергия осколков ядра урана при их торможении в окружающей среде?
  4. Как идёт реакция деления ядер урана - с выделением энергии в окружающую среду или, наоборот, с поглощением энергии?
  5. Расскажите о механизме протекания цепной реакции, используя рисунок 163.
  6. Что называется критической массой урана?
  7. Возможно ли протекание цепной реакции, если масса урана меньше критической; больше критической? Почему?